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Complex systems, arising in many contexts in the computer, life, social, and physical sciences, have not
shared a generally-accepted complexity measure playing a fundamental role as the Shannon entropy H in
statistical mechanics. Superficially-conflicting criteria of complexity measurement, i.e. complexity-
randomness (C-R) relations, have given rise to a special measure intrinsically adaptable to more than one
criterion. However, deep causes of the conflict and the adaptability are not much clear. Here I trace the root
of each representative or adaptable measure to its particular universal data-generating or -regenerating
model (UDGM or UDRM). A representative measure for deterministic dynamical systems is found as a
counterpart of the H for random process, clearly redefining the boundary of different criteria. And a specific
UDRM achieving the intrinsic adaptability enables a general information measure that ultimately solves all
major disputes. This work encourages a single framework coving deterministic systems, statistical
mechanics and real-world living organisms.

A
widely-appropriate complexity measure is needed in numerous areas1–4, for directly applications or for a
unified theoretical framework like statistical mechanics5. To date, except some special cases6–8, most
calculable complexity measures are superficially classified into three types (I, II, and III) depending on

three C-R relations: a monotonically ascending curve, a convex curve, and a monotonically descending curve,
respectively8. Competition is mainly between the type-I and the type-II. According to many type-II supporters,
highly complex systems like human brains evidently exist at a critical transition point between randomness (or
deterministic chaos) and regularity called the edge of chaos or weak chaos9–13, and then an ideal type-II measure
should regard an object of weak chaos as the most complex and low-periodic objects and completely-chaotic
objects the simplest, despite most type-II measures, e.g. the logical depth14, do not suffice.

There is another deeper but perhaps not strictly accurate classification. Deterministic measures are usually
estimations of the incomputable concept Kolmogorov complexity3 (KC), the uncompressible information account
of individual object defined as the length of the minimal computer program that regenerates the object; while
statistical measures are chiefly derived from H for systems describable in probabilistic language9,10. A quantity is
called extensive if it scales (asymptotically) with the size rw of the random word (string) Xrw~X1X2:::Xrw that
describes the system under consideration15. In an isolated system, H is extensive, whereas even some statistical
measures appear not9. Then disputes arise.

Amazingly, a recently-introduced deterministic measure lattice complexity CL exhibits intrinsic adaptability to
various C-R relations6,7, even a degree of sensitivity to weak chaos, implying an ultimate solution of all above-
mentioned disputes. For a deterministic a-nary symbol string s, intrinsic adaptability with a parameter r needs
only treating all (overlapping) length-r words in s as ar-nary symbols for specific measures’ calculation; while
extrinsic adaptability needs extra variables and operations to show two existing different-type measures’ behavior
alone or jointly8. Traditionally, r is related to rw, because s is often considered a collection of outcomes of a length-r
random word, and a statistical form of intrinsic adaptability may help to find the proper theoretic fundamental.

In this article, C2, a statistical measure previously known as of type II16,17, is found of somewhat intrinsic C-R
adaptability. Further analysis reveals a contradiction between the adaptability and the random UDGM (r-
UDGM), i.e. random process, in which entropies are exclusively rooted. With the nonlinear deterministic iterative
system being identified as the deterministic UDGM (d-UDGM) that can generate any arbitrary symbol string as
the traditional r-UDGM can, the C-R competition is clarified. A particular UDRM containing both r- and d-
UDGM is shown to unit major competing ideas of complexity measurement naturally in an estimation of KC.

Results
Deterministic adaptable complexity. With its widely-used type-I estimation Lempel-Ziv complexity18 (CLZ), KC
is traditionally considered a measure of randomness3,10,19. Although this judgment is valid for random objects, the
adaptable estimation CL reveals more aspects of KC.
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Both CLZ and CL simulate a machine reading the given string s over
a finite alphabet S continuously into an unlimited memory. Along-
side the reading procedure, both algorithms virtually separate s into
uncompressible units and count the unit number as the complexity
value of s. The present unit is one such that has a present symbol just
being read. It can still be compressible and then extendable.

