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We demonstrate that fluctuations of the local density of states (LDOS) in strongly disordered graphene play
an important role in determining the quantum capacitance of the top-gate graphene devices. Depending on
the strength of the disorder induced by metal-cluster decoration, the measured quantum capacitance of
disordered graphene can dramatically decrease in comparison with pristine graphene. This is opposite to the
common belief that quantum capacitance should increase with disorder. To explain this counterintuitive
behavior, we present a two-parameter model which incorporates both the non-universal power law behavior
for the ADOS and a lognormal distribution of LDOS. We find excellent quantitative agreements between the
model and measured quantum capacitance for three disordered samples in a wide range of Fermi energies.
Thus, by measuring the quantum capacitance, we can simultaneously determine the ADOS and its
fluctuations. It is the LDOS fluctuations that cause the dramatic reduction of the quantum capacitance.

F
or disordered graphene, theoretical predictions suggest that as the disorder strength increases, the average
density of states (ADOS) increases accordingly, in comparison with pristine graphene1,2. The changes of the
ADOS near the charge neutrality point (NP) still remain ambiguous and under debate3–9. One of the

theoretical predictions on disordered graphene suggested that the ADOS followed a power law, i.e.
r EFð Þh i* EFj ja, 0 , a , 1, where EF is the Fermi energy3,4 and the exponent a decreases with increasing disorder

. Thus, the ADOS is expected to increase when disorder becomes stronger in graphene.
In two-dimensional (2D) materials, quantum capacitance10,11 Cq can directly reflect the ADOS because it is

proportional to the ADOS at EF due to the large contribution of electron compressibility12, i.e. Cq~e2: rh i, where e
is the electron charge and rh i is the ADOS at EF. The measurement of Cq is more immune to the scatterings arising
from disorder compared to the DC transport measurement. The theoretical expressions of the quantum capa-
citance and the ADOS in single layer pristine graphene11,13 have been verified experimentally by capacitance
measurements for devices with various top-gate geometries14–17.

The measurement of quantum capacitance is expected to help probe the non-conducting states, particularly in
strong localization systems such as the chemically decorated graphene structures, which contain strong disorder
as evidenced by the DC transport measurement18–23. So far, no experimental work seems to have been reported on
the quantum capacitance of disorder graphene. Since the ADOS has been predicted to increase in disordered
graphene, it is natural to expect that quantum capacitance measurements should reflect the increased ADOS
directly.

On the other hand, the local density of states (LDOS) in disordered graphene nanostructures has been
investigated theoretically and experimentally (mostly by scanning tunneling microscopy), and it is believed to
fluctuate due to the presence of the disorder24–29. For substrate-supported pristine graphene, experimental works
demonstrated that the spatial fluctuations of LDOS in the vicinity of the NP follow Gaussian distributions30,31.
Gaussian distributions have been predicted for weakly disordered systems with extended states32. However, for
strongly disordered systems, the fluctuations of LDOS have been predicted to be lognormal33. Recent numerical
simulations showed the lognormal distribution in disordered graphene34. The lognormal distribution has also
been identified in some experimental studies of 2D materials35.

To introduce strong disorder into single layer graphene, we adopted our previously developed method of Ag-
decoration of graphene surfaces18. Through transport measurements of Ag-decorated graphene, we found strong
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Anderson localization induced by the disorder of Ag clusters. The
resistance of Ag-decorated graphene largely increased right after the
decoration, and the variable-range-hopping (VRH) model inter-
preted the experimental data of graphene conductivity fairly well
even at the temperature as high as 300 K18. Obviously, strong local-
ization had been induced in such disordered graphene even at room
temperature. It should be pointed out that the Ag decoration method
was proved by the comparison experiments to be non-invasive and
the lattice of graphene was preserved. Therefore, it makes strongly
disordered Ag-decorated graphene an interesting candidate for the
study of both the ADOS and its local fluctuations through capacit-
ance measurements.

In this letter, contrary to our expectation, we found that the mea-
sured quantum capacitance Cq decreases dramatically as disorder
strength (controlled by the plasma-assisted Ag-cluster decoration18)
increases. To understand the reduction in a quantitative way, here we
proposed a two-parameter model which incorporates both the
ADOS and its local fluctuations. Based on this model, we determined
simultaneously the ADOS changes of the Ag-decorated graphene
and the local fluctuations. It is found that ADOS indeed increase
with disorder and follow the power law r EFð Þh i* EFj ja. The dramatic
reduction of the measured Cq is caused by large fluctuations of LDOS,
which follows a lognormal distribution and is independent of the
Fermi energy.

