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Social network analysis is now widely used to investigate the dynamics of infectious disease spread.
Vaccination dramatically disrupts disease transmission on a contact network, and indeed, high vaccination
rates can potentially halt disease transmission altogether. Here, we build on mounting evidence that health
behaviors - such as vaccination, and refusal thereof - can spread across social networks through a process of
complex contagion that requires social reinforcement. Using network simulations that model health
behavior and infectious disease spread, we find that under otherwise identical conditions, the process by
which the health behavior spreads has a very strong effect on disease outbreak dynamics. This dynamic
variability results from differences in the topology within susceptible communities that arise during the
health behavior spreading process, which in turn depends on the topology of the overall social network. Our
findings point to the importance of health behavior spread in predicting and controlling disease outbreaks.

S
ocial network analysis is now widely used to investigate the dynamics of infectious disease spread from
person to person, conceptualizing pathogen transmission by a diffusion process on social contact networks.
A rich body of literature has explored the role of topological contact network properties such as hetero-

geneity in degree distributions1,2, cluster coefficients3–5, and community structure6–8 on disease dynamics. Most
network-based disease dynamics models assume that everyone in the network is susceptible, and the overall
contact network is taken to be the network on which the disease spreads. For many diseases, however, prior
epidemics9 and public health efforts such as vaccination10 effectively remove individuals from the network by
rendering them immune. It is therefore important to understand how these processes shape the topological
properties of the network of susceptible individuals. Here, we will focus on susceptibility-promoting behaviors,
and how the transmission of such behaviors shapes the network of susceptible individuals. We will use vaccina-
tion as a prime example of susceptibility-promoting behaviors.

Outbreaks of vaccine-preventable disease are more common when vaccination rates decline11. High vaccina-
tion rates are therefore essential to prevent such outbreaks. In principle, partial vaccination coverage (i.e. less than
100%) can be sufficient to prevent disease outbreaks12,13, because a population can be protected by herd immunity
if the prevalence of susceptible individuals is held below a certain threshold that depends on biological char-
acteristics of a disease. However, outbreaks have also been observed repeatedly in countries where vaccination
coverages have been increasing at already very high levels7. For example, in 2010, many European nations
reported over 10,000 measles cases while maintaining vaccination coverage rates in excess of the WHO-
prescribed target of 90%14. A growing body of research suggests that non-random distribution of unvaccinated
individuals serves to counterbalance the benefits afforded by high vaccination coverage. Herd immunity is
predicated on the assumption that susceptibility is spatially uniform, but geographic clustering of vaccine refusal
has been widely observed15–19. Furthermore, Pertussis outbreaks have been associated with the clustering of
exemptions to school immunization requirements in the US20. These studies support the supposition that
communities of the intentionally unvaccinated pose a risk to local communities as well as global eradication
efforts. While the causes of susceptibility clustering remain unclear, peer influence has been shown to be a
significant determinant of vaccine uptake21–23.

The spread of health behaviors such as vaccination is often modelled as a simple contagion process, similar to
biological contagion, where each exposure event contributes equally to the probability of adoption of the beha-
vior. However, there is increasing evidence24–26 that the process of social transmission of behaviors is governed by
a process of complex contagion, where social reinforcement - i.e. multiple exposures from different peers - are
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necessary for adoption. Here we develop a model to investigate the
effects of simple and complex contagion of negative vaccination
sentiment on the likelihood and size of disease outbreaks on a social
contact network. Our results indicate that complex contagion
increases the size of disease outbreaks, i.e. that outbreaks are largest
when the spread of negative vaccination sentiment requires social
reinforcement as a prerequisite to adoption. Outbreak size is further
maximized when the underlying network topology is neither highly
structured (e.g. lattice) nor highly unstructured (e.g. random), but
rather of the ‘‘small world’’ type in between. We find that this is due
to the interplay between the two processes, social contagion and
biological contagion, and the topologies of the two networks on
which these processes occur (social contagion occurs on the full
network, whereas biological contagion occurs on the subnetwork
of susceptible individuals only).

Results
The topological distribution of individual susceptibility on a popula-
tion’s contact network strongly affects the probability of a disease
outbreak in that population. To begin, we will look at three different
sentiment spreading scenarios (random, simple and complex) on
three different types of network topologies, defined by the rewiring
probability (p): highly structured (p 5 0.01), intermediately struc-
tured, i.e. ‘‘small world’’ (p 5 0.1), and highly unstructured (p 5 0.5).

