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The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the
advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of
elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals
provide broad opportunities for engineering desired optical responses and developing superior light
manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave
functions of the supercrystals’ collective excitations through the variation of different structural and
material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in
two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon
alterations in the quantum dot arrangement. This feature offers unprecedented control over the
supercrystal’s electromagnetic properties and enables the development of new nanophotonics materials and
devices.

T
he creation of artificial materials with prescribed physical properties that cannot be found in nature is one of
the greatest challenges of the contemporary science and engineering. Recently the field of photonics has been
significantly enriched by the successful design and fabrication of photonic crystals1–3 and optical metama-

terials4–6. These man-made structures acquire their physical properties not so much due to their composition as
owing to the periodic arrangement or design of the subwavelength constituent parts. This has enabled scientists
and engineers to change their way of thinking about light–matter interaction, and revolutionized the design
paradigm of photonics devices7–9.

Modern nanofabrication technology allows artificial materials to be created with hundreds and even thousands
of nanoscale building blocks of extreme intricacy and fine detail. One of the most promising types of such building
blocks—semiconductor quantum dots—is also referred to as ‘artificial atoms’ due to the discrete energy spectra of
their elementary excitations such as electrons (holes), excitons, phonons, and polaritons10–12. Adamant interest in
quantum dots over the past few decades is explained by their unique physical properties13–16 and the possibility of
modifying them by varying the quantum dot’s shape and dimensions. The linear and nonlinear responses of their
electronic and vibrational subsystems17–21—as well as the interaction of quantum dots with each other and
external electromagnetic fields22–25—are all drastically dependent on the size and geometry of the quantum dots.
These dependencies find applications in various electronic and optoelectronic devices, including quantum-dot
lasers26–28, q-bits for quantum computing and information processing29–31, single-photon sources32–34, solar
cells35–37, and photodetectors38–40. Although certain photonic functions can be conveniently realized with a single
quantum dot, the ensembles of coupled quantum dots arranged periodically41–46 are much more versatile from the
application viewpoint. Just as optical metamaterials change their response with modifications to meta-atoms,
such quantum-dot supercrystals47–50 can be engineered to exhibit properties beneficial for nanophotonics applica-
tions by rearranging quantum dots and varying their parameters.

It is of significance that the quantum-dot supercrystals can be fabricated using many versatile techniques,
including the Langmuir–Blodgett fabrication51,52, molecular beam epitaxy (MBE)53, nonlithographic formation by
anodic membrane template54, DNA-assisted formation55, self-assembly of colloidal nanocrystals56–61, and the
method of ion-beam-assisted self-assembly62. For example, in the last case the irradiation of an amorphous multi-
layer with an ion beam allows one to readily create ordered quantum-dot arrays and control structural properties
and arrangement of the quantum dots by tuning the angle between the ion beam and the multilayer surface.

This paper aims to instigate extensive research of artificial materials enabled by quantum-dot supercrystals.
Using the theory of molecular crystals, we demonstrate almost unlimited opportunities for engineering the
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quantum states of the supercrystals and—as a consequence—their
physical properties. These opportunities arise due to the multiple
degrees of freedom associated with the possibility to preset the prop-
erties of individual quantum dots and their mutual arrangement. In
particular, we calculate the energy spectra corresponding to four
simple two-dimensional Bravais lattices and a complex lattice with
two quantum dots in a basis, and thoroughly analyze the transforma-
tion of these spectra with varying structural parameters. Our results
suggests quantum-dot supercrystals as unique material base for the
new-generation nanophotonics devices.

Results
Theoretical formulation. One of the most powerful tools for study-
ing collective excitations in the ensembles of periodically arranged
semiconductor quantum dots is the method of modeling exciton
states in molecular crystals63,64. The essence of this method, as
applied to a quantum-dot supercrystal, is illustrated by the follow-
ing example.

Suppose that N quantum dots form a two-dimensional simple
lattice (supercrystal) characterized by the primitive vectors a and b
(see Fig. 1), so that each quantum dot may be denoted by its position
vector n 5 n1a 1 n2b, with n1 and n2 being integers. If Ĥn is the
Hamiltonian of an isolated quantum dot n, whose interaction with
dot m is described by operator V̂nm, then the Hamiltonian of the
supercrystal’s collective excitations can be written in the form

Ĥ~
X

n

Ĥnz
1
2

X
m=n

V̂nm

 !
{E0, ð1Þ

where the energy E0 of the supercrystal’s ground state includes the
energies of the quantum dots’ carriers in their ground states and the
energy of interaction between these carriers.

