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The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of
crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye’s
elasticity theory: The density of states deviates from Debye’s law, the sound velocity shows a negative
dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near
the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a
large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are
caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent
we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially
fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase
of the sound attenuation at a frequency which marks the transition from wave-like excitations to
disorder-dominated ones.

T
he high-frequency vibrational dynamics of glasses (in the regime of a few THz or meV) is in the focus of
experimental, theoretical and computational work for already half a century1,2. Whereas the crystalline-
lattice dynamics is well understood in terms of the symmetry-related phonon dispersions, supplemented by

the consideration of phonon-phonon interactions3, the theoretical interpretation of vibrational spectra of glasses,
which differ considerably from those of crystals, is a matter of fierce controversies. The anomalous features are
(i) an enhancement of the density of states g(v) over Debye’s g(v) / v2 law in a regime, where elasticity theory
should still hold, i.e. 1/10 of a Debye frequency, (‘‘boson peak’’, BP)2,4, please see Ref.2 for further references]; (ii) a
frequency dependence of the sound attenuation (width of the Brillouin line) which shows a strong increase near
the BP frequency; (iii) a negative dispersion of the sound velocities followed by a characteristic minimum near the
BP frequency5–8.

These features can be related to anomalies in the temperature dependence of the specific heat C(T)9 and the
thermal conductivity k(T)10. The former - if plotted as C(T)/T 3 shows a peak near ,10 K, which is also called
boson peak, and the latter shows a characteristic shoulder at the BP temperature, which has been shown to be
essentially an ‘‘upside-down’’ BP11. The Raman spectra of glasses show also an anomalous maximum near the BP
frequency (which is is also called boson peak). Its relation to the other vibrational anomalies has been discussed
recently12–14.

Models for the BP and the associated anomalies15 range from assuming quasi-local vibrational states, produced
by soft anharmonic potentials16–18 over elastic heterogeneities11,19–23 to broadened and shifted van-Hove-
singularities24,25.

However, a number of recent inelastic scattering experiments5–8,26,27 and molecular-dynamics (MD) simula-
tions28–36 gave valuable insights into the nature of the high-frequency and small-scale vibrational properties of
glasses. It emerges that the disorder-affected transverse degrees of freedom of local elasticity play a key role for
producing the anomalies.

By analyzing the acoustical properties of 2- and 3-dimensional model glass systems it was found29,34,35 that the
BP frequency corresponds to the transverse Ioffe-Regel (IR) frequency, i.e. the frequency at which the wavelength
of a transverse excitation is equal to its mean-free path. Such a coincidence of the BP frequency with the transverse
IR frequency is found also in our data to be presented below. In metallic glasses37 the BP position also coincides
with the transverse Ioffe-Regel frequency, whereas in a number of other glasses coincidence with the longitudinal
IR frequency is found38. By a fundamental principle of wave mechanics this implies that vibrational states with
frequencies above the BP frequency cannot be labelled with a wave vector k. Therefore, above the Ioffe-Regel
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frequency, there is no reason for the existence of a Debye law. This is -
in a nutshell - already the explanation of the BP phenomenon.

As a matter of fact, such a scenario appears quite naturally if one
assumes that the local elastic moduli fluctuate from location to
location in space (elastic heterogeneity)11,23. The existence of elastic
heterogeneities in glasses have been postulated already for a long
time39–41. There exists by now both experimental42,43 as well as
simulational33,36,44–46 evidence - including the data to be presented
below - for the existence of elastic heterogeneity in glasses. The
computational data reveal that, in fact, the shear-elastic fluctuations
are dominant.

Most of the papers dealing with the BP and the other vibrational
anomalies of glasses start with the sentence ‘‘Although much
scientific work has been done on the vibrational anomalies the
origin of the boson peak remains elusive’’ or so. This is in spite of
a large body of investigations, which show that the anomalies
are related to (and caused by) the structural disorder of the glassy
materials1,2,11,15–23,28,30–36.

In the present contribution we show by comparing a simulation of
a very large soft-sphere glassy system with the heterogeneous-
elasticity theory11,23 that the spatial fluctuations of the elastic con-
stants on a microscopic length scale produce the boson peak and the
other elastic anomalies. By evaluating the eigenvalues of the Born-
Kelvin stiffness matrix within the simulation we verify for the first
time quantitatively the correctness of the model assumptions of the
theory. The theory is also shown to account for the non-affine char-
acter of disordered shear elasticity31,32. We further demonstrate that
the vibrational anomalies are mainly due to the fluctuations of the

shear stresses. This is achieved by investigating the frequency
dependence of the macroscopic elastic moduli.