We assume a population’s baseline risk of experiencing an outbreak
to be the frequency of disease outbreaks when the distribution of
negative vaccination sentiment is driven only by general exposure
rather than social contagion. The outcome of this process meets the
assumption of herd immunity – that susceptibility is homogeneously
mixed throughout the network – because it is equivalent to a random
distribution of vaccination status on the network. As a consequence,
outbreaks are rare and approach zero as the proportion of vaccinated
individuals approaches the herd immunity threshold of 90%
[Figure 2A]. We then compare the results of this baseline scenario
to two social spreading scenarios, simple and complex contagion,
that produce a heterogeneous distribution of susceptibility. In both
scenarios, sentiments predominantly spread through social exposure
[Figure S1], but it is worth repeating that general exposure is ongoing
at low rates. When negative vaccination sentiment spreads by simple
contagion, outbreaks dramatically increase in frequency compared
to the random baseline scenario, and even occur when vaccination
coverage has approached the herd immunity threshold. However, at
vaccination coverage of 95%, no outbreaks occur in the simple con-
tagion scenario. The situation is different when negative vaccination
sentiment spreads by complex contagion: outbreaks are generally
more frequent than even under the simple contagion scenario, and
importantly, they still occur at 95% vaccination coverage, an out-
come not observed with simple contagion. Overall, the results are

strongly dependent on the way in which negative vaccination senti-
ments spread.

It is important to note that the original network topology affects
the disease outcome in two ways. First, the network topology will
affect how negative vaccination sentiments spread. Second, once the
negative vaccination sentiments have spread, the structure of the
remaining smaller subnetworks of susceptible individuals - the net-
works on which the disease can spread - will affect disease dynamics.
Thus, the network topology of the original network will also affect the
topology of the emerging susceptible networks, simply because the
susceptible networks are subnetworks of the original network. We
will first focus on the number and size of susceptible subnetworks
that are generated by negative vaccination sentiment spread, and we
will refer to these subnetworks as communities (defined as a group of
nodes where each node in the group is connected to each other node
in the group by a path, but to no other node outside of that group -
this is also known as a weakly connected component in graph the-
ory). The size and frequency of outbreaks will be strongly affected by
the number and size of susceptible communities. Second, we will
focus on the topology of the susceptible communities, and its effect
on disease dynamics.

Complex contagion of negative vaccination sentiment produces
slightly fewer susceptible communities [Figure 2B] than simple con-
tagion. Under simple contagion, each general exposure of a non-
exposed individual leads to the adoption of the negative vaccination
sentiment, at which point it can spread from this initial seed and give
rise to an expanding susceptible community. Under complex con-
tagion, both the adoption and the spread of negative vaccination
sentiment proceeds more slowly because of the T . 1 requirement.
Because we run simulations until a fixed fraction fu2 of the popu-
lation has adopted the negative vaccination sentiment, the slower
spread in the complex contagion scenario means that there is more
time for new communities to emerge. However, the initial generation
of a novel community is such a rare event in the complex contagion
scenario that it more than compensates for the effect of a longer time
frame, resulting in fewer susceptible communities overall than in the
simple contagion scenario. This finding is consistent over a wide
range of parameters [Figure S2].

Our assumption that a fixed fraction fu2 of the population adopts
the negative vaccination sentiment means that the number of com-
munities relates directly to the average size of these communities. In
particular, since complex contagion generally produces fewer com-
munities than simple contagion, these communities are on average
larger. However, the average size alone can be a poor guide to predict
final sizes of disease outbreaks because the community size distri-
bution is often skewed, typically with one large community and a few
very small ones. To capture the distribution in a single number that
relates to expected outbreak size, we used a quasi-deterministic ver-
sion of the model with deterministic disease transmission (b 5 1)

Figure 1 | Schematic representation of the complex contagion of negative vaccination sentiment followed by an SIR disease epidemic. White

nodes denote non-adopters of a negative vaccination sentiment. Black nodes denote individuals who adopt a negative vaccination sentiment. Red nodes

denote individuals who have been infected. (A) Initial social contact network. (B) After negative vaccination sentiment spreads by complex

contagion during the period of opinion formation (C) After vaccination, and subsequent removal of immunized individuals from the susceptible contact

network. (D) After a vaccine-preventable infectious disease spreads through the remaining susceptible network.
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Figure 2 | Estimated and simulated epidemiological measures if an infectious disease spreads through susceptible communities that are generated by
the social transmission of negative vaccination sentiment. Parameter ranges for all simulations are shown. All points are averages based on 100 unique

susceptible networks generated by stochastic simulations of social contagion. (A) Frequency at which infectious disease outbreaks occur in a population.