It is reasonable to assume that the wave functions of the low-
energy electronic states of the neighboring quantum dots do not
overlap significantly, and neglect the exchange interaction63,64.
Then the ground-state wave function Y0 of the supercrystal is the
product of the wave functions y 0ð Þ

n describing the ground states of
individual nanocrystals, Y0~Py 0ð Þ

n . In turn, each wave function
y 0ð Þ

n is a single Slater determinant,

y 0ð Þ
n ~

1ffiffiffiffiffiffiffi
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, ð2Þ

which is the antisymmetrized—with respect to all possible exchanges
of Ne electrons—product of one-electron wavefunctions Qni

rnj
� �

,

where the subscript ni denotes a set of quantum numbers and rnj is
the position of the jth electron. It should be noted that the assump-
tion of negligible exchange interaction strictly holds for self-orga-
nized colloidal nanocrystals providing high potential barriers for
their electrons and holes65,66, but may be violated for supercrystals
fabricated using MBE53 or ion-beam-assisted self-assembly62.

The function y 0ð Þ
n describes a quantum dot with fully occupied

valence band v and an empty conduction band c, and is the solution
of the Schrödinger equation Ĥny 0ð Þ

n ~e0y 0ð Þ
n corresponding to the

lowest energy e0 of the quantum dot’s electronic subsystem. With
these notations, we obtain

E0~Ne0z
1
2

X
n

X
m=n

y 0ð Þ
n y 0ð Þ

m V̂nm

�� ��y 0ð Þ
n y 0ð Þ

m

D E
, ð3Þ

where the integration in the matrix element is over the coordinates of
electrons in quantum dots n and m.

Let an electron in a quantum dot n be excited from its mv-fold
degenerate valence-band state Qvi

i~svz1,svz2, . . . ,svzmvð Þ
to the mc-fold degenerate conduction-band state Qcj

j~scz1,ð
scz2, . . . ,sczmcÞ. Such an ‘excited’ quantum dot is described by
the wave function
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1ffiffiffiffiffiffiffi
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, ð4Þ

which depends on double subscript a 5 {i, j} (a 5 1, 2, …, mc 3 mv)
and is related to the quantum dot’s energy e via the equation
Ĥnyna~eyna. In the absence of an interdot interaction, the eigen-
state of the supercrystal with an excited quantum dot n is a mc 3 mv 3

N-fold degenerate, has energy e 1 (N 2 1)e0, and is described by the
wave function

Yna~yna P
m=n

y 0ð Þ
m : ð5Þ

The energy spectrum Ec kð Þ and wave functions Wc(k) of the real
supercrystal can be found by diagonalizing the operator of the inter-
dot interaction using the linear combinations of functions Yna. Since
these combinations must be eigenfunctions of the translation oper-
ator, they are of the form

Figure 1 | (a) Schematic of two-dimensional supercrystal made of pyramidal quantum dots arranged in a hexagonal lattice. A simple two-dimensional

supercrystal have either a (b) square, (c) rectangular, (d) oblique, (e) hexagonal, or (f) centered rectangular Bravais lattice, each of which is characterized

by the translation vectors a and b.
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Wc kð Þ~ 1ffiffiffiffi
N
p

Xmc|mv

a~1

uca kð Þ
X

n

exp iknð ÞYna, ð6Þ

where k is the wave vector of the supercrystal’s excitation and uca(k)
are the elements of a unitary matrix.

By requiring Wc(k) to be the eigenfunctions of the Hamiltonian in
Eq. (1) and using the Heitler–London approximation63,64, we arrive at
the following set of linear equations:

Xmc|mv

a~1

Mba kð Þz DE{Ec kð Þ
� �

dba

� 	
uca kð Þ~0, ð7Þ

where

Mba kð Þ~
X
m=n

ynby 0ð Þ
m V̂nm

�� ��y 0ð Þ
n yma

D E
exp ik n{mð Þ½ �, ð8aÞ

DE~e{e0zDb, ð8bÞ

and
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X
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m

D E
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m V̂nm

�� ��y 0ð Þ
n y 0ð Þ

m

D E
 �
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ð8cÞ

Since Mba(k) is the Hermitian matrix, equating the determinant of
Eq. (7) to zero may give maximum mc 3 mv real roots Ec correspond-
ing to mc 3 mv exciton bands of the supercrystal. The degeneracy of
these bands (if any) depends on the symmetry of the interaction
coupling the quantum dots, as well as on the dimension of the irre-
ducieable representations of the supercrystal’s symmetry group64.