Results
Vibrational spectra of a soft-sphere glass. In order to extract the
vibrational properties of our model glass we have calculated the
longitudinal (L) and transverse (T) current-current correlation
functions CL,T (k, v) as well as the vibrational density of states
(DOS) g(v), obtained via the local velocity autocorrelation
functions47. In Fig. 1 we show examples for CL,T (k, v) data.

The CL,T (k, v) data could well be fitted by a damped-harmonic
oscillator function (DHO)
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where we have introduced the longitudinal and transverse Brillouin
resonance frequencies VL,T(k), the corresponding Brillouin line
widths CL,T(k) (sound attenuation coefficients) and the complex
longitudinal and transverse dynamic susceptibilities xL,T(k, v). The
resonance frequencies VL,T turned out to be essentially linear in the
investigated regime (kmin 5 0.031 # k # kmax 5 1.426), i.e. VL,T 5

vL,Tk. Therefore we find it appropriate to represent the data – as in
optics – in terms of complex, frequency-dependent sound velocities:
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Figure 1 | Longitudinal (a–b) and transverse (c–d) current-current correlation functions CL,T for k 5 0.14, 0.30, 0.33, 0.39, 0.63, 1.2 (LJ units).
In the panels b and d, we provided an example of the fit with the DHO function given by Eq. (1) for k 5 0.076 (solid line). Fit data are VT 5 0.176,

VL 5 0.464, CT 5 1.5 ? 1023, CL 5 5.4 ? 1023.
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The real parts u0L,T vð Þ of the complex sound velocities represents
the apparent sound velocities in the low-frequency regime, their
imaginary parts are related to the sound attenuation. It is worthwhile
remarking that the approximation leading to Eq. (2c) is valid for
CL,T/VL,T = 1. As can be seen from Fig. 2 this ratio does not exceed
<0.15 for the longitudinal and <0.3 for the transverse case.

In the low-frequency regime one can calculate from the complex
sound velocities ûL,T vð Þ~u0L,T vð Þ{iu00L,T vð Þ frequency-dependent
wavelengths l and mean-free paths ‘ of the longitudinal and trans-
verse wave-like excitations as lL,T vð Þ{1

~v2=pRe 1=ûL,Tf g<
v2p

.
u0L,T vð Þ and ‘L,T vð Þ{1
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.
2u0L,T . When

these lengths are equal to each other, the Ioffe-Regel regime V 5

pC is reached. Near and beyond this regime the vibrational excita-
tions are no more wave-like, and k cannot be used for labeling the
vibrational excitations.

In the inset of Fig. 2 the reduced density of states g(v)/v2 is shown
for the three temperatures considered (see Fig. 2 and ‘‘Methods’’).
The reduced DOS shows the BP anomaly typical for glasses. From
Fig. 2 we see that the Ioffe-Regel limit is reached for the transverse
waves near VT < 1, which is roughly the BP frequency, i.e. the
frequency, where the density of states g(v) is no more Debye-like.
This is understood easily if one realizes that g(v) is essentially given
by the k sum of the combination CL(k, v) 1 2CT(k, v) (see Eq. (8)
below). As the weighting factors are the inverse cubes of the sound
velocities the spectrum is dominated by the transverse part. For small
k where ‘ is much larger than l, CL,T(k, v) are proportional to

d(v 2 VL,T), which gives a Debye spectrum. Near the Ioffe-Regel
limit CT(k, v) deviates strongly from a sharply peaked function,
which explains the non-Debye behavior: The BP is due to the break-
down of homogeneous elasticity in the transverse channel.

In Fig. 3 we have plotted the sound velocities u0L,T and the Brillouin
line widths CL,T as a function of frequency. It is very striking that the
velocities have a characteristic minimum near the frequency v < 1
(in Lennard-Jones LJ units, see ‘‘Methods’’), where the reduced DOS
has its maximum (boson peak). These findings are similar to those
found experimentally5,6 and by simulation35 previously. Below the BP
frequency there is a strong increase of the line widths with increasing
frequency, which, in the transverse case, is almost as strong as
Rayleigh’s v4 law. Above the BP frequency the frequency dependence
is much weaker. In the longitudinal case there is also a rapid increase
of the attenuation below the BP frequency, but not as strong as v4.