An outbreak is defined as a minimum final epidemic size of 25 (i.e. 0.5% of the total population size N55000). For each unique network we ran 10,000

infectious disease simulations. (B) Number of distinct susceptible communities that are generated by the social transmission of negative vaccination

sentiment. rge 5 1025, V5 1024 « 1022, fu2 5 0.10. (C) Quasi-deterministic final epidemic size. Shaded region denotes 95% Confidence Intervals. b 5 1,

c 5 0, rge 5 1025,V5 1024 « 1022, fu2 5 0.10. (D) Simulated final epidemic size. Shaded region denotes 95% confidence intervals. b 5 1021, c 5 1021, rge

5 1025, V 5 1024 « 1022, fu2 5 0.10. For each unique network we ran 10,000 infectious disease simulations (E) Mean effective basic reproductive

number Reff
0

� �
, weighted by cluster size, of an infectious biological agent in the susceptible network that is generated by the social transmission of negative

vaccination sentiment. b 5 1021, c 5 1021, rge 5 1025, V 5 1024 « 1022, fu2 5 0.10.
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and without recovery (c 5 1). In this quasi-deterministic model, the
susceptible index case is chosen randomly, after which the disease
outbreak will completely saturate the community of susceptible indi-
viduals in which it was started. Such outbreaks represent an upper
bound – and thus worst-case scenario – of the final size in a given
community. Since there are often multiple susceptible communities,
we can calculate an average upper bound, F, of final outbreak size.

F~

P
C2

iP
Ci

Hence, F is a weighted mean size of all susceptible communities Ci

in the contact network. The susceptible community’s size serves to
weight the mean, because a randomly infected index case is more
likely to be a member of larger communities. This estimate assumes
that the disease epidemic will deterministically saturate the index
case’s community, regardless of the size and topology of the com-
munity. In the quasi-deterministic simulations, we find that complex
contagion produces sets of communities that have higher upper
bounds in outbreak sizes than simple contagion [Figure 2C]. This
effect is particularly pronounced in more structured networks (i.e.
small p); in more randomized networks, the average distance
between any two nodes is low3, and the set of nodes that have adopted
the negative vaccination sentiment are more likely to be connected in
a single component simply due to the underlying original network
structure, rather than due to the effects of social contagion.

If we relax these quasi-deterministic constraints and simulate
stochastic infectious disease epidemics with b 5 0.1 and c 5 0.1,
we find that increases in rewiring probability, p are no longer pre-
dictive of increases in final epidemic size [Figure 2D]. While all
vaccine-averse individuals are equally susceptible to infection, the
communities to which they belong are not equally susceptible to
saturation by infectious disease. This variability results from differ-
ences in the topology within susceptible communities, which arises
during the opinion formation process. Under complex contagion,
individuals can adopt negative vaccination sentiment by social
contagion or general exposure as well as a combination of the two
processes. As the topology of the initial contact network becomes less
structured and more random (i.e. large p), the availability of social
reinforcement decreases25, resulting in an increased proportion of
adoption events that are caused by a mix of general and social expo-
sures [Figure S1]. Alternatively, under simple contagion, the propor-
tion of general or social adopters depends only on the rates of general
and social exposures rather than the underlying network topology.
Because infectious individuals may recover before infecting a neigh-
bor, the increased path redundancy caused by complex contagion
ensures that an infected individual has ample opportunity to trans-
mit to a susceptible neighbor before recovering, reducing the chance
of stochastic fade-outs. Increased path redundancy is best captured
in an epidemiological context by estimating the effective basic repro-

ductive number Reff
0

� �
for each simulated biological outbreak after

vaccination has taken place. Each susceptible cluster’s Reff
0 depends

solely on the average degree and variance of its degree distribution, as
rates of transmission and recovery are identical (see Methods). The
Reff

0 of the entire susceptible network is given by the weighted arith-
metic mean of each constituent cluster’s Reff

0 , where each estimate is
weighted by the cluster’s size as a proportion of the entire susceptible
network. As shown in Figure 2E, Reff

0 is greater in communities
generated by complex contagion than in communities generated
by simple contagion. (Note that R0 is less than 10 under both simple
and complex contagion because vaccinated individuals are removed
by virtue of their immunity to infection, and the average degree k

� �
of susceptible communities is less than 10.)

Taken together, the results suggest that infectious disease out-
breaks are substantially larger on contact networks shaped by com-
plex social contagion than on networks shaped by simple contagion.