Once the spectrum and wave functions of the supercrystal’s exci-
tons are known, one can calculate any physical property of the super-
crystal that is dependent on the state of its electronic subsystem, e.g.
linear permittivity eL or third-order nonlinear susceptibility x(3) 67.

Exciton bands of two-dimensional supercrystals. The above theory
may be applied to study the excitons of quantum-dot supercrystals
and illustrate the possibility of engineering their dispersion by
varying the arrangement and properties of the quantum dots.

To a first approximation, the coupling of electrically neutral
quantum dots located at points n and m of a two-dimensional simple
lattice is caused by the dipole–dipole interaction of their electrons. If
the positions of the electrons in the reference frame of the super-
crystal are given by the radius-vectors rn and rm, which are measured
from the quantum dots’ centers, then the operator of the dipole–
dipole interaction can be written as

V̂nm~
e2

e

rn
:rmð Þ{3 enm

:rnð Þ enm
:rmð Þ

m{nj j3
, ð9Þ

where e is the charge of a free electron, enm 5 (m 2 n)/jm 2 nj, and e
is the effective permittivity, which takes into account the screening of
the interaction potential by the quantum dots, the dielectric sub-
strate, and the host medium. In the case of spherical quantum dots
of high-frequency permittivity eQD embedded in the host of high-
frequency permittivity eh, we have e 5 (eQD 1 2eh)2/(9eh)68.

To calculate the matrix elements entering Eq. (7), one needs first to
express the electron’s radius-vector rn ; (x, y, z) through the radius-
vector Rn ; (X, Y, Z) of the same electron in the crystallographic
system. This can done by rotating the crystallographic system of dot
n by a certain angle yn around a unit vector u(qn, Qn), whose dir-
ection is determined by the polar angle qn and azimuth Qn

69. Such a

coordinate transformation is described by the rotation tensor
R qn,Qn,ynð Þ via the relation rn~R qn,Qn,ynð ÞRn.

Consider the lowest-energy dipole-allowed states of the quantum
dots. The optical transitions involving these states exhibit the min-
imal dephasing rates, which facilitates the formation of the coherent
exciton states of the supercrystal. We restrict our consideration to the
three-band model70 of the valence band, in which case Eq. (7) can be
solved analytically. Suppose that the wave function jSæ of the con-
duction band is fully symmetric at the Brillouin zone center, while
the valence band is triply degenerate and described by the wave
functions jXæ, jYæ, and jZæ with the symmetries of the respective
coordinates of the crystallographic system. If we ignore the spin of
the electron, this situation corresponds to mv 5 3 and mc 5 1. In the
case where the crystallographic axes of all quantum dots are oriented
in space identically, the energies of the exciton bands do not depend
on the angles q, Q, and y. According to Eq. (7), these energies are of
the form

Ec kð Þ~DEzCEc, c~1,2,3, ð10Þ

where C 5 2e2ÆSjZjZæ2/(ea3), ÆSjZjZæ 5 ÆSjYjYæ 5 ÆSjXjXæ is the
matrix element of the electron’s coordinate, and Ec is the dimension-
less function representing the wave vector dependence of the exci-
ton’s energy. In the following, for brevity, we shall be refereing to Ec

as the exciton band energy.
Some algebra shows that the exciton energies for the four Bravais

lattices with mirror reflection planes x 5 0 and y 5 0 are given by the
expressions

E1~
X

nx

X
ny

ga3

n2
xzn2

y


 �3=2
cos kxnx cos kyny ð11aÞ

and

E2,3~{
E1

2
+

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2zB2
p

, ð11bÞ

where g~1z 1{dnx ,0ð Þ 1{dny ,0
� �

, dij is the Kronecker delta,

A~
X

nx

X
ny

ga3 n2
x{n2

y


 �
n2

xzn2
y


 �5=2
cos kxnx cos kyny, ð12aÞ

and

B~
X

nx

X
ny

4a3nxny

n2
xzn2

y


 �5=2
sin kxnx sin kyny: ð12bÞ

Here the summations are evaluated over the coordinates of all
quantum dots in the first quadrant of the two-dimensional
Cartesian system, including the dots lying on the coordinate axis,
but excluding the dot located at the origin.

We now employ the obtained expressions to demonstrate the
possibility of engineering exciton bands in quantum-dot supercrys-
tals of different symmetries.