How does the strong frequency dependence, which leads to the
breakdown of Debye elasticity at the BP frequency, come about? It is
well known since the time of Lord Rayleigh48,49 that inhomogeneities
in a medium, which supports waves, lead to elastic scattering of the
Rayleigh type, i.e. ‘{1!v450–53. In glasses at low frequencies this
disorder-induced frequency dependency can be masked by anhar-
monic damping phenomena. However, there is now experimental5,6

and numerical evidence34 [and Fig. 3d] for the existence of the
Rayleigh scattering mechanism in glasses between the anharmonic
regime and the BP.

Using the complex sound velocities we now introduce complex
macroscopic elastic moduli, namely the shear modulus G~
r~G~rû2

T , the longitudinal modulus M~r ~M~rû2
L and the bulk

modulus K~r~K~M{ 4=3ð ÞG (r is the mass density).
Let us now discuss the frequency dependence of the moduli, dis-

played in Fig. 4. If we do the subtraction ~M vð Þ{ 4=3ð Þ~G vð Þ:~K vð Þ
it turns out that the real part of ~K is frequency independent and its
imaginary part is almost zero. It can be seen clearly from Fig. 4 that
the real and imaginary part of the quantity 4=3ð Þ ~G vð Þz~K

� �
, where

~K~30:4 is the frequency-independent reduced bulk modulus, exhi-
bits the same frequency dependence as those of the complex longit-
udinal modulus ~M vð Þ. The observation that the macroscopic bulk
modulus is frequency independent, as we shall argue below, points
to the fact that the vibrational anomalies in our model glass are
predominantly due to spatially fluctuating shear stiffnesses. A
frequency-independent bulk modulus has been found recently in a
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Figure 2 | Resonance frequencies VL,T (k) (straight lines) and Brillouin
line widths CL,T (k), multiplied with p for three temperatures T1 5 5 ?
1025 (circles), T2 5 5 ? 1024 (triangles), T3 5 5 ? 1023 (diamonds). Upper
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position, which is near the transverse Ioffe-Regel crossing. Insert: Reduced
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Figure 3 | Frequency dependence of the longitudinal and transverse
sound velocities (a) and (b) and corresponding sound attenuation
coefficients (c) and (d), as extracted from the current-current
autocorrelation functions using the damped-harmonic-oscillator
parametrization, Eq. (1) for the three temperatures specified in Fig. 2.
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simulation of a LJ glass35 pointing to the conclusion that quite gen-
erally in central-potential glasses the BP producing elastic heteroge-
neities are dominated by the shear degrees of freedom.

Heterogeneous-elasticity theory. Let us now discuss these findings
in terms of heterogeneous-elasticity theory11,23. The equation of
motion for a Cartesian component of a local displacement vector
u(r, v) can be written in terms of the stress tensor sij (where i, j 5 1,
2, 3 are the Cartesian indices) as

{v2rui r,vð Þ~
X

j

Ljsij ð3Þ

with hj ; h/hxj. Hooke’s law, which relates sij to the strain tensor

ij~1=2 LiujzLjui
� �

in an isotropic system can be written in two
different ways:

sij~ K{
2
3

G
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~KdijTrf gz2G îj ð4bÞ

where we have introduced the trace-free strain tensor

îj~ ij{
1
3

dijTrf g ð5Þ

The representation (4b) implies a separation between pure dilata-
tional and pure shear stresses. The quantity ŝij~2G îj is the traceless
tensor of dilatational-free stresses. On a small scale the elastic con-
stants K and G may depend on the spatial location r, which is the
definition of elastic heterogeneity. The assumption of spatial statist-
ical fluctuations of the shear modulus according to a Gaussian dis-
tribution with mean G0 and variance ÆDG2æ is the basis of
heterogeneous-elasticity theory11,23.

On a large scale the spatial fluctuations transform into a frequency
dependence including a real and imaginary part. Within the Ioffe-
Regel regime (Debye regime) this frequency dependence of the large-
scale complex elastic moduli are induced by scattering from the
elastic inhomogeneities. Due to the macroscopic homogeneity of
the system the microscopic inhomogeneities of the stress tensor
are mapped to a frequency dependence of the macroscopic stresses.

In the original formulation of the theory11,23 the first term in
Eq. (4a) (Lamé’s l parameter) was assumed not to fluctuate spatially
which leads to a frequency-dependent macroscopic bulk modulus.
As such a frequency dependence is not observed, our conclusion is
that in glasses with frequency-independent bulk modulus the BP-
related vibrational anomalies are entirely produced by shear stresses.
The present version of our theory is therefore formulated in such a
way that the shear modulus G that appears in the second term of
Eq. (4b) fluctuates with a Gaussian distribution of the deviation DG
from the mean G0, i.e. the bulk modulus K is not assumed to fluctuate.