Compressibility is reduced to duplicability in CLZ. If the present
unit can be duplicated from any section of the exhaustive memory
including the already-read part of the unit itself, the duplication
operation extends the unit simply symbol by symbol until no section
of the memory equals the unit. At that time the present symbol is
regarded as an insertion making the present unit uncompressible and
the next unit, with its first symbol, will become the present (see the
example below).

In CL, a present-unit-extending mechanism prior to the duplica-
tion is the deterministic iterative map on S following either chaotic
(no-symbol-repeating) rule or periodic rule. Iterations of such map
are regarded as compressible as duplications, inspired by the fact that
short-program-described iterative systems, e.g. logistic maps20, can
produce any symbolic sequence out of chaotic or periodic orbits.

For example, let s 5 0010001100 11010111 and the dot and the
sign ‘‘ _ ’’ denote the insertion in CLZ and CL, respectively. The
results are as follows:

s~0:01:000:11:001101:0111:,

s~001 _ 0001 _ 1001 _ 101011 _ 1:

According to CLZ, the first symbol is always an insertion without
prefix. The second has a duplicable prototype in the memory, but the
third makes the unit 01 does not match the exhaustive memory 00.
The fourth and fifth symbols 00 together can be duplicated from the
previous symbols 0010, while the sixth can not, because 000 has no
prototype in 00100. Three following uncompressible units are 11,
001101 and 0111. Since there are 6 separated units, CL (s) 5 6.

According to CL, the first two symbols 00 are generated by a
1-period iteration, but the third symbol 1 interrupts the iteration.
Because 001 is not duplicable, it is an uncompressible unit. The next
unit 0001 is identified similarly. Concerning the third unit 1001,
since the first two symbols 1 and 0 are different from each other,
they should be assumed following chaotic rule; the third symbol 0
implies that a periodic rule is employed with an initial state 1. After a
periodic rule is broken, neither 1001 nor its follower unit 101011 is
found duplicable. With the last unit 1 being separated, we see
CL (s) 5 5.

Let parameter r 5 2, any two-symbol word in s compose a refined
symbol and CL (s2) 5 3. Let r $ 6, CL (sr) 5 1. Indeed, as has been
shown6,7, for a finite s, there is a critical order r* such that once r $ r*,
sr can be regarded as a single iteration and then CL 5 1. When r
reaches the particular r* of a given ‘‘completely chaotic’’ object, with
both the ‘‘completely chaotic’’ and the low-periodic object obtaining
the minimal CL, CL achieves the transition from a type-I measure to a
type-II. The objects of highest r*, with the most difficulty to obtain
CL 5 1, are strings of the period-doubling accumulating points
known as weak chaos13.

Adaptable entropy. In classical information theory21, when the
probability pi of any event xi is obtainable, with a random variable
X representing all a possible events, the a-nary Shannon entropy is
the mean of the information content 2logapi of X

S~{
Xa

i

pi loga pi: ð1Þ

If a 5 2, the unit of S is just bit; and if not, since log2 a: loga x~
log2 x, one may time S by log2a to get the entropy H of bit. For an
binary independent and identically distributed random word

Xrw~X1X2 . . . Xrw with 2rw elemental events and any event Xrw
i

having the probability p(rw)
i , 2rw -nary S becomes the entropy rate

(entropy per symbol) of order rw hrw ,

S(Xrw )~{
log22

log22rw

X2rw

i

pi
(rw)log2pi

(rw)

~{
1
rw

X2rw

i

pi
(rw)log2pi

(rw)~
1
rw

H(Xrw )~hrw

ð2Þ

It is well-known that S(Xrw )~1 for uniformly distributed Xrw .
Measuring the mean of bits needed for the shortest description of
the random word’s experimental outcome, H(Xrw ) is extensive
because in the limit rw?? the entropy rate21 h is a constant.

