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Ground-state cooling and pure state preparation of a small object that is embedded in a thermal
environment is an important challenge and a highly desirable quantum technology. This paper proves, with
two different methods, that a fundamental constraint on the cooling dynamic implies that it is impossible to
cool, via a unitary system-bath quantum evolution, a system that is embedded in a thermal environment
down to its ground state, if the initial state is a factorized product of system and bath states. The latter is a
crucial but artificial assumption included in numerous tools that treat system-bath dynamics, such as
master equation approaches and Kraus operator based methods. Adopting these approaches to address
ground state and even approximate ground state cooling dynamics should therefore be done with caution,
considering the fundamental theorem exposed in this work.

I
n the quantum regime, ground-state cooling of a small object that is embedded in a thermal environment, such
as neutral atoms1, ion traps2, mechanical resonators3,4, nuclear spins (polarization)5, is an intriguing challenge
and one of the most desirable of quantum technologies6. Mathematically, a ground-state cooling (or polar-

ization) process can be formulated as a transformation from the initial state of the system 1 bath to a final state,
where the small object, the ‘‘system’’, reaches its ground state. There have been variety of ground state cooling
schemes, for example, sideband cooling1, which have been carried out experimentally7–9. Here we prove that a
fundamental constraint on the cooling dynamic implies that it is impossible to cool, via a unitary system-bath
quantum evolution, a system that is embedded in a thermal environment down to its ground state, if the initial
state is a factorized product of system and bath states. The latter is a crucial but an artificial assumption often
included in many descriptions of system-bath dynamics10. This no-go theorem more generally implies that, with a
factorized system-thermal bath preparation, quantum evolution cannot drive a system to a pure state. We prove
this no-go theorem by using the properties of unitary transformations. We also provide counter examples that can
result in ground state cooling: the cases when the environment is prepared in a non-thermal state, and a scenario
with the system-bath being initially correlated.

Note that this theorem addresses ‘‘ground state cooling’’, i.e. an ideal cooling to the exact system ground
state. As such, the goal is the ideal limiting case of many experiments in which the target is cooling to near the
ground state. The result provides a formal proof with significant consequences for theoretical and computational
studies11–14.

Results
Unitary constraint of system 1 bath. To prove this fundamental statement we consider a generic arrangement
with a small entity, comprising a few degrees of freedom, referred to as the ‘‘system’’ possibly subjected to time
dependent fields, interacting with a bath that is in a thermal equilibrium state. The total Hamiltonian is given by

H~HSzHBzHSB, ð1Þ

where HS is the Hamiltonian of the system, HB is that of the thermal bath, and HSB denotes the system-bath
interaction Hamiltonian. The details of these terms, whether controllable or uncontrollable (time-dependent or
not), do not alter our results. Time evolution in quantum mechanics is dictated by a propagator U(tf, t0), which
transfers the full initial system 1 bath density matrix r(t0) to the final density matrix r(tf),
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r tf

� �
~U tf ,t0

� �
r t0ð ÞU{ tf ,t0

� �
ð2Þ

Since H is Hermitian, the unitary condition U(t0, tf)U{(t0, tf) 5

U{(tf, t0)U(tf, t0) 5 I is satisfied, I is the unity operator, and the
trace of the density matrix r is preserved. Without loss of
generality, the initial state of the total system is assumed here to be
diagonal, r(t0) 5 diag(P0, P1, …). If it is non-diagonal, we can
diagonalize it by a unitary operator W such that diag(P0, P1, …) 5

Wr0W{. The set {P} corresponds to the eigenvalues of r(t0),
and we order the eigenvalues according to their magnitude,
1wP0§P1§ . . . : Similarly, without loss of generality, we can also
assume a diagonal form for the final state, r(tf) 5 diag(Q0, Q1, …),
again ordered as 1§Q0§Q1§ . . . : The set {Q} corresponds to the
eigenspectra of r(tf). If r(tf) is not diagonal, it can be diagonalized
with a unitary matrix, diag (Q0, Q1, …) 5 V{r(tf)V. Overall, we can
redefine the time evolution operator U as VUW, a unitary operator,
to ensure that both initial state and final state are diagonal matrices.
The density matrices r(tf) and r(t0), Hermitian operators, are
connected by a unitary (rotation) operation, thus they must have
identical eigenspectra, i.e., {Q} 5 {P}. Since the elements are
ordered, we can relate them one by one,

Pk~Qk, k~0, 1, 2 . . . ð3Þ

We now define d0 and df as the number of non-zero eigenvalues in
the set {P} and {Q}, respectively. Under a unitary evolution, d0 must
be equal to df, a prerequisite for relation (3) to hold (or d0/df 5 1
when d0 goes to infinity).

No-go theorem. Based on these simple considerations, we argue next
that under system-bath unitary operations, acting on system or bath
or both, one cannot cool a mixed system state down to its ground
state if the total density matrix is initially system-bath factorizable
and the bath is thermal. That is, the process

r t0ð Þ~s6b? 0j i 0h j6B~r tf

� �
ð4Þ

cannot be carried out with a unitary matrix U (even if it operates on
both the system and bath). The left hand side in Eq. (4) describes the
initial system-bath product state. Here, s 5 diag(s0, s1, …) denotes
the system density matrix at t0, which is anything but a pure state,
and b 5 diag(b0, b1, …) denotes the bath state at that time, a thermal
state at nonzero temperature. The right hand side of Eq. (4) includes
the target final state where the system has been cooled down to its
ground state j0æ and the bath is a mixed state B 5 diag(B0, B1, …)
which is a diagonal matrix11–13. We now provide an argument, which
shows that one cannot evolve between these initial and final states via
unitary dynamics.