It is very important to emphasize that the disorder-induced fre-
quency dependence of the elastic moduli M and G has nothing to do
with dissipation. In a disordered harmonic solid there is no damping.
The apparent frequency dependence is due to the fact that with
increasing frequency the concepts of macroscopic elasticity theory,
namely the labeling of the vibrational states by wavenumbers breaks
gradually down, until it becomes entirely meaningless at the Ioffe-
regel limit. This is the reason, why crystalline concepts like van-Hove
singularities24,25, which rely on well-defined dispersion relations
(with no imaginary part involved), are not very helpful in discussing
the vibrational states of a glass.

The mean-field theory for heterogeneous shear elasticity gives the
following self-consistent equations for the macroscopic moduli (self-
consistent Born approximation, SCBA):
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given by the complex self-energy function S(v). The k summation
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is the disorder parameter, where Vc is the coarse-graining volume
used to calculate the local shear modulus G. The second parameter of
the theory is the ratio K/G0. The density of states is given by
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Due to the assumption of a Gaussian distribution of microscopic
shear fluctuations there exists a critical value of the disorder para-
meter cc beyond which the system is unstable. The instability arises
because of the presence of negative shear stiffnesses. (As a matter of
fact, there is evidence from numerical work on metallic glasses33,40 for
the existence of Gaussian distributions of local shear stiffnesses,
which extend to negative values.) cc depends weakly on the ratio
K/G0 and is of the order of 0.2. As noted already earlier11,20,23 the
vibrational anomalies can be interpreted as precursor phenomena of
the instability, which occurs at lower density or higher temperature54.

In Fig. 5 the real and imaginary parts of ~G are compared to the
result of the theory with cc 2 c 5 0.008. and K/G053.166. In Fig. 6
the reduced DOS of the simulation is compared with the prediction
of the theory for the same parameters. The agreement is striking! At
very low frequencies, where the data are temperature dependent and
deviate from the Rayleigh law, anharmonic physics becomes distinct.
We shall discuss this frequency regime in a forthcoming paper.
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Local elasticity fluctuations. In order to further test the reliability of
the theory we have calculated the local 6 eigenvalues C1 … C6 of the
matrix of the Born-Kelvin stiffness coefficients (see ‘‘Methods’’) for
different coarse-graining volumes Vc. In an isotropic system C1 5 3K
and Ci 5 2G, i $ 2. The results are displayed in Fig. 7. In the main
body of the figure the distribution of the Ci are shown for Vc 5 45 and
Vc 5 2000 (the total volume is V 5 8.3?106 in LJ units). In the insert
the mean values and c parameters, defined as in Eq. (7) are plotted
against Vc. The value of ÆC1æ < 100 for large Vc essentially agrees with
the value 3K~3r~K~109 (r 5 1.2 in LJ units) extracted from the
frequency-dependent moduli (Fig. 4). The mean values of the shear
eigenvalues are <33, giving ÆGæ < 16. This nicely corresponds to G0/
K < 3 used in our fits. However ÆGæ does not agree to the macroscopic
value of G~rv2

T <6:5 (Figs. 3,5). The reason is that the Born
expressions for the stiffness coefficients Cij rely on the assumption
of affinity of the dilatational and shear elasticity of the solids.

As demonstrated in detail in a series of simulations31,32, this
assumption does not hold for shear elasticity in glasses; the shear
modulus is lowered by the presence of non-affine processes as
compared to the Born expectation. This reduction of G is included
in the predictions of our theory and is induced by the v 5 0 value of
the self energy S. For c < cc we have S(0) < 0.5G0, which gives a
reduction of a factor 0.5 in agreement with the simulation. As the
functionS(v) describes the BP-related vibrational anomalies, we can
state that the appearance of the boson peak and the reduction of the
shear modulus by the non-affine processes are both due to the elastic
heterogeneities, viz. the structural disorder.