They also suggest the outbreaks are largest in networks whose topo-
logy is neither highly structured nor heavily rewired , but rather best
described as ‘‘small world’’ topologies, characteristic of many social
(contact) networks30,31. The susceptible communities generated by
social contagion in highly structured networks are smaller on aver-
age, but the resulting R0 is higher in these communities - vice versa,
susceptible communities generated by social contagion in heavily
rewired networks are larger on average, but the resulting R0 is lower.
In the parameter space of small world networks, both the average
community size and R0 are moderate, but in combination they gen-
erate the largest outbreaks in the parameter space tested.

Discussion
The primary finding of our research is that infectious disease out-
breaks are larger and occur more frequently when susceptibility-
inducing behaviors, such as negative vaccination sentiment,
spread across contact networks by complex contagion rather than
by simple contagion. Contact redundancy, or the density of social
reinforcement, within a susceptible community is a strong determin-
ant of both the size and frequency of disease outbreaks. The density
of potential social reinforcement is determined by how structured or
random the contact network’s topology is prior to the period of
opinion formation. Complex contagion of negative vaccination sen-
timent fosters redundancy within communities of unvaccinated
individuals, resulting in susceptible communities that are more read-
ily saturated by infectious diseases. Our results indicate that standard
estimates32 of vaccination rates to attain herd immunity can be highly
insufficient to protect a community if clustering of susceptible indi-
viduals is caused by the social spread of negative vaccination senti-
ments, and particularly so if the contagion process is complex,
requiring social reinforcement.

Given that peer influence is a significant determinant of vaccine
uptake21,23 in regions where vaccine availability is not a limiting
factor, conditions found in high-income nations may serve as early
indicators of future hurdles to global eradication efforts. A recent
survey study of hospital workers illustrates that the expressed reasons
for vaccine refusal are most strongly associated with myths and
urban legends about immunization, leading to concerns about
adverse effects and insufficient efficacy33. This problem of perception
is traditionally approached from a game-theoretic perspective
wherein individuals are assumed to perform a complex risk-analysis
with respect to financial cost, treatment efficacy, the risk of infection,
etc. However, rather than disentangle such a complicated decision,
individuals may defer to social reinforcement as a rough proxy for an
informed cost-benefit analysis. Modeling a complex social contagion
that affects disease-susceptibility allows us to underscore the role of
social deferment in the adoption of health-behaviors that are both
risky and beneficial.

To the best of our knowledge, this is the first study to look at the
effect of complex contagion of vaccination behavior on infectious
disease dynamics, and as such it is limited in several ways. We have
focused on the effect of a minimal change in the adoption threshold T
that differentiates complex from simple contagions. There is little
doubt that adoption threshold is variable between both individuals
and social contagions themselves. Sociologists have long recognized
the influential role of ‘‘early adopters’’: individuals characterized by a
low adoption threshold to the contagion under investigation. A
recent theoretical model34 explores cascade dynamics when early
adopters are also more active and enthusiastic spreaders. Barash
et al.35 have also considered cascade dynamics when the adoption
threshold is not only variable, but also determined relative to the
proportion of neighboring adopters. Both are particularly valuable
lines of inquiry as we consider contagions in competition with other,
mutually exclusive contagions.

Further, we do not explicitly simulate the spread of positive vac-
cination sentiment; rather positive sentiment is treated as a default
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position for individuals who do not adopt negative vaccination
sentiment by the end of the opinion formation period.
Oppositional social contagions (e.g., positive and negative vaccina-
tion sentiment) are often in competition for individual attention36,
but this paradigm may not apply to vaccination in developed nations
because immunization is often a default prerequisite for access to
public institutions. As a result, those who may hold a neutral sen-
timent are incentivized to vaccinate. Institutional immunization in
developed nations ensures a wide and largely uniform distribution of
vaccinated individuals, though it does not preclude further con-
tagious spread of positive vaccination sentiment. Indeed, the preval-
ence of positive vaccination sentiment may have synergistic or
antagonistic effects on the spread of negative vaccination sentiment.

Finally, we model public opinion formation and the spread of
infectious disease as two serial processes that occur on the same,
static contact network of small world topology. While these assump-
tions may be justified in some circumstances37, they need to be
relaxed in future studies, particularly with respect bi-partite networks
and topologies with scale-free degree distributions. For example,
modern communication technologies and services (mobile phones,
social media, etc.) can result in communication networks that can be
rather divergent from the contact networks upon which infectious
diseases can spread. With respect to the temporal dynamics of the
two spreading processes, we recognize that public opinion about the
decision to vaccinate is a continuous, dynamic process that can be
affected by the global and local prevalence of infectious disease38.
Furthermore, dynamic social interactions that are not captured by
static contact networks are increasingly important in the realm of
highly communicable diseases such as measles5,10,39. We hope that
our assumptions are understood as necessary simplifications in this
initial exploration that allow for the direct comparison of epidemic
outcomes in susceptible communities whose only difference arises
from either the simple or complex contagion of negative vaccination
sentiment.