Results
The fabrication of top-gate graphene devices and the measurement
of capacitance are described in the method section. Fig. 1(a) schem-
atically shows the geometry of the Ag-decorated graphene device
with a top-gate. Fig. 1(b) illustrates the three-terminal configuration
of the capacitance measurement Cq(Vch) and oxide layer capacitance
Cox. In the serial connection, the quantum capacitance can be
obtained from the top-gate capacitance Ctg through the relation
Cq(Vch)~(Ctg(Vtg){1{C{1

ox ){1. Here Vch is the potential across

the graphene sheet and can be obtained by integrating the charge
conservation relation Ctg(Vtg ):dVtg~Cox

:d(Vtg{Vch), i.e.,

Vch~Vtg{

ðVtg

0

Ctg

Cox
dVtg

0. For pristine graphene devices, the

quantum capacitance has been given by Cq0 theory~
2e2kT

p(�hvF)2

ln 2 1z cosh
eVch

kT

� �� �
11,13, where k denotes the Boltzmann con-

stant and nF the Fermi velocity. We fitted the measured quantum
capacitance of pristine graphene Cq0_exp to the theory Cq0_theory to
obtain Cox~1:14mF=cm2. The result is shown in Fig. 1(c). The con-
sistency in the vicinity of the NP has been improved compared to
previous works15,17,30. One of the possible reasons for this improve-
ment is the use of Cu mask before Yttrium deposition. By this way, we
effectively reduced contamination from e-beam lithography, which
may result in electron-hole puddles30,31.

Fig. 1(d) shows the measured quantum capacitances Cq(Vch) of
three typical Ag-decorated graphene devices. Samples Ag1, Ag2 and
Ag3 were decorated by Ag clusters via sputtering (5 W) for 1 s, 5 s
and 10 s, respectively. Compared to the results recorded from the
pristine graphene Cq0_exp in Fig. 1 (d), the quantum capacitance
obtained from Ag-decorated graphene devices is much smaller.
The Cq(Vch) curves of Ag-decorated graphene devices are all asym-
metrical between the electron and hole bands. This asymmetry was
also observed in transport measurements18. As the Ag decoration is
increased, the quantum capacitance of the devices decreases dramat-
ically, which seems to be counterintuitive. Direct interpretation of
these results via Cq~e2: rh i leads to disagreement with the theor-
etical predictions of the ADOS in disordered graphene.

In order to quantitatively understand the dramatic reduction of
quantum capacitance in disordered graphene samples, we propose
here a two-parameter model. In this model we incorporate both the
ADOS of the disordered graphene and its LDOS fluctuations. To
simulate the quantum capacitance, we first divide the total area A
of graphene evenly into N small regions Ai, each has a size A/N as

Figure 1 | (a) The geometry of a top-gate Ag-decorated graphene device. The small white islands represent the Ag clusters. (b) The equivalent circuit of

the three-terminal capacitance measurement. The p-Si substrate is grounded to avoid its parasitic capacitance. (c) The quantum capacitance of one

pristine graphene device with Cox~1:14mF=cm2. The inset shows the optical image of the device. The dashed line indicates the outline of the graphene

flake and the scale bar is 5 mm. (d) The measured quantum capacitance of three Ag-decorated graphene devices sputtered for 1 s, 5 s, and 10 s,

respectively.
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shown in Fig. 2(a). For simplicity, we set A 5 1. In each region Ai, we
define a normalized random variable di~

ri

rih i
with dih i~1, where

ri is the LDOS in Ai and rih i is the ADOS of the system. For a given
EF, the local quantum capacitance in the region Ai can be written as

Cqi~e2ri
: 1

N
~

e2

N
: rih i:di ð1Þ

As indicated by the equivalent circuit shown in Fig. 2(b), the total
capacitance of the graphene device Ct is the summation of all parallel
capacitances of N serial capacitances of Co and Cqi, where Co 5 Cox/N
is the oxide layer capacitance in each small region. Thus, the
quantum capacitance can be simulated using the following equation:

Cq mod~ C{1
t { NCoð Þ{1� �{1

~

N
PN
i~1

Cqi= CqizCo
� �

PN
i~1

1= CqizCo
� � , ð2Þ

which depends only on the ADOS rih i and the normalized distri-
bution of di. In order to simulate the quantum capacitance, we need

to choose a correct distribution for di~
ri

rih i
. In strongly disordered

graphene, the distribution of LDOS has been studied and found to be
lognormal34. The lognormal distribution has also been evidenced
experimentally in other 2D disordered materials35. Thus, to simulate
Eq. (2), we propose a lognormal distribution for d, i.e.,

f dð Þ~ 1

d:
ffiffiffiffiffiffiffiffiffiffi
2pj2

p : exp {
ln dzj2=2
� �2

2j2

 !
, ð3Þ

or, d* ln N {j2=2,j2� �
, d [ ½0,z?) with dh i~1. Because the

variance of d is exp j2� �
{1, j denotes the degree of the fluctuations.

Theoretically, the ADOS in disordered graphene have been predicted
to increase with disorder strength. One of the proposed analytical
expressions for ADOS is a non-universal power law referred to quasi-
particles in d-wave superconductor, which was supported by numer-
ical exact diagonalizations (ED) for different types of disorders3,4. In
our simulation, we assume that the ADOS rih i follow the non-uni-
versal power law. Thus, the ADOS at the Fermi energy (EF 5 eVch) is
given by

rih i~r0 að Þz 2e

p(�hvF)2

l

e

� �1{a

Va
ch, ð4Þ

where r0(a)~
32l=t2

9pa2(1{a)
exp {

1
1{a

� �
is the residual ADOS at

NP, l is the cut-off energy and l 5 3t, a is the lattice constant and t is
the nearest-neighbor hopping energy3,4 (t 5 2.8 eV). The exponent
a [ (0,1) in Eq. (4) represents the disorder strength, and its value
decreases with increasing disorder strength.

The simulated quantum capacitance Cq_mod of Eq. (2) now
depends only on two parameters: the disorder strength a and the
degree of LDOS fluctuations j. By using Eq. (2), We performed
Monte Carlo simulations and found that Cq_mod always converges
to a well-defined value if N is sufficiently large for a chosen set of
(a,j). In Fig. 2(c), we plot the simulated results for all the three
disordered samples shown in Fig. 1(d). It shows good agreements
between the simulated and measured quantum capacitance in a wide
range of Fermi energies. To avoid ambiguity in the vicinity of the
NP30,31, the simulation started from Vch 5 0.15 V. Good agreements
are also obtained for the hole branch. (see Supplementary
Information). However, for Sample Ag3, some deviations between
the measured and simulated results are noticed. This indicates that
for a strongly disordered sample, the ADOS might deviate from the
power law behavior of Eq. (4).

The fitting parameters for the three samples are listed in Table 1. It
is clearly seen that a decreases with increasing disorder. The corres-
ponding ADOS are plotted in Fig. 3(a), which shows explicitly that
ADOS increases with disorder strength. This is consistent with the
previous theoretical predictions of ADOS in disordered graphene3,4

and our transport measurements18. Table 1 also indicates that the
residual DOS r0 at the NP cannot be ignored in such highly disor-
dered graphene samples. Thus, the dramatic reduction in measured
quantum capacitance found in Fig. 1(d) is caused by the large

Figure 2 | (a) The top-gate Ag-decorated graphene device is divided into N

small areas in the FLDOS model. Co and Cqi are the oxide layer capacitance

and the quantum capacitance in Ai, respectively. (b) Equivalent circuit of

the top-gate graphene device in the FLDOS model. The total capacitance is

the summation of parallel capacitances of all serial capacitances of Co and

Cqi. (c) The experimental quantum capacitance (scatters) and the

simulation results by the FLDOS model (solid lines).

Table 1 | Fitting parameters and DOS at EF 5 0, 0.25 eV

Sample a j r(0 eV ) eV21 m22 r(0.25 eV) eV21 m22

Pristine a 1.00 0.00 0.00 b 2.77 3 1017

Ag 1 0.74 1.66 3.36 3 1016 7.25 3 1017

Ag 2 0.69 1.95 9.73 3 1016 9.22 3 1017

Ag 3 0.49 2.75 7.43 3 1017 2.41 3 1018

aOnly for comparison. b Vanishes at the NP.