From Fig. 7 we see that all distributions of the Ci are Gaussian and
that the c value of C1 is much lower than those of the shear moduli.
The latter are of the order or somewhat larger than cc < 0.2. We see
that the model assumptions and parameters of our theory are quite
realistic. We also see that on the microscopic scale spatial fluctua-
tions of the compression modulus exist, but the relative fluctuations,
represented by the c value, are much smaller. This corresponds to
similar findings in Refs. 31, 32. If the fluctuations of K would be
stronger this would lead to a frequency-dependent K(v) and a fur-
ther modification of the DOS in the BP regime. It is remarkable that
also in the disorder-induced sound attenuation via tunneling systems
the transverse degrees of freedom appear to be dominant, see e.g.,
G. Belessa, J. Phys. (Paris) 41, C8-723 (1980); J. F. Berret and
M. Meissner, Z. Phys. B - Condensed Matter 70, 65 (1988).

Discussion
We have argued that beyond the Ioffe-Regel limit, i.e. beyond the BP
frequency there is no reason, why g(v) should exhibit a Debye law.
But why is the disordered g(v) larger than the Debye density of
states? We can answer this question by using a decomposition of
the integrands in Eq. (8) as follows23:

Within the Ioffe-Regel regime i.e. for v below the BP position we
approximately replace the denominator of the response functions
{v2zk2v0L,T 2 1{iC vð Þ=vð Þ by 1{iC vð Þ=vð Þ {v2zk2v0L,T 2
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Now we can take our fit functions v
0
L,T vð Þ andCL,T(v) as determined

from the simulated current correlation spectra and insert them into
the formula. The results (for the lowest temperature T1) are the red
symbols in the insert of Fig. 6. The straight line is g(v)/v2 as obtained
from the velocity-autocorrelation function. The blue dashed line is
the Debye-like contribution given by the first summand of Eq. (9).
The difference between the symbols and the dashed line is entirely
due to the broadening of the Brillouin line. The proportionality of the
excess DOS to the sound attenuation constant in the sound-like
regime has been pointed out already in Ref. 23.

We can now draw an important conclusion from considering the
insert in Fig. 6. Monaco and Mossa35 have argued that the BP is
produced by the minimum in the real part of the frequency-
dependent sound velocities assuming a Debye law as given by the
first term in our equation (9). But this term just gives the rather weak
maximum of the dashed curve. As pointed out above, the BP, instead,
arises from the steep increase of the sound attenuation. The dip in the
real part of the sound velocity is just the faint echo of this increase due
to the Kramers-Kronig relations between the real and imaginary
parts of the moduli.

We would like to emphasize again that the vibrational spectrum
beyond the BP frequency cannot be described by concepts borrowed
from Debye’s theory: The disorder is dominant in this regime. It has
been shown previously that the vibrational states in this regime obey
the statistics of random matrices20. The eigenvalues exhibit level
repulsion24, i.e. there are no degeneracies. This absence of degenera-
cies can be traced to the microscopic breakdown of the translational
and rotational symmetry. We conclude that the vibrational states
near and above the BP are of random-matrix type55.

We also would like to comment on the vibrational anomalies of
SiO2 glass, a material very-well investigated both experimentally and
by computer simulation (please see Ref. 8 for an extensive biblio-
graphy on SiO2). A recent inelastic X-ray study8 reveals that the
elastic anomalies of this material can be qualitatively but not quanti-
tatively explained in terms of elastic-heterogeneity theory (as pre-
sented in refs. 11, 23 and presently). To be specific, the measured
excess density of states exceeds that predicted by the theory.
Therefore an additional mechanism contributing to the boson peak
was invoked. On the other hand, in recent theoretical work56 the
present theory, which is based on the assumption of a Gaussian
distribution of the fluctuating elastic constants, has been generalized
to include non-Gaussian distributions. This is achieved by using an
off-lattice version of the coherent-potential approximation (CPA),
which has been derived in Ref. 56. We convinced ourselves that non-
Gaussian distributions produce a much stronger excess of the density
of states than Gaussian ones. In particular the enhancement of the
density of states of SiO2 can be accounted for by assuming a power-
law distribution, which can be derived from interatomic forces vary-
ing exponentially with distance. So the strong elastic anomalies of
network-forming glasses can be explained by non-Gaussian hetero-
geneous elasticity.

Let us summarize our findings. By comparing a simulation of a
very large model of a soft-sphere glass with the mean-field theory of
elastic heterogeneous shear fluctuations we have obtained compel-
ling evidence that the excess of the density of states over the Debye
prediction (boson peak), the negative dispersion of the sound velo-
cities and the steep increase in the Brillouin line width in the boson-
peak region are produced by spatial fluctuations of dilatation-free
shear stresses. More generally this points to the conclusion that in
glasses the boson peak and the associated anomalies are induced by
spatial fluctuations of elastic constants induced by the structural
disorder. The strong Rayleigh-like scattering from the local inhomo-
geneities causes the breakdown of a wave-like description in favor of
random-matrix type vibrational states. A theory has been formu-
lated, which satisfactorily describes all anomalous features, including

the frequency independence of the bulk modulus and the non-affine
shear elasticity of glasses.