Supercrystals with square and rectangular lattices. The positions of
the quantum dots in the square lattice in Fig. 1(b) are set by vectors
n~a lx̂zmŷð Þ, where l and m are integers and x̂ and ŷ are the unit
vectors. The corresponding exciton energy bands calculated from
Eqs. (11) and (12) are shown in Figs. 2(a)–2(c). It is seen that the
absolute maxima of the first, second, and third bands are located at
points C, X, and M, respectively, whereas their absolute minima are
at points M, C, and X. The second and third bands touch each other
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at points C and M, and cross the first band along the curves
A2zB2~E2

1 determining the states of a double degeneracy. The
exciton energies at the symmetry points of the reciprocal space and
the behavior of the energy bands along the symmetry lines D, Z, and
S are summarized in Table 1. Unlike the first band, which has four
simple saddle points at points X, the four simple saddle points of the
second band lie on lines S due to the presence of local minima at
points M. These four points are of particular practical interest, since
they correspond to the infinite density of states, which diverges upon
approaching their energy Ec like 2lnjE 2 Ecj71. The third band
exhibits only one, 3rd-order saddle point at the Brillouin zone center.

Distinctive features of the exciton energy spectrum in Fig. 2 are the
sharp peak and sharp dip located at points C of the first and second
bands. It can be readily seen from Eqs. (11) and (12) that =kE1jk 5 0 5

=kE2jk 5 0 5 0, which implies that the exciton group velocity at the
peak and dip vanishes. These features are typical for the spectra of
two-dimensional periodic systems and manifested, for example, as
Dirac cones in the electronic spectrum of graphene72. The group
velocity is also zero at the Brillouin zone boundary, where =kEc 5

0 for all three energy bands70.
The band structure and the related properties of the supercrystal

being considered may be engineered by varying either the size of the
unit cell in the square lattice or the periodic arrangement of the
quantum dots. In the first case, the topology of the exciton bands
remains unchanged while their energies scale like 1/a3. The simplest
way to modify the periodic arrangement of the quantum dots in the
second case is to reduce the symmetry of the square lattice by stretch-
ing (or compressing) its unit cell along one of the primitive vectors;
the resulting transformation is then described by a stretch (compres-
sion) factor q 5 b/a. Figures 2(d)–2(h) show how the exciton energy
spectrum modifies when q is increased from 1 to 10. One can see that
even a minor stretch q 5 1.25 of the square lattice removes the
degeneracy between the second and third bands at points C and
M. At the same time, a new type of degeneracy appears in the vicinity
of the Brillouin zone center. It is associated with the anticrossing of
the second and third bands at the points where A 5 B 5 0 and E2 5

E3 5 2E1/2.

As the stretch factor increases [see Figs. 2(e)–2(g)], the energy
bands E1, E2, and E3 undergo a number of modifications. The least
modification occurs to the first band, whose energy range simply
shrinks while preserving the band’s topology, whereas the changes
in the shapes of the second and third bands are much more dramatic.
The anticrossing region of bands 2 and 3 moves away from point C
and starts manifesting itself along the S direction (which is clearly
seen for q $ 1.67) while the energies of the degenerate states gradu-
ally approach zero. This significantly alters the topology of the two
bands. In particular, point C becomes local maximum for the second
band and absolute minimum for the third band. At the same time,
points X become local minima for the third band, and 1st-order
saddle points appear at points M of both energy bands.

For extremely large stretch factors (q?1), as in Fig. 2(h), the
interaction between different rows of quantum dots becomes neg-
ligibly small and the two-dimensional supercrystal turns into a con-
gregate of quantum-dot chains. It is easy to show that the exciton
energies in the limit q R ‘ (a 5 const) are given by the expressions
E1~Re Li3eikx a

� �
and E2,3 5 (2E1 6 3jE1j)/2, where Linx is the

common polylogarithm. The states of the first energy band are seen

Figure 2 | Exciton energy bands (a) E1, (b) E2, and (c) E3 in the first Brillouin zone of a two-dimensional quantum-dot supercrystal with square Bravais

lattice [see Fig. 1(b)]. [(d)–(h)] Modifications of exciton bands upon transformation of (d) square lattice to [(e)–(h)] rectangular lattices with q 5 1.25,

1.67, 2.5, and 10 [q 5 b/a, see Fig. 1(b)]. Blue, red, and green curves correspond to the first, second, and third bands, respectively. Inset in (f) shows

symmetry points and symmetry lines in the reciprocal space.