Accompanied by a type-I measure C1, C2
16,17 is derived from ‘‘a

hierarchical approach to complexity of infinite stationary strings22.’’
By stationary, we see that statistical properties of the strings in con-
sideration are fixed with time or space changing, a precondition for
all statistical measures’ application.

Given a binary string s of length n, there are totally 2r distinct
words of length r (or r-words for short). Let Fa(r) denote the fre-
quency of a distinct allowed r-words that really emerges in s and Ff(r)
the frequency of a distinct forbidden r-words in s counted as follows:
if in s (except its end) a (r 2 1) -word s1s2:::sr{1 emerges x times, but
no r-word s1s2:::sr{1sr emerges, we account s1s2:::sr{1sr a forbidden
r-word emerging x times. For example, when basic alphabet
S~½0,1�, if sr~0, then we regard the frequency of the allowed
r-word s1s2:::sr{11 as that of the forbidden r-word s1s2:::sr{10.

With the probability being replaced by relative frequency in s, C1 is
the entropy rate of allowed r-words and C2 of forbidden r-words:

C1~{
X

i

Pai
log2 Pai

r
, ð3Þ

C2~{
X

i

Pfi
log2 Pfi

r
: ð4Þ

Here, i denotes each distinct r-word; Pai~
Fai(r)P

i
Fai(r)

and Pfi~

Ffi(r)P
i

Ffi(r)
are relative frequencies.

Given a finite r, if s containing all possible (including overlapping)
2r r-words, no forbidden r-word occurs. For a completely chaotic
(random) case, as n??, the number of distinct forbidden r-words
Nf (r)?0, then C2?0.

Since s is finite, C1 is a real-world estimate of hr, while C2 is roughly
adaptable to type I and type II. First, the critical order r* still works. If
s is of a level of randomness, every r*-word in s is distinct as well as
every (r* 1 1) -word is. So the number of distinct allowed (r* 1 1)-
word Na(rz1)~Nf (rz1), thus C1(r�z1)~C2(r�z1). Second,
there may exist another critical word length r�w such that for rƒr�w,
Nf (r)~0 and then C2 5 0. By increasing r from the r�w of a given
completely chaotic object to the r* of the same object, C2 roughly
achieves a transformation from a type-II measure to a type-I.

If s is a sequence of minimum period m, when r $ m, there are m
different r-words of equal frequency, and then C2(r) can simply be
predicted.

Functionally, C2 is composed of a type-I measure C1 and a type-II
measure Nf (r). As Na(r) is a low-precision version of C2 and
Na(r)§Nf (r), Nf (r) may cause a precision problem of C2 in showing
type-II behavior.

What is really involved in C2 calculation is the frequency of every
distinct allowed r-word sharing length-(r 2 1) prefix with a forbid-
den r-word. This means that C2 is actually applicable to a-nary
strings. For convenience and without loss of generality, let us assume
that the strings under consideration are binary hereafter.
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Intrinsic adaptability. Let us use the logistic map xt~mxt{1

(1{xt{1) to exhibit the intrinsic adaptability. The case m 5 4 is
known as the completely chaotic (pseudo-random) object and the
case m 5 3.57 a representative sample of weak chaos. After 25000
times iteration deleted as transient, from a trajectory of xt we got a
binary symbolic sequence of length 8204 by the partition 0.5. With
different r, CLZ, CL, C1, and C2 for both m 5 4 and m 5 3.57 are
calculated and shown in Fig. 1.

From Fig. 1, with r increasing remarkable symmetry can be found
in behavior of the two pairs of measures, CLZ and CL, and C1 and C2.
When m 5 4, r�w~10, and if we scale the ordinate logarithmically, we
will find r* 5 26. Although CLZ and CL of low r are almost equal, the
difference between them increases with r until r $ r*. On the other
hand, with rƒr�w, C1 5 1 and C2 5 0. They rapidly converge when r
approaching to r* and stay equal when r§r�z1.