Figure 3 | (a) The simulated ADOS of three samples which follows Eq.(4)

with a 5 0.74,0.69,0.49 for Ag1, Ag2 and Ag3, respectively and the ADOS

of pristine graphene for reference. (b) shows the reduction factor b of

experimental (scatters) and simulation results by the FLDOS model (solid

lines).
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fluctuations of LDOS. Indeed, Table 1 shows that the value of j
increases with disorder strength.

To quantify the reduction of quantum capacitance, here we define

a dimensionless reduction factor b~
Cq

Cq�
, where Cq�~

XN

i

Cqi~

e2: rih i:
1
N
:
XN

i

di~e2: rih i is the quantum capacitance if the DOS

is assumed to be uniform. Actually, Cq* is also the real quantum
capacitance of the disordered graphene. As we will show later that
Cq* can only be achieved when the oxide layer capacitance Cox is
much greater than Cq*. In Fig. 3(b), we plot the reduction factor for
both the measured quantum capacitance, i.e., bexp~Cq exp=Cq�, and
the simulated quantum capacitance, i.e., bmod~Cq mod=Cq�. Here,
Cox~1:14mF=cm2 for all three samples. It is clearly seen that more
reduction is found for more disordered samples.

From the above simulation results, we would like to point out
another interesting property of the LDOS fluctuations in disordered
graphene. The fact that, for each disordered sample in Fig. 2(c) or
3(b), the quantum capacitance of disordered graphene can be excel-
lently described by only two parameters in a wide range of Fermi
energies indicates that the distribution of the normalized LDOS d
given in Eq. (3) is independent of EF for a given disorder sample. To
confirm this, we have performed the following simulations based on
the Anderson tight-binding model for disordered systems36. We cal-
culated the LDOS ri in graphene with a given site disorder W by
using the Haydock-Heine-Kelly recursion method. (see Supple-
mentary Information for details). For two different values of W,
the results of the distributions for three different values of EF are
shown in Figs. 4(a) and 4(b), where the hopping energy t is taken as
the units of energy. These results show that for each given value of W,
the distributions of d at three different Fermi energies can all be
described nicely by the same lognormal distribution (solid curve).
It is also seen that the variance of the distribution is larger for larger
W. Thus, these simulation results support our two-parameter model
that the distribution of d depends only on the disorder strength and is
independent of the Fermi energy EF.

Finally we would like to study the role played by the Yttrium oxide
layer in the observed reductions of quantum capacitance of disor-
dered graphene. The presence of a finite capacitance of the Yttrium
oxide layer Cox allows local fluctuations of channel potential across
the graphene sheet in each small region. It is such fluctuations that
lead to the reduction of the observed quantum capacitance of the
graphene. For this purpose, we rewrite Eq. (2) in the following form:

bmod~
di= dizrð Þh i
1= dizrð Þh i , ð5Þ

where r~
Cox

Cq�
. In this form, Eq. (5) also exhibits an interesting

scaling behavior, i.e., the reduction factor depends only on the ratio
of Cox to Cq*, not on Cox and Cq* individually. Here we focus on one
particular disorder strength and study the reduction factor as a func-
tion of r by using different thicknesses of the Yttrium oxide layer. We
also test the r-scaling law by using data obtained at different Fermi
energies, where Cq* varies.

We measured the quantum capacitance of the same Ag-decorated
graphene from devices with different Cox by tuning the thickness of
the Yttrium oxide layer. The decorations of all these samples were
carried out simultaneously under the same conditions as Sample Ag1
in order to guarantee the same strength of disorder. The results of
reduction factor for different Yttrium oxide layer thicknesses, which
correspond to Cox~1:13, 0:89, 0:76, 0:70mF=cm2, and different
Fermi energies (Vch 5 0.15, 0.25, 0.35, 0.45 V) are shown in Fig. 5.
All these data overlap nicely with the simulated solid curve obtained
by using a 5 0.74, j 5 1.66 shown in Table 1 for Sample Ag1. Fig. 5
verifies the r-scaling behavior of our two-parameter model with a
lognormal distribution of LDOS. We also notice that the experi-
mental data slightly deviates from the model when Cox becomes

Figure 4 | (a) shows the distributions of normalized LDOS at EF 5 0.05 t,0.15 t,0.20 t (t 5 2.8 eV), when W 5 0.50 t, which all follow one lognormal

distribution. (b) also indicates the single lognormal distribution of LDOS at different EF when W 5 1.50 t.