Table 1 | Behavior of exciton energy bands in the vicinity of sym-
metry points and along symmetry lines in the first Brillouin zone of a
two-dimensional quantum-dot supercrystal with a square Bravais
lattice. Numbers are the values of Ec at the corresponding points.
The arrows :, 8, and indicate a monotonous growth, mono-
tonous decay, and growth followed by a decay, respectively

C X M D Z S

E1 absolute maximum
4.52

1st-order saddle
point 20.47

absolute minimum
21.32

::8

E2 absolute minimum
22.26

absolute maximum
3.02

local minimum
0.66

8:

E3 3rd-order saddle
point 22.26

absolute minimum
22.55

absolute maximum
0.66

:8:
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to be doubly degenerate throughout the first Brillouin zone (except
for wave vectors corresponding to E1 5 0, for which they are triply
degenerate): E1 5 E2 5 2E3/2 when E1 . 0, and E1 5 E3 5 2E2/2
when E1 , 0. Interestingly, the dependency E1(kx) is similar to the
ordinary spectra of one-dimensional molecular crystals63, obtained
using the approximation of nondegenerate intramolecular states.

If the square lattice undergoes a compression in the y direction, the
dispersion of exciton energies increases due to the quantum dots’
approachment. This feature provides additional flexibility in engin-
eering the band structure of quantum-dot supercrystals. In the hypo-
thetical limit of q R 0, we find that E1!q{3 Re Li3eiky b

� �
.

Supercrystals with hexagonal and centered rectangular lattices.
We continue our analysis with the supercrystal of a hexagonal
lattice shown in Fig. 1(e). The exciton bands of this supercrystal
are plotted in Figs. 3(a)–3(c). Although the first Brillouin zone is
now a regular hexagon, the minimal circuit formed by its
symmetry points and symmetry lines is still a right triangle [see
inset in Fig. 3(f)]. A comparison of the hexagonal energy bands
with the energy bands in Fig. 2 reveals quite a few topological
similarities. As can be seen from Table 2, the behavior of the first
and second bands on triangle CMK fully coincides with that on
triangle CXM of the square Brillouin zone, although the spread of
energies in the former case is slightly larger due to the denser packing
of quantum dots in the hexagonal lattice. The increase in the
coordination number of a quantum dot alters the features of only
the third energy band. Its points C and M turn an absolute minimum
and the 1st-order saddle point, respectively, whereas the exciton’s
group velocity along the S direction becomes positive. In addition to
that, six Dirac-like cones72,73 are formed at points K between the
second and third bands. As it should be, the group velocity at the
tips of the cones is zero, i.e., =kE2(3)jK 5 0.

Next, consider the situation in which changing b in the hexagonal
lattice transforms it into the centered rectangular lattice shown in
Fig. 1(f). In the special case of q~1

� ffiffiffi
2
p

, we obtain a square lattice
considered earlier. When q is reduced beyond this value and
approaches 1/2, the supercrystal splits into quantum-dot chains par-
allel to the y axis and its exciton energies diverge as
! 2q{1ð Þ{3=2Re Li3 e2iky

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b{að Þb

p
 �
. This divergency is seen to be

slower than that for the square lattice due to the slower convergence
of the quantum dots with the reduction of q.

If q is increased from 1
� ffiffiffi

2
p

to unity, the exciton bands transform
from the square type shown in Figs. 2(a)–2(d), through the inter-
mediate stage in Fig. 3(d), to a hexagonal type shown in Fig. 3(e). This
transformation removes the degeneracy from points C and K and
results in the anticrossing of bands 2 and 3 along the T direction. The
anticrossing point initially moves away from point K, but returns to it
when q becomes sufficiently close to unity.

The modifications of the exciton energy bands with stretching of a
hexagonal lattice is illustrated by Figs. 3(f)–3(h). Similar to the case of

Figure 3 | Exciton energy bands (a) E1, (b) E2, and (c) E3 in the first Brillouin zone of a two-dimensional quantum-dot supercrystal with hexagonal Bravais

lattice [see Fig. 1(e)]. [(d)–(h)] Modifications of exciton bands upon transformation of (e) hexagonal lattice to [(d) and (f)–(h)] c-rectangular lattices

with q 5 0.8, 1.2, 1.6, and 10 [q 5 b/a, see Fig. 1(e)]. Blue, red, and green curves correspond to the first, second, and third bands, respectively. Inset in (f)

shows symmetry points and symmetry lines in the reciprocal space.