When m 5 3.57, r�w~3 [Fig. 1(d)], and r�~834 (not shown in
Fig. 1). Actually, in a long range of r between about 26 and 834, C1 <
C2. To let C2 act as a type-II measure, r must be within the range from
4 to 10.

With r # 3, the m 5 3.57 and the m 5 4 cases are not distinguish-
able by C2. When 26 . r . 10, CL and C2 are both in a type-transition
state. The transition range is near the word length r 5 13 [Fig. 1(b)],
the solution of the equation n~2r{rz1~8204. It is easy to see that
r�wƒ13 and r�§13 are valid for any length-n string and r�w~r�~13
is valid only if in s each overlapping distinct possible r-word just
appears once6.

Fixing r but letting m vary with Dm 5 0.0001 from 3.5 to 4, results
are as shown in Fig. 2. When r5 3, almost all cases in the region about
m . 3.555 obtain C2 5 0 (not shown in Fig. 2); when r 5 4, the zero-
C2 region reduces to about m . 3.907 [Fig. 2(b)]; and when r 5 4 to
about m . 3.978 (not shown in Fig. 2). Since r�w is either 3 or 4 for
most of chaotic cases, we see a serious precision problem of C2 of low
r [Fig. 2(b)].

As C2(10) 5 0 for m 5 4 [Fig. 2(c)], C2(10) is roughly type-II. For
any chaotic s, C2 always rapidly converge to C1 once the r�w of s has
been exceeded [Fig. 1]. Since 10 is certainly larger than 3 or 4, within
most chaotic area except a small region very close to the point m 5 4,
C1 and C2 act similarly.

Highest C2 [as shown in Fig. 2 (c)] is not close to the edge of chaos
as highest CL is [see Fig. 8 in Ref. 6]. When r is only a little higher than
the r�w of m 5 4 case, e.g. r 5 12, C2 becomes definitely a type-I
measure [Fig. 2 (d)]. Thus, C2 has a significantly smaller range of
choice of r for roughly type-II behavior than CL.

Symbolic dynamical analysis and UDGM. Symbolic dynamics for
one-dimensional nonlinear iterative systems including logistic maps
provides a one-to-one correspondence between any semi-infinite
symbol string and the initial point of the trajectory producing the
string20. A finite r-word represents a deterministic segment enclosing
the initial point. Increments of r will rescale the segment into a
shorter one. Therefore, the parameter r in CL is also called fine-
graining order, while in entropy this name may not be appropriate,
as discussed below.

Table 1 shows the distribution of all possible 4-bit words in m 5

3.645 case. If two adjacent 3-bit-prefix-sharing words both emerge or
not emerge, they are ignored. Hence we get only three distinct 4-bit
forbidden words 0110, 0100, and 1100, but ignore 1001, which is also
adjacent to an allowed word. Moreover, since one r-word creates two
prefix-sharing (r 11) -words, when r 5 5, all (virtual) segments
corresponding to 4-bit forbidden words are ignored. It makes
Nf (r) fluctuate irrelevantly to the real spatial structure in phase space.
For instance, there always exist mid-position adjacent segments not
being visited, but when r 5 4, 5, and 6, the number of distinct
forbidden words corresponding to such segments equals 2, 0, and
2, respectively. Thus the curves of C2 versus r can hardly be smooth
except some cases of almost complete chaos [Fig. 1 (b) and (d)].

Essentially, any entropy is only applicable for a random string
emitting r-words with measureable stationary distribution, or the
r-UDGM of arbitrary given deterministic string s. To apply the r-
UDGM exclusively, one has to ignore all temporal or spatial informa-
tion of s unrelated to the distribution, let alone nonstationary objects
of no stable distribution. For instance, given r 5 2, the 2-periodic
infinite string (01)? has C2 5 0.5 and be regarded as a medium
complex case despite its simple temporal structure.

