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Flying and terrestrial animals should spend energy to move while supporting their weight against
gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for
supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals.
However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and
thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights
and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using
animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed
when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density
to minimize the cost of transport in horizontal swimming by seals.

E
fficient locomotion between two distant points (e.g. breeding and foraging sites) is important for migrating
animals. A recent paper indicated that negatively buoyant aquatic animals (sharks and pinnipeds) some-
times adopted vertical undulations with alternating glide and powered locomotion, and concluded the

undulating movements reduced mechanical cost compared with continuous swimming1. At first glance, the
reported gait pattern resembles the undulating flights of birds, which can reduce mechanical cost of horizontal
flight2. However, two different mechanisms of gliding observed in the aquatic animals were not distinguished in
the paper1.

In aquatic divers, both stroke-and-glide swimming and prolonged gliding followed by active swimming3–9

incorporate periods of passive movement. However, in the latter case, net buoyancy is equilibrated with hydro-
dynamic drag, and swimming speed thereby converges to a terminal speed (potential energy is consumed for
work against drag) during the gliding phase of the dive. In contrast, the stroke-and-glide gait is governed by
different physical mechanisms: the animal gains kinetic energy by thrusting and loses kinetic energy when gliding
that does not require any change in potential energy. Thus swim speed fluctuates periodically. Depending upon
the body angle of motion during stroke-and-glide swimming, both kinetic and potential energy can change
throughout a glide. In the right conditions, short periodical intermittent stroking (stroke-and-glide) can con-
tribute to energy saving in flying and swimming animals2,10,11.

A theoretical study first suggested a possibility of energy saving in negative buoyant fish by prolonged gliding
with a gradual increase of depth then actively swimming upwards to the original depth12. Gleiss et al. (2011)
discussed that potential energy from gravity and altitude is translated into horizontal distance via gliding, which is
thought to result in energy saving compared with continuous level transit1. For prolonged gliding, this is true in
the descent direction aided by negative buoyancy, but costs are naturally greater in the opposite direction13.
Whether or not such patterns of long-duration gliding and subsequent active upward swimming yield mechanical
savings for horizontal transit is not clear14.

Gleiss et al. (2011) found reduced swimming efforts of an elephant seal during undulating locomotion at the
bottom phase of u-shape dives (in Fig. 3e in their paper), and attributed the savings to greater assumed negative
buoyancy1. However, comparison of swimming efforts between conditions known to differ in body density are
needed to test that conclusion. We used data obtained from two field experiments with three Northern elephant
seals Mirounga angustirostris and one Baikal seal Phoca sibirica during which body density was manipulated by
detachable weights and floats8,15. For each seal, we were able to precisely replicate their analysis1 with a high degree
of certainty about the body density of the seal in different conditions. In the present study we evaluate the effect of
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body density on stroke efforts of seals and consider what might be the
optimal body density to minimize the cost of transport during hori-
zontal swimming.

Results
Figure 1 indicates examples of intermittent strokes by a Northern
elephant seal (no. 4 in Table 1) swimming within a narrow range of
depth with and without an attached weight. Swim speed fluctuated
with the stroke-and-glide pattern, but undulation in depth was not
apparent. Pitch angle seemed to undulate when the seal was weighted
(estimated body density was 29.8 kg m23 larger than seawater den-
sity). Pitch became positive when the seal stroked and negative when
it glided (Fig. 1 upper panel). However, this undulation in pitch angle
was not apparent after the weight was detached (body density devi-
ation from the seawater decreased to 12.1 kg m23). A similar tend-
ency was observed in a Baikal seal (Fig. 2). The stroke-and-glide
swimming was accompanied with undulation in speed, not in depth.
The undulation in pitch angle can be seen in weighted and

unweighted conditions, in which body density deviations from fresh
water were 43 and 15 kg m23, respectively.