Table 2 | Behavior of exciton energy bands around symmetry
points and along symmetry lines in the first Brillouin zone of a
two-dimensional quantum-dot supercrystal with a hexagonal
Bravais lattice. All notations are the same as in Table 1

C M K S Z9 T

E1 absolute maximum
5.52

1st-order saddle
point 20.92

absolute minimum
21.17

::8

E2 absolute minimum
22.76

absolute maximum
2.97

local minimum
0.58

8:

E3 absolute minimum
22.76

1st-order saddle
point 22.05

absolute maximum
0.58

88:
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a rectangular lattice, points C and K become nondegenerate, the first
energy band preserves its topology, and the anticrossings of bands 2
and 3 appear on lines T and S. For q?1, the exciton’s dispersion
becomes identical to that of the one-dimensional quantum-dot array
[cf. Figs. 2(h) and 3(h)].

Complex supercrystals. A complex supercrystal is a quantum-dot
ensemble arranged in a lattice with a basis. If such a supercrystal
contains g quantum dots in its unit cell, then it may be viewed as g
supercrystals with the same simple lattice. Owing to the interaction
between these supercrystals, the exciton spectrum of the entire

nanostructure has mc 3 mv 3 g energy bands stemming from mc 3

mv exciton bands of the simple lattice through their splitting into g
bands each. In the theory of molecular crystals, this type of energy-
band splitting is known as Davydov splitting63.

One of the easiest ways to create a complex supercrystal is to
arrange pairs of quantum dots in a square lattice, as shown in the
inset of Fig. 4(a). Assuming the positions of the two types of quantum
dots in the supercrystal to be given by radius-vectors r1 5 n and r2 5

n 1 p, with p being a constant vector, we characterize the position of
quantum dot 2 in the unit cell by its distance p 5 jpj from quantum
dot 1 and the angle v between vectors p and a. The six energy bands

Figure 4 | Exciton energy bands [(a) and (b)] E+
1 , [(c) and (d)] E+

2 , and [(e) and (f)] E+
3 in the first Brillouin zone of a complex square lattice with two

quantum dots in a unit cell for p 5 a/3 and v 5 p/6, where v is the angle between a and p, and p is the distance between quantum dots in a unit cell [see

inset in (a)]. Symbols Cm (m 5 1,2,3,4) mark maxima at regular points of the reciprocal space. [(g)–(i)] Energies of six exciton bands at points C, M, and X

as functions of v for p 5 a/2. [(j) and (k)] Exciton band energies at pointsC and M vs p for v 5 p/4. Blue, red, and green curves correspond to E+
1 , E+

2 , and

E+
3 , respectively. Inset in (b) shows symmetry points in the reciprocal space.
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of the supercrystal with p 5 a/3 and v 5 p/6 are plotted in Figs. 4(a)–
4(f). It may be shown (see Methods) that the first two exciton bands,
E+

1 , are due to the splitting of band E1 of the square lattice in Fig. 2(a).
The shapes of bands Ez

1 and E1 are seen to be similar, while the range
of Ez

1 is almost twice that of E1, which is a result of the closer
proximity of the quantum dots in the complex supercrystal. Since
band E{

1 has much weaker dispersion than band Ez
1 , it is more

sensitive to the relative positions of the quantum dots in the unit
cell. Both bands exhibit absolute extrema at points C, absolute max-
ima at points X, and simple saddle points at points X9.

The other four bands, E+
2 and E+

3 , are the result of the splitting
and intermixing of the second and third bands of the square lattice,
which are shown in Figs. 2(b) and 2(c). The dispersion of bands E{

2
and Ez

3 is seen to be much larger than that of bands Ez
2 and E{

3 , so
that their shapes are strongly dependent on p. A distinctive feature of
energy bands E+

3 is extrema [viz maxima C1, C2, C3, and C4 in
Figs. 4(e) and 4(f)] Ec~E+

3 kcð Þ at regular points kc~kxcx̂zkycŷ of
the Brillouin zone. These extrema correspond to the critical points71,74

of the exciton energy spectrum, which is characterized by the density
of states

D+
3 Eð Þ~

�h

2pð Þ2
ðð

d E{E+
3 kð Þ

� �
dk: ð13Þ

It is easy to show that D+
3 Eð Þ exhibits discontinuity steps at critical

points and behaves at them as / sgn(Ec 2 E), where sgn(x) is the
signum function. In addition to four maxima Cm, there are four
critical points associated with the minima of bands Ez

2 and E{
3 .