In contrast to the entropy, KC estimations CLZ and CL are in itself
designed for single deterministic strings. The successive process in

Figure 1 | Complexity of logistic map. (a) CLZ and CL for m 5 4; (b) C1 and C2 for m 5 4; (c) CLZ and CL for m 5 3.57; (d) C1 and C2 for m 5 3.57.
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searching duplicable section ensures the low complexity value for
simple regular strings, e.g. (01)? of CLZ 5 3 and CL 5 1.

Due to the absence of a perspective of deterministic chaos in its
process of dealing with irregular strings, CLZ is still type-I. Using the
terminology of C1 and C2, we may say in s CLZ successively counts up
non-overlapping allowed words in assorted lengths, each of which is
adaptively increased from 1 to such a value that the word is distinct
from any part of the exhaustive memory. The word length adjusting
mechanics makes CLZ be much more fine-grained than Na(r) and let
the parameter r become meaningless.

Deterministic iterative systems are considered in CL a sort of sim-
ple data-generating models. They can be regarded as logistic maps, in
which fine-graining order r represents the size of the segments, or as
equivalent one-bit-output binary recurrence equations, in which r
represents the bit number of input. For any given s, when r , r*, this
sort of models is non-universal data-generating model (NUDGM) ,
and when r $ r*, become universal, i.e. the d-UDGM, and leave no
space for others.

The d-UDGM can be used alone by regard s as a single trajectory of
a simplest equation, whose operation assignment must be defined as
regular as possible. Determining the exact optimal set of arithmetic
operations and their assignment in the equation may need countless
tentative calculations. What can absolutely not be reduced is the
smallest bit number of input, the r* of s, representing the system’s
uncompressible information.

Henceforth let rw denote also the length of assumed random word
in the r-UDGM of s to distinguish it from the fine-graining order r.
For a length-n s, let CL(r, n) replace CL(sr) and let r 5 0 mean that no
segment involves iterative mappings, CLZ can be viewed as a special
case of CL denoted by CL(0, n).

Discussion
Logically, a quantity designed for single deterministic strings is
unconditionally suitable for stationary random strings because one

can calculate the quantity’s probabilistic mean, whereas the mean
may not fit any individual string. The quantity’s mean of a length-rw

random string can be interpreted as the average of k individual
results each computed from a length-rw string emitted by the random
string with k??. To arrange such k emitted strings in a single
sample time series, we must assume that the random string, or
equivalently the time series, is ergodic, i.e. the relative frequency of
any distinct length-rw deterministic string in the time series equals
the string’s probability: Pai(rw)~p(rw)

i , i~1,2,:::,2rw .
If every Pai(rw) is determined by previously known p(rw)

i , in an
ergodic time series the arrangement of all length-rw emitted strings
can be overlapping or non-overlapping, in a certain order or dis-
order, which is pointless for calculating a quantity’s mean: the mean
can be theoretically obtained without numerical computation. A
theorem of Brudno23 states that the KC per symbol of almost all
emitted strings of infinite length is equal to the entropy rate h.
Likewise, when fine-graining effect is absent or negligible (i.e. r 5

0 or 1), maximum CL relates to emitted strings of maximum random-
ness and one can prove that6,18,21

lim sup
rw??

CL(0,rw)log2rw

rw
~ lim sup

rw??

CL(1,rw)log2rw

rw

~ lim
rw??

H(rw)

rw
~h:

ð5Þ

with probability 1. Hence, in traditional statistical-mechanics lan-
guage CL(0,rw) log rw or CL(1,rw) log rw are not only extensive but
also asymptotically equal to H.

In order to apply entropy to a given length-n time series, we have
to assume that s is ergodic despite its real generating mechanism.