Methods
We simulated a 20580 binary mixture of N 5 107 particles AxB12x with x 5 0.2,
interacting through a soft-sphere potential. By choosing such a mixture crystalliza-
tion is avoided, when the system is supercooled57. The two types of particles, A and B,
have same masses, mA 5 mB 5 1, but different soft-sphere potential parameters for
the AA, AB and BB interactions. The interaction potential is (we use standard LJ
units):

w rij
� �

~4 ab
sab

rij

	 
12

{4 ab
sab

rc

	 
12

13{12
rij

rc

	 

ð10Þ

with sAA 5 1, sAB 5 sBA 5 0.80, sBB 5 0.88 and AA~1, AB~ BA~1:50, BB~0:50.
rij is the distance between particles i, j of species a and b, respectively. This
parametrization defines the standard molecular-dynamics units. The soft-sphere
potential is continuously cut-off at rc 5 1.1856. At this value, with a mass density of
r 5 1.2, it guarantees a sufficiently large interaction distance to observe the formation
of a super-cooled liquid. We performed an extremely massively campaign (about
20M of single-cpu computational hours) of parallel molecular dynamic simulations
using the recently developed Billions-Body Molecular Dynamics (BBMD) package,
which was specifically designed for massively parallel studies of amorphous
materials58. We considered three different temperatures (in the standard MD units)
T1 5 5 ? 1023, T2 5 5 ? 1024, T3 5 5 ? 1025, which are well below the glass transition
temperature that is estimated to be Tg , 0.1. The glass is formed by a controlled
canonical evolution, where an input body-cubic lattice configuration is initially
heated up to T 5 3, and then slowly cooled down with a temperature decreasing
linearly with time. The duration of the heating phase was Dth 5 20 (i.e., 20000 time
steps), while the cooling period had a length of Dtc 5 2420 (i.e., 2.42?106 time steps).
The temperature of the system was adjusted by velocity rescaling every 10 time units
(104 elementary time steps). The collective motions have been studied by the
calculation of the correlation functions

CL,T k,vð Þ~
ð

dt jL,T k,tð Þj�L,T kð Þ
D E

eivt ð11Þ

of the longitudinal and transverse current density vectors jL k,tð Þ~k̂:j k,tð Þ, jT(k, t) 5

j(k, t) 2 jL(k, t) with j k,tð Þ~N{1
2
PN

l~1 vl exp ik:rl and rl and vl are particle position
and velocity, respectively. The vibrational density of state g(v), conversely, was
calculated by evaluating the local velocity autocorrelation function47 of an ensemble
of 16000 different particles.

g vð Þ!Z vð Þ~
ð

dt
1
3

v tzt0ð Þ:v t0ð Þh ieivt ð12Þ

g(v) has been normalized to unity.
The local Hookean stiffness coefficients defined by sab~

P
cd Cabcd cd have been

evaluated using the Born formula59
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where the derivative is with respect to r 5 jrj and xa is the ath component of r. The
sum runs over all pairs of particles separated by the vector r, where one or both are
inside a given coarse-graining box of volume Vc. rin is the proportion of r which lies
inside the volume. Switching to the Voigt notation CV

ij ~Cabcm (xx 5 1, yy 5 2, zz 5 3,

yz 5 4, xz 5 5, xy 5 6) the Kelvin matrix Cij is defined by Cij~CV
ij , i,jƒ3;

Cij~2CV
ij , i,j§4; Cij~

ffiffiffi
2
p

CV
ij , iƒ3, j§4 or i§4, jƒ3. For an isotropic system the 6

eigenvalues of Cij are 3K (non-degenerate) and 2G (five-fold degenerate)33,36.
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4. Buchenau, U., Nücker, N. & Dianoux, A. J. Neutron scattering study of the

low-frequency vibrations in vitreous silica. Phys. Rev. Lett. 53, 2316–2319 (1984).
5. Monaco, G. & Giordano, V. M. Breakdown of the debye approximation for the

acoustic modes with nanometric wavelengths in glasses. PNAS 106, 3659–3663
(2009).

6. Baldi, G., Giordano, V. M., Monaco, G. & Ruta, B. Sound attenuation at terahertz
frequencies and the boson peak of vitreous silica. Phys. Rev. Lett. 104, 195501
(2010).