The critical points in the density of states play a crucial role in the
interaction of excitons with each other and the external electromag-
netic fields75,76.

The variation of exciton energies at points C, M, and X [shown in
the inset of Fig. 4(b)] with angle v is illustrated for p 5 a/2
by Figs. 4(g)–4(i). These dependencies may be extended to the
entire range of v, as well as to points X9, using the following
relations obtained with symmetry considerations: E+

c C,vð Þ~
E+

c C,p=2{vð Þ, E+
c M,vð Þ~E+

c M,p=2{vð Þ, and E+
c X’,vð Þ~

E+
c X,p=2{vð Þ. Several features peculiar to the exciton band struc-

ture are clearly seen from the figures. First, the exciton energies at
points C and M are least prone to changes with v. Second, the
energies of the third and second bands at points C, M, and X satisfy
the inequality E{

3 ƒE{
2 ƒEz

2 ƒEz
3 and, thus, may only touch each

other at degenerate points like A1 and A2 in Fig. 4(i). Third, the
energy gaps Ez

2 {E{
2 and Ez

3 {E{
3 critically depend on v at all

symmetry points. These gaps decrease near v 5 0 due to the trans-
formation of the complex supercrystal to an ordinary supercrystal
with a simple rectangular lattice and a 5 2b.

Figures 4(j) and 4(k) illustrate band transformations with the
variation in distance between the quantum dots lying on the diagonal
(v 5 p/4) of the unit cell. As the figures suggest, the splittings of all
bands decrease with distance and become zero for some of them
when p~1

� ffiffiffi
2
p

. The latter case describes the situation of a simple
supercrystal with a square lattice of spacing a

� ffiffiffi
2
p

. As before, the
exciton energies formally diverge in the limit p R 0 due to the infinite
convergence of the quantum dots in the supercrystal.

A unique feature of dispersion branches E{
2 and E{

3 is that they
may exhibit critical points at the tips of cone-like surfaces, which are
similar to Dirac cones in Fig. 3 but located inside the first Brillouin
zone. Figure 5 shows an example of such surfaces for a complex
supercrystal with p 5 a/2 and v 5 p/4. Each energy band is seen
to exhibit two critical points along on of the diagonals of the first
Brillouin zone. In real quantum-dot supercrystals such points would
manifest themselves as sharp (but finite) peaks in the exciton density
of states, and are therefore of primary importance for practical
applications.

Discussion
The above examples show how modification of the arrangement of
the semiconductor quantum dots constituting a two-dimensional
supercrystal can be used for engineering the spectra of its collective
excitations, which ultimately affects the electromagnetic response of
the supercrystal as a whole. In particular, we have demonstrated that
a mere rearrangement of well-spaced quantum dots coupled through
dipole–dipole interaction in a simple Bravais lattice offers broad
control over the excitonic spectrum. Interestingly, the energy bands
of excitons supported by the supercrystals with either square or
hexagonal lattices were found to exhibit critical saddle points of
the first order and the Dirac-like cones centered either at points C
or the Brillouin zone boundaries. As the symmetry of these super-
crystals is reduced, the energy spectrum undergoes drastic transfor-
mations that can be used for designing excitonic dispersion as desired
for applications.

Additional degrees of freedom for controlling the supercrystal’s
properties can be introduced by assembling quantum dots into a
periodic lattice with a basis. Our consideration of the square
Bravais lattice with two quantum dots in a unit cell has revealed that
the exciton energy spectrum features Davydov splitting, which is
sensitive to the relative position of the quantum dots in the cell. A
further complication of the structure via increasing the number of
quantum dots in the unit cell—combined with the alterations in the
symmetry of the lattice—provides almost unlimited degrees of free-
dom for engineering the physical properties of quantum-dot super-
crystals.

Besides the flexibility in the supercrystal’s design stemming from
different arrangements of the quantum dots, there is a multitude of
other ways to modify the electronic properties of the supercrystal and
change its interaction with external electromagnetic fields. The vari-
able parameters of a supercrystal include: (i) materials of the
quantum dots; (ii) quantum dot shapes and dimensions; (iii) orien-
tations of the quantum dots in space; (iv) positions and types of
defects in the supercrystal lattice; (v) permittivity of the envir-
onment; and (vi) topology of the supercrystal. The above theory is
readily modifiable to adequately describe the excitonic band struc-
ture in each of these situations.