Figure 5 | The inset shows the reduction factor b (calculated by the FLDOS

model) reaches 1 when Cox is very large at different j. The reduction factor

b (scatters) of graphene decorated by Ag for 1 s at 5 W with

Cox~1:13, 0:89, 0:76, 0:70mF=cm2 agrees with the r-scaling of the FLDOS

model (solid lines).
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smaller. In this case, the oxide layer becomes thicker and the induced
polarization effect might enhance the fluctuations of LDOS, leading
to a smaller b. In the inset of Fig. 5, we show the b function obtained
from different values of j. It is found that b decreases with increasing
fluctuations of LDOS as expected. It also shows that b increases with r
and saturates to 1 at very large r (unachievable practically), indicating
that the real quantum capacitance Cq�~e2: rh i of disordered gra-
phene could only be achieved when Cox ? Cq*.

Discussion
Recently, experimental works demonstrated that the spatial LDOS
fluctuations in the vicinity of the NP follow a Gaussian distri-
bution30,31. Compared to the lognormal distribution which can
describe LDOS in strongly disordered systems, the Gaussian dis-
tribution is only capable of describing systems with weak disorder.
We have also performed simulations of Eq. (5) based on the
Gaussian distribution. However, we do not found any significant
reduction in quantum capacitance. (see Supplementary Informa-
tion). In strongly disordered systems, the envelope of the localized
wave functions decays exponentially from the center of the local-
ization sites36,37, creating strong spatial fluctuations of LDOS. This
results in a dominance of LDOS at lower values than its mean and
gives rise to a positive skewness. Although the variance of both
Gaussian and lognormal distributions can represent the degree of
fluctuations, the positive skewness of the lognormal distribution
could be the underlying reason why it can correctly describe the
LDOS fluctuations in disordered graphene, where significant
LDOS fluctuations occur.

In conclusion, we have established a simple two-parameter(a,j)
model for the quantum capacitance of disordered graphene. This
model incorporates both the power-law dependence of the ADOS
and the lognormal distribution of LDOS. By measuring the quantum
capacitance of disordered graphene we simultaneously determine
both the ADOS and its local fluctuations of the system. The model
gives quantitative agreements with the measured quantum capacit-
ance of three different strongly disordered Ag-decorated graphene
samples. For Ag-decorated graphene samples, a given Ag-decoration
corresponds to a configuration of disorder induced in the graphene
sheet. The presence of disorder increases the ADOS and also induces
large spatial fluctuations in LDOS compared to pristine graphene.
The reduction of measured quantum capacitance is caused by large
fluctuations of LDOS mediated by the presence of the insulating
oxide layer. The validity of the model is also supported by our simu-
lation results of LDOS using the Anderson model that the distri-
bution of normalized LDOS is lognormal and independent of
Fermi energy for a fixed disorder.

Methods
Device fabrication. The pristine graphene devices were prepared on p-Si
substrates coated with 300 nm SiO2 insulating layers, as reported previously18. The
top-gate electrodes were then added using a standard e-beam lithography
technique17,38,39. The insulating layer between the top-gate electrode and graphene
was fabricated by depositing a thin layer of Yttrium on the graphene devices,
followed by oxidation at 180uC for 10 min in air. We used a mask (thin Cu foils)
in order to minimize the influence of direct electron beam irradiation23 when
patterning the insulating layer. The silver clusters were first deposited on the
pristine graphene by the method reported previously18. Then, the graphene
devices were immediately transferred into a high vacuum chamber for Yttrium
deposition by electron-beam evaporation.

Capacitance measurement. The capacitance was measured by a Keithley CV
analyzer (model 590) with a sensitivity of ,0.1fF. As illustrated in Fig. 1(b), the
capacitance measurement was performed in a three-terminal configuration and
the p-Si substrate was grounded to avoid its parasitic capacitance. The residual
capacitance of the circuit in the same geometry of the devices without graphene is
smaller than 0.3fF. The area of graphene for capacitance measurement was
normally larger than 30 mm2 as shown in the inset in Fig. 1(c). Pristine graphene
devices were used to calibrate the capacitance of the Yttrium oxide layer (Cox) of
the Ag-decorated ones in the same batch. We extracted the quantum capacitance

of a large number of devices for the same Ag decoration in different batches, and
the results were similar.
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