7. Ruta, B. et al. Communication: High-frequency acoustic excitations and boson
peak in glasses: A study of their temperature dependence. The Journal of Chemical
Physics 133, 041101 (2010).

8. Baldi, G., Giordano, V. M. & Monaco, G. Elastic anomalies at terahertz
frequencies and excess density of vibrational states in silica glass. Phys. Rev. B 83,
174203 (2011).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1407 | DOI: 10.1038/srep01407 6



9. Zeller, R. C. & Pohl, R. O. Thermal conductivity and specific heat of noncrystalline
solids. Phys. Rev. B 4, 2029–2041 (1971).

10. Alexander, S., Entin-Wohlman, O. & Orbach, R. Phonon-fracton anharmonic
interactions: The thermal conductivity of amorphous materials. Phys. Rev. B 34,
2726–2734 (1986).

11. Schirmacher, W. Thermal conductivity of glassy materials and the boson peak’’
Europhys. Lett. 73, 892–898 (2006).

12. Schmid, B. & Schirmacher, W. Raman scattering and the low-frequency
vibrational spectrum of glasses. Phys. Rev. Lett. 100, 137402–(4) (2008).

13. Unruh, T., Schulte, A., Guo, Y., Schirmacher, W. & Schmid, B. Inelastic neutron
and low-frequency raman scattering in a niobium-phosphate glass for raman gain
applications. J. Non-Cryst. Sol. 357, 506–509 (2011).

14. Schulte, A., Schirmacher, W., Schmid, B. & Unruh, T. Inelastic neutron and
low-frequency raman scattering in niobium-phosphate glasses: the role of
spatially fluctuating elastic and elasto-optic constants. J. Phys. Condens. Matter
23, 254212–(25) (2011).

15. Zorn, R. The boson peak demystified? Physics 4, 44–45 (2011).
16. Buchenau, U., Galperin, Y. M., Gurevich, V. L. & Schober, H. R. Anharmonic

potentials and vibrational localization in glasses. Phys. Rev. B 43, 5039–5045
(1991).

17. Gurevich, V. L. & Schober, H. R. Decay of mesoscopically localized vibrational
eigenstates in porous materials. Phys. Rev. B 57, 11295–11302 (1998).

18. Gurevich, V. L., Parshin, D. A. & Schober, H. R. Anharmonicity, vibrational
instability, and the boson peak in glasses. Phys. Rev. B 67, 094203–(10) (2003).

19. Duval, E., Mermet, A. & Saviot, L. Boson peak and hybridization of acoustic modes
with vibrations of nanometric heterogeneities in glasses. Phys. Rev. B 75, 024201–
(9) (2007).

20. Schirmacher, W., Diezemann, G. & Ganter, C. Harmonic vibrational excitations
in disordered solids and the ‘‘boson peak’’. Phys. Rev. Lett. 81, 136–139 (1998).

21. Götze, W. & Mayr, M. R. Evolution of vibrational excitations in glassy systems.
Phys. Rev. E 61, 587–606 (2000).

22. Kantelhardt, J. W., Russ, S. & Bunde, A. Excess modes in the vibrational spectrum
of disordered systems and the boson peak. Phys. Rev. B 63, 064302–(4) (2001).

23. Schirmacher, W., Ruocco, G. & Scopigno, T. Acoustic attenuation in glasses and
its relation with the boson peak. Phys. Rev. Lett. 98, 025501–(4) (2007).

24. Taraskin, S. N., Loh, Y. L., Natarajan, G. & Elliott, S. R. Origin of the boson peak in
systems with lattice disorder. Phys. Rev. Lett. 86, 1255–1258 (2001).

25. Chumakov, A. I. et al. Equivalence of the boson peak in glasses to the transverse
acoustic van hove singularity in crystals. Phys. Rev. Lett. 106, 225501–(5) (2011).

26. Bove, L. E. et al. Brillouin neutron scattering of -. Europhys. Lett. 71, 563–569
(2005).

27. Caponi, S. et al. Raman-scattering measurements of the vibrational density of
states of a reactive mixture during polymerization: Effect on the boson peak. Phys.
Rev. Lett. 102, 027402–(4) (2009).

28. Horbach, J., Kob, W. & Binder, K. High frequency sound and the boson peak in
amorphous silica. Eur. Phys. J. B 19, 531–543 (2001).