For example, if the orientations of the quantum dots in a super-
crystal are distributed in space according to function g(q, Q, y), then
the interaction operator in Eq. (8) should be averaged with respect to
this distribution after being transformed by tensors R qn,Qn,ynð Þ
and R qm,Qm,ymð Þ to crystallographic coordinates Rn and Rm. The
averaging yields

V̂nm
 �

~
1

8p2ð Þ2
ðp

0
dqn

ð2p

0
dQn

ð2p

0
dyn

ðp
0

dqm

ð2p

0
dQm

ð2p

0
dym

|V̂nm qn,Qn,yn,qm,Qm,ymð Þ g qn,Qn,ynð Þ g qm,Qm,ymð Þ:
ð14Þ

The solutions of the respective eigenvalue and eigenfunction
problems are inextricably dependent on function g(q, Q, y) and,

Figure 5 | Critical points of exciton energy bands (a) E{
2 and (b) E{

3 for a
complex square lattice with two quantum dots in a unit cell [see inset in
Fig. 4(a)]. It was assumed that p 5 a/2 and v 5 p/4.
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hence, may be altered via the redistribution of the quantum dots’
orientations.

Our theory enables one to readily estimate the typical energy
dispersion of excitonic bands. Such an estimation requires knowing
the scaling factor C in Eq. (10), which depends on the matrix element
of a coordinate calculated on the electronic wave functions of
the quantum dot’s material. This matrix element is expressed
through the Kane’s parameter P of bulk semiconductor and the
semiconductor’s energy gap Eg as Sh jZ Zj i~

ffiffiffi
2
p

P
�

Eg
77. Specifically,

for spherical InAs quantum dots (eQD 5 12.25) located in the
vacuum (eh 5 1), we have P 5 1.8 eV 3 nm, Eg 5 354 meV (T 5

300 K)78, and Ca3 < 6.56 eV 3 nm3. For example, in the case of a
square lattice with a 5 20 nm, Table 1 shows that the energy bands in
Fig. 2(a)–2(c) span over approximately 4.8, 4.3, and 2.6 meV,
respectively. Since C!1

.
E2

g , these values further increase (and
may become comparable to the band gap) for quantum dots made
of narrower band gap semiconductors. The possibility of tuning the
exciton energy within large limits can benefit many types of photonic
devices, including field-effect transistors79 and solar cells62.

The possibility of tuning the physical properties of quantum-dot
supercrystals, and the enormous practical benefits associated with
this ability, bring about the problem of finding the optimal structural
and material parameters that will provide a desired configuration of
the supercrystal’s excitonic bands. Our work sets an important mile-
stone in the theoretical studies aiming to resolve this important
problem and, we believe, will eventually expand into a new research
area of quantum-dot-based artificial materials with superior tune-
able properties.

Methods
Our calculation of the exciton energy bands of the complex lattice amounts to finding
the eigenvalues of the Hermitian matrix

Mba kð Þ~

A 0ð Þ A pð Þ 0 0 0 0

A� pð Þ A 0ð Þ 0 0 0 0

0 0 Bx 0ð Þ Bx pð Þ C 0ð Þ C pð Þ
0 0 B�x pð Þ Bx 0ð Þ C� pð Þ C 0ð Þ
0 0 C 0ð Þ C pð Þ By 0ð Þ By pð Þ
0 0 C� pð Þ C 0ð Þ B�y pð Þ By 0ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

, ð15Þ

in which

A qð Þ~
X

n

a3

2 n{qj j3
eikn, ð16aÞ

Bv qð Þ~
X

n

a3

2 n{qj j3
1{3

nv{qv

n{qj j

� �2
" #

eikn, ð16bÞ

and

C qð Þ~
X

n

3a3 nx{qxð Þ ny{qy
� �

2 n{qj j5
eikn, ð16cÞ

For q 5 p the summations in Eq. (16) are over all nodes of the lattice, while for q 5 0
the node at the origin is to be excluded. Owing to a quasidiagonal block form of matrix
Mba (k), the eigenvalues of each block can be found separately. The first two exciton
bands from the 2 3 2 block are readily found to be E+

1 ~A 0ð Þ+ A pð Þj j, while the
remaining eigenvalues are given by the Ferrari’s formulas80.

Figures 2–5 were plotted using a commercial package MATLAB 2012a and
assuming 200 3 200 nodes in the summations in Eqs. (11), (12), and (16).
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