Without previously-known p(rw)
i , from s only C1(rw) rather than h

can be obtained. To make Pai(rw)<p(rw)
i and C1(rw)<h, we have to let

rw=n. For example, if s is a given completely random object without

Figure 2 | The C2 of logistic map. (a) Bifurcation diagram; (b) r 5 4; (c) r 5 10; (d) r 5 12.

Table 1 | Distribution of all possible 4-bit words in 8204-points m 5 3.645 case

4-bit words 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

Fa(4) 0 0 0 0 0 1349 977 0 0 1349 852 1348 977 1349 0 0
Types N N N N F A A F F A A A A A N N

From left to right, all words are enumerated according to their corresponding segments’ positions in the phase space of logistic maps. The frequency of a distinct allowed 4-bit word Fa(4) equals the times the
orbit visit the corresponding segment. In the third row, ‘‘F’’ means ‘‘forbidden word’’, ‘‘A’’ means ‘‘allowed word’’, and ‘‘N’’ means ‘‘neither forbidden word nor allowed word’’.
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forbidden word, we must at least let rwvr�w to ensure that no distinct
rw-word has Pai(rw)~0=p(rw)

i .
Here we encounter an unsolvable paradox: to show C2’s type-I

behavior, i.e. let C2(rw)<C1(rw), it has to be valid that rwwr�w, or
even rw?r�, for a given completely random object, thus the precon-

dition Pai(rw)<p(rw)
i for any entropy’s applications cannot be sat-

isfied. Moreover, neither an r-UDGM-rooted measure nor a d-
UDGM-rooted can embody the intrinsic adaptability, since in the
r-UDGM fine-graining process is not only meaningless but also
harmful, and in the d-UDGM r* of s is the ultimate point rather
than an example of intrinsic adaptability.

Independent of any specific data-generating model, the KC
estimation concerns lossless regeneration of given data. The insertion
operation in CL fills blanks left by any NUDGM with symbols already
known from s and grants the UDRM containing this NUDGM uni-
versality. The duplication operation freely generates repeated words
as the r-UDGM does, making the UDRM of CL(0, n) a sort of quasi-r-
UDGM. Except for low-period objects, CL(0, n) shows no noticeable
distinctness from C1 in its C-R behavior. Without needing to prev-
iously set a rw=n for calculating the average CL(0,rw) log rw over all
allowed rw-words in s, the whole s is treated as a single emitted object
for CL, and then CL(0,n) log n per symbol appear to be estimations of
h even better than C1

24–26.
With r increasing, CL appears a simulator not only of H but also of

r*. The intrinsic adaptability of CL embodies indeed a general
information/complexity measure presenting a smooth transition
from the r-UDGM-rooted (superficially type-I) information concept
to the d-UDGM-rooted (ideally type-II) complexity concept, all con-
sistent with the principle of KC.

The r-UDGM and the d-UDGM identified here enable us to suc-
cinctly redefine the C-R conflict and avoid unnecessary confusions
caused by misuse of each UDGM, e.g. about randomness and chaos,
not only in complexity measurement. Besides many well-defined
deterministic dynamical systems, living organisms12,27–29, e.g. human
brain, heart, and economic systems, appear nonstationary, edge-of-
chaos, and, strictly speaking, beyond the scope of all types of r-
UDGM-rooted statistical mechanics including generalised versions5.
For these systems, a d-UDGM-rooted measure or framework is cer-
tainly an option and need further studies. However, in living organ-
isms, randomness is not able to be excluded except that noise or free
will30 is. Thus, a UDRM-rooted framework that proceeds from a KC-
based general information measure, CL or its possible revised version,
may have more adaptability to complicated real-world situations
than a single-UDGM-rooted.

In brief, though we can separate complexity from information by
using the d-UDGM and the r-UDGM alone, it would be more natural
to accept a general measure encompassing H and its d-UDGM
counterpart. The behavior of this measure should have been outlined
by CL, since the d-UDGM always becomes more and more over-
whelming with r increasing.
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