A total of 554 stroke-and-glide cycles of mean duration ranging
from 4.9 to 14.9 s were identified for analysis of stroking efforts
(Table 1). Mean horizontal swim speeds of the three elephant seals
and one Baikal seal ranged from 0.8 to 1.3 m s21. Stroke efforts of
seals increased with swim speed (Fig. 3) and a statistical model
including both squared horizontal swim speed and absolute density
deviation from neutral buoyancy was selected with minimum AIC
(Table 2). Seals of smaller density deviation (blue plots in Fig. 3) had
lower efforts in comparison with seals of larger density deviation (red
plots in Fig. 3). For a Baikal seal, a statistical model including only
absolute density deviation was also selected with minimum AIC
(Table 2). However, the interpretation was the same: the Baikal seal
had smaller stroke efforts when it was unweighted and the body
density deviated less from neutral buoyancy. These results indicate
that seals had smaller stroke efforts to swim horizontally at a given
speed when their body densities were closer to neutral buoyancy.

Figure 1 | Two examples of intermittent strokes by a Northern elephant seal (no. 4 in Table 1) in weighted and unweighted conditions. Data was

recorded in a field experiment conducted near Ano Nuevo, California, USA15.
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Figure 2 | Two examples of intermittent strokes by a Baikal seal in weighted and unweighted conditions. Data was recorded in a field experiment

conducted at Lake Baikal, Russia8.

Table 1 | Body conditions of seals and characteristics of all stroke-and-glide cycles (total n 5 554)

Body density
Difference from
water density1 Stroke-and-glide cycles

Seal Condition (kg m23) (kg m23) n Duration (s)

elephant seal 1 Weighted 1060.1 31.5 12 11.8 6 4.1
Unweighted 1038.9 10.3 19 14.9 6 4.8

elephant seal 2 Floated-and-weighted 1038.2 10.5 85 9.0 6 2.0
Floated 1015.4 212.3 13 12.0 6 6.8

elephant seal 4 Weighted 1057.9 29.8 66 12.3 6 3.1
Unweighted 1040.2 12.1 148 14.0 6 2.6

Baikal seal Weighted 1043 43 11 5.5 6 1.0
Unweighted 1015 15 200 4.9 6 0.9

1To calculate density difference, sea water density (1027.7–1028.6 kg m23, estimated from salinity, depth and temperature15) was used for elephant seals and fresh water density (1000 kg m23) was used
for a Baikal seal. Duration of stroke-and-glide is represented as mean 6 s.d.
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Discussion
For flying birds, vertical undulation during periods of stroke-and-
glide flying is common because of upward lift produced by wing
flapping and downward gravity during glides, particularly during
glide phases of ‘bounding flight’ during which they do not extend
their wings, apparently to minimize drag2. However, in cases of
aquatic animals such as seals used in the present study, weight in
the water is mostly supported by buoyancy, as a result, vertical undu-
lation during periods of stroke-and-glide swimming was not appar-
ent in comparison with flying animals. Gleiss et al. (2011) indicated
examples of intermittent strokes that were accompanied with vertical
undulation observed in a southern elephant seal (Fig. 3bd in their
paper)1, however, our data indicated that periodical variation in

depth was less than or equal to the 0.5 m resolution of the depth
sensor in stroke-and-glide swimming by seals though periodical vari-
ation in speed was common (Figs.1 and 2) as for undulating flight by
birds2. In our data, stroke-and-glide gait was observed not only in
weighted (or floated) conditions (more different from neutral buoy-
ancy) but also in unweighted (or floated-and-weighted) conditions
(closer to neutral buoyancy), which means that non-neutral buoy-
ancy was not essential for intermittent stroking.

Our results showed that horizontal swimming effort of seals was
consistently higher in conditions when body density deviated more
from neutral buoyancy (Table 2 and Fig. 3). We could recognize
some undulations in pitch angles of non-neutral buoyant seals dur-
ing stroke-and-glide swimming (Figs. 1 and 2). These undulations

Figure 3 | Stroke efforts in relation to horizontal swim speed of three Northern elephant seals ((A): elephant seal 1, (B): seal 2, (C): seal 4) and one Baikal
seal (D). The effort was represented by overall dynamic body acceleration (ODBA)1. Color of plot indicates density conditions (red: more deviated from

neutral buoyancy, blue: closer to neutral buoyancy). Curves were derived from the statistical models calculated for each density condition. Values by the

curves are density deviation from water density (see Table 1).