Define NS and NB as the Hilbert space dimension of the system and
bath, respectively. If the bath is initially thermal and s is not a pure
state, the inequality d0 . NB holds. In particular, if the system is
initially thermalized we reach the upper bound d0 5 NSNB. On the
other hand, the target state r(tf) has only df # NB nonzero eigenva-
lues, reaching the bound df 5 NB if the bath becomes a thermal state
at time tf. Since df , d0, equation (3), written here in the form

smbj~Bk ð5Þ

cannot be satisfied. Here the index m counts the system eigenvalues,
j and k follow the bath eigenvalues. Hence, system-bath unitary
operations cannot cool a system coupled to a thermal bath down
to its ground state if the system-bath initial state is factorizable and
the system is initially in a mixed state. The analogous proof holds for
any final pure state of the system. While previous studies have poin-
ted out the unattainability of the absolute zero of in such situations15–

17, here we isolate the centrality of the factorization assumption, and
emphasize its strong implications regarding both the underlying

physics and the suitability of master-equation type computational
frameworks that often assume factorization, see e.g., Ref. 11–14.

Related cases. It is of interest to examine a few related situations.
First, if the system is prepared in a pure state, we find that d0 5 NB,
and ground state cooling can potentially be performed if Eq. (5) is
satisfied. Second, one can achieve ground state cooling by preparing
the bath in a non-thermal state. In this case we consider an initial
bath state b with N ’B nonzero eigenvalues, N ’BvNB. This results in
d0wN ’B while df # NB. These values could be made identical if the
states b and B are very different. As the simplest example, consider
both the system and the ‘‘bath’’ as single qubits, where initially the
‘‘bath’’ populates its ground state, b0 5 1. Using Eq. (5), matching
eigenvalues, we require that s0 5 B0. The system ground state can
therefore be reached here by the swapping operation. A more
involved scenario includes a two-qubit bath and a single-qubit
system where we initially set the system in a mixed state while we
prepare the bath in a non-thermal state with precisely two zero
eigenvalues, b2 5 0 and b3 5 0. The prerequisite for ground state
cooling, d0 5 df, could be fulfilled here if at the end of the quantum
evolution all four bath eigenvalues B

0
is are made nonzero, resulting in

d0 5 df 5 4.
Third, we note that system-bath correlated initial states18 do allow

for ground state cooling. We illustrate this possibility by modeling
the system as a qubit, with ground state j0æ and excited state j1æ. We
construct the following correlated initial state

r t0ð Þ~ 0j i 0h j6b 0ð Þz 1j i 1h j6b 1ð Þ ð6Þ
where b(0) 5 diag(b0, …, bn) and b 1ð Þ~diag bnz1, . . . ,bNBð Þ. As
before, the target state is r(tf) 5 j0æÆ0jfl B. It is easy to confirm that
the prerequisite for ground state cooling is satisfied, and the number
of non-zero eigenvalues for the initial and final density matrices is
identical, d0 5 df 5 NB. Furthermore, one could pair the eigenvalues
one by one, as required by Eq. (3). For example, we can set the system

with s0~s1~
1
2

and the bath with
bk

2
~Bk. As a result, the reduced

density matrix of the bath is the same, initially and finally, whereas
the reduced density matrix of the system at time t0 is (j0æ Æ0j 1

j1æ Æ1j)/2, for a given n such that b0 1 … 1 bn 5 1/2.

Approximate cooling and an alternative proof. We now consider
approximate ground state cooling, defined as the evolution from the
initial state r(t0) 5 s fl b to the final-factorizable state r(tf) 5 S fl B,
where S 5 diag(S0, S1, …), the diagonal state of the system at the final
time, describes a system ‘‘colder’’ than the initial one, in the sense that
S has fewer nonzero elements than s. This situation is typically
assumed in the framework of Markovian master equations19. Since
the underlying quantum dynamics is unitary, we should be able to
match the eigenvalues of the initial state and the final state. In
particular, the first two eigenvalues should fulfill s0b0 5 S0B0 and
s0b1 5 S0B1. The second relation holds in the case where the system
energy gap, between its ground state and first excited state, is larger
than the corresponding gap in the bath, s0b1 . s1b0. These relations
yield B1/B0 5 b1/b0, translated to e{ E1{E0ð Þ=KBTi~e{ E1{E0ð Þ=KBTf (KB

is Boltzmann constant), if we further demand that the bath internal
spectra is identical at t0 and tf, and that the bath acquires a thermal
equilibrium state at the final time10,11,12. Here Ti and Tf denote the
temperature at the different times. The last relation implies that the
final-time temperature is equal to the initial-time temperature, i.e.,
the bath has not been changed through the cooling process, {b} 5 {B}.
As a result, to satisfy Eq. (3), we must conclude that the system retains
all its values, Sm 5 sm. In the scenario described here, quantum
evolution cannot modify the system population. Thus, even an
approximate ground state cooling is impossible, as long as the
system ground state is nondegenerate. Note that this argument
provides a supportive proof for the impossibility of ground state
cooling if we take S0 5 1 and Sm?0 5 0.
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Discussion
Ground state cooling within system-bath unitary operations is not
possible given initial system-thermal bath factorization. The linearity
of unitary operations has, in the past, resulted in a no-go theorem,
the no-cloning theorem20, one of the building blocks in modern
quantum information theory. Our no-go principle is similarly based
on unitary evolution, and stands at the foundation of any theory that
aims at describing ground state cooling and pure state preparation.
For example, many recognized master equation techniques, as well as
Kraus operator based methods10, are predicated on the initial factor-
ization of the system and bath. Adopting these approaches to address
issues of cooling should be done with caution, considering the fun-
damental constraint exposed in this work.
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