Methods
Our model is split into two time periods. In the first time period, we simulate the
diffusion of negative vaccination sentiment - and subsequent vaccine refusal - on a
social network. In the following, second time period, we simulate the spread of the
infectious disease against which the vaccine confers complete immunity. Both pro-
cesses are typically associated with considerable complexity; however, in order to keep
the model tractable, we will make a few simplifying assumptions that we will outline
below. We will further explore these limitations in the Discussion section.

The spread of both vaccine refusal and the infectious disease are modelled on a
static social network of N 5 5000 individuals with average degree k~10. Using the
Watts-Strogatz model3, we model an inclusive range of network topologies depending
on the rewiring probability, p. This model allows us to capture highly structured ring-
lattices (small p), highly unstructured graphs (large p) and a variety of small world
network topologies in between [Figure 1A].

Individuals participate in an opinion formation process that continues until the
frequency of negative vaccination sentiment, fu2 reaches a fixed value. The
assumption of a fixed frequency of negative vaccination sentiment is in principle
unrealistic, but it allows for a direct comparison of different simulation settings with
identical vaccination coverage (because vaccination coverage 5 1 2 fu2).

The spread of negative vaccination sentiment follows a straightforward exposure -
adoption process. Initially, everyone in the network has a non-negative vaccination
sentiment. Once an individual’s number of exposures to negative vaccination sen-
timent reaches a threshold, T, the individual adopts the negative vaccination sen-
timent. If T 5 1 then the process captures simple contagion; if T . 1, the process
captures complex contagion26,27. There are two ways by which an individual can be
exposed to the negative vaccination sentiment: (i) the individual is exposed by a
neighboring individual in the social network, or (ii) the individual is generally
exposed by any other source not captured by the social contact network (e.g., through
the media). In the first case of direct social exposure, an individual can be exposed only
once by a neighboring contact. In the second case of general exposure, individuals can
be exposed multiple times: since general exposure is assumed to be any other source
outside of the social network, each such exposure is assumed to be from a unique
source. By assuming that general exposure is ongoing at all times during the opinion
formation process, we can compare three situations: general exposure only, general
exposure and simple contagion, and general exposure and complex contagion
[Figure 1B].

After an individual adopts the negative vaccination sentiment, neighboring con-
tacts are exposed at rate V (i.e. V is the probability of social exposure per timestep per

contact). A proportion, rge, of the entire social network is selected at random and
generally exposed to negative vaccination sentiment at each timestep. Note that each
randomly selected individual is exposed, regardless of current vaccination sentiment,
to ensure that the process remains random as more individuals adopt a negative
vaccination sentiment. Each individual’s number of unique social exposures, es, and
general exposures, eg, are recorded. An individual adopts the negative vaccination
sentiment when their aggregate number of unique exposure events meets, or exceeds,
the aforementioned adoption threshold, es 1 eg $ T. Once the frequency of negative
vaccination sentiment, fu2, reaches a fixed value, all individuals with non-negative
sentiments are vaccinated [Figure 1C].

After vaccination, a susceptible (i.e. non-vaccinated) individual is selected at ran-
dom to seed a simple (SIR) disease epidemic. Unless noted otherwise, susceptible
individuals are infected by infectious neighbors at rate b 5 1021 per contact and
timestep, and subsequently recover at rate c 5 1021 per timestep [Figure 1D]. Given
that the average degree of the initial network is k~10, the infectious disease’s basic

reproductive number can be calculated as R0~
b

c
:k: 1zC2

u

� �
28 where Cu is the

coefficient of variation of the network’s degree distribution. In the case where the
entire network would be susceptible to the disease, the resulting R0 of ,10 would

require a vaccination coverage of 1{
1

R0
<90% to provide for herd immunity, a value

that was chosen to lie approximately in the middle between moderately transmissible
diseases such as influenza (with an estimated R0 between 1 and 3) and highly trans-
missible diseases such as measles (with an estimated R0 in excess of 10). The infection
process continues until all infected individuals have recovered. For each round of
opinion formation considered, multiple independent disease epidemics are simu-
lated. For each epidemic simulation, we record the number and size of susceptible
communities, or connected components of susceptible individuals, as well as the final
epidemic size. We define an outbreak as a final epidemic size larger than 25 indivi-
duals, which corresponds to 0.5% of the total population29.
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