Table 2 | AIC value for each linear model describing the effect of body density deviation on stroke efforts. Underlines indicate the minimum
AIC of each individual

Elephant seal

Model 1 2 4 Baikal seal

Null 2114 2572 2815 21230
Squared horizontal speed 2128 2579 2895 21232
Absolute density deviation 2112 2585 2880 21287
Squared horizontal speed & Absolute density deviation 2130 2606 2906 21287

Note that the elephant seal 1 had a delta AIC of 2, compared between models including and not including absolute density deviation. It suggests less evidence to select the more complex model, which might
be caused by relatively small sampling number (n 5 12 1 19) in comparison with other seals (Table 1).
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may have increased the cost of horizontal swimming. We conclude
that non-neutral buoyancy is neither essential nor beneficial for
intermittent stroking, and that stroke-and-glide horizontal swim-
ming should be most efficient when the animal is close to neutral
buoyancy.

Methods
Field experiments. In the present study, we used data recorded in two field
experiments, in which free-diving Northern elephant seals and a Baikal seal were
instrumented in California, USA (2008), and in Lake Baikal, Russia (2005),
respectively. Experiments were performed in accordance with relevant guidelines and
regulations in each study site. Details of the experimental procedure were described in
published papers8,15 and the procedures were approved by the UCSC CARC (IACUC)
committee and permitted under NMFS marine mammal permits nos 786–1463 and
87–143. In both experiments, a multi-sensor data logger (3MPD3GT; 26 mm
diameter, 175 mm length, 140 g in air; Little Leonardo Co., Tokyo, Japan) was
deployed on seals to record depth and swim speed at 1 s intervals, and three-axis
accelerations for detecting pitch and hind flipper movements at 1/16 (elephant seal)
or 1/32 s (Baikal seal) intervals.

The body densities of elephant seals were experimentally changed by attaching a
weight and float just behind the data logger on the back of seals. A time-scheduled
release mechanism (Little Leonardo Co.) was used to automatically release the weight
and float. The front part of the weight and the float were covered with a streamlined
plastic housing to provide a consistent alteration in frontal area for each seal without
changing the drag coefficient between conditions15. We obtained three buoyancy
manipulation conditions: floated-and-weighted, weighted and floated (Table 1). In
case of the Baikal seal, weight was deployed on the seal and was detached 24 h after
deployment by the release mechanism.

Data analysis. The body composition of each elephant seal was estimated by isotope
dilution, and then the body density was calculated from proportion and the density of
each component (lipid, protein, ash and body water)15. The body density of the Baikal
seal was estimated from deceleration of swim speed and pitch angle8. Absolute
differences between body and water densities (Table 1) were used for statistical
analysis.

Swim speed was recorded as the number of rotations per second (rev s21) of an
external propeller mounted at the anterior end of the multi-sensor data logger. The
rotation value was converted to actual swim speed (m s21) using the calibration
method5. Effort of seals were represented by overall dynamic acceleration ODBA,
which is an index to represent acceleration due to motion of the body, calculated from
3-axis acceleration data as described in the preceding paper1.

We extracted individual undulations when a stroke-and-glide cycle began and
ended at the same depth1. Since the majority of stroke-and-glide cycles were not
accompanied with vertical undulations, stroke-and-glide cycles were also extracted
during horizontal swims when depth change was equal to or less than 0.5 m (reso-
lution of depth sensor). Then, we calculated the mean ODBA and mean swim speed
during those cycles. We adjusted the mean swim speed to horizontal speed using the
absolute pitch angle calculated from longitudinal acceleration.

Statistical analysis. To determine an effect of body density on stroke effort, linear
models were fitted to the data of each seals, in which ODBA was a response variable,
and squared horizontal swim speed and absolute density deviation were fixed factors.
Squared speed was fit in the models to account for the non-linear increase in resistive
drag forces due to speed. Akaike Information Criteria (AIC) were compared between
the fitted models to select the most parsimonious model. For the model fitting, R 2.6.2
(R Foundation for Statistical Computing, Vienna, Austria) was used with the glm
function in R package.
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