29. Schober, H. R. Vibrations and relaxations in a soft sphere glass: boson peak and
structure factors. J. Phys. Condens. Matter 16, S2659–S2670 (2004).

30. Pilla, O. et al. The low energy excess of vibrational states in v – sio2: the role of
transverse dynamics. J. Phys. Condens. Matter 16, 8519–8530 (2004).

31. Leonforte, F., Boissière, R., Tanguy, A., Wittmer, J. P. & Barrat, J.-L. Continuum
limit of amorphous elastic bodies. iii. three-dimensional systems. Phys. Rev. B 72,
224206–(11) (2005).

32. Léonforte, F., Tanguy, A., Wittmer, J. P. & Barrat, J.-L. Inhomogeneous elastic
response of silica glass. Phys. Rev. Lett. 97, 055501–(4) (2006).

33. Mayr, S. G. Relaxation kinetics and mechanical stability of metallic glasses and
supercooled melts. Phys. Rev. B 79, 060201–(4) (2009).

34. Shintani, H. & Tanaka, H. Universal link between the boson peak and transverse
phonons in glass. Nature Materials 7, 870–877 (2008).

35. Monaco, G. & Mossa, S. Anomalous properties of the acoustic excitations in
glasses on the mesoscopic length scale. PNAS 106, 16907–16912 (2009).
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38. Rufflé, B., Guimbretière, G., Courtens, E., Vacher, R. & Monaco, G. Glass-specific
behavior in the damping of acousticlike vibrations. Phys. Rev. Lett. 96, 045502–(4)
(2006).

39. Srolovitz, D., Maeda, K., Vitek, V. & Egami, T. Structural defects in amorphous
solids statistical analysis of a computer model. Philos. Mag. A 44, 847–866 (1981).

40. Egami, T. & Srolovitz, D. Local structural fluctuations in amorphous and liquid
metals: a simple theory of the glass transition. J. Phys. F: Metal Physics 12,
2141–2163 (1982).

41. Duval, E., Boukenter, A. & Achibat, T. Vibrational dynamics and the structure of
glasses. J. Phys. Condens. Matter 2, 10227–10234 (1990).

42. Russell, E. V. & Israeloff, N. E. Direct observation of molecular cooperativity near
the glass transition. Nature 408, 695–698 (2000).

43. Wagner, H. et al. Local elastic properties of a metallic glass. Nature Materials 10,
439–442 (2011).

44. Luchnikov, V. A., Medvedev, N. N., Naberukhin, Y. I. & Novikov, V. N.
Inhomogeneity of the spatial distribution of vibrational modes in a computer
model of amorphous argon. Phys. Rev. B 51, 15569–15572 (1995).

45. Vollmayr-Lee, K., Kob, W., Binder, K. & Zippelius, A. Dynamical heterogeneities
below the glass transition. J. Chem. Phys. 116–125, 5158 (2002).

46. Tsamados, M., Tanguy, A., Goldenberg, C. & Barrat, J.-L. Local elasticity map and
plasticity in a model lennard-jones glass. Phys. Rev. E 80, 026112–(17) (2009).

47. Rahman, A., Mandell, M. J. & McTague, J. P. Molecular dynamics study of an
amorphous lennardjones system at low temperature. J. Chem. Phys. 64–69, 1564
(1976).

48. Strutt, J. W. (Lord Rayleigh) On the transmission of light through an atmosphere
containing small particles in suspension, and on the origin of the blue of the sky.
Philos. Magazine 47, 375–384 (1903).

49. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1975).
50. Klemens, P. G. The thermal conductivity of dielectric solids at low temperatures.

Proc. Phys. Soc. London, Ser. 208, 108–133 (1951).
51. Akkermans, E. & Maynard, R. Weak localization and anharmonicity of phonons.

Phys. Rev. B 32, 7850–7862 (1985).
52. Elliott, S. R. A unified model for the low-energy vibrational behaviour of

amorphous solids. Europhys. Lett. 19, 201–206 (1992).
53. Ganter, C. & Schirmacher, W. Rayleigh scattering, long-time tails, and the

harmonic spectrum of topologically disordered systems. Phys. Rev. B 82,
094205–(7) (2010).

54. Zanatta, M. et al. Debye to non-debye scaling of the boson peak dynamics: Critical
behavior and local disorder in vitreous germania. J. Chem. Phys. 135, 174506–(5)
(2011).

55. Beltukov, Y. M. & Parshin, D. A. Theory of sparse random matrices and
vibrational spectra of amorphous solids. Physics of the Solid State 53, 151–162
(2011).
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