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We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale
three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show
isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high
temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the
period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group
velocities in 3D phononic crystals. The phonon’s localization and band gap is also clearly observed in spectra
of normalized inverse participation ratio in nanoscale 3D phononic crystal.

T
hermoelectric materials are important for generating electricity from waste heat and being used as solid-state
Peltier coolers. The performance of thermoelectric materials depends on the figure of merit (ZT)1, ZT 5

S2sT/k, where S, T, s, and k are the Seebeck coefficient, absolute temperature, electrical conductivity and
total thermal conductivity, respectively. ZT can be increased by increasing S or s, or decreasing k. However, it is
difficult to improve ZT in conventional materials. First, simple increase S for general materials will lead to a
simultaneous decrease in s1,2. Also, an increase in s leads to a comparable increase in the electronic contribution
to k1,2.

An alternative way to increase ZT is to reduce the thermal conductivity without affecting electronic property1,3.
Moreover, ultra-low thermal conductivity is also required to prevent the back-flow of heat from hot end to cool
end. Therefore, reduction of thermal conductivity is crucial in thermoelectric application.

Phononic crystals are constructed by a periodic array of scattering inclusions distributed in a host material. Due
to its periodic change of the density and/or elastic constants, phononic crystals exhibit phononic band gaps4. This
remarkable property is very different from those of the conventional materials and can be engineered to achieve
new functionalities. A special one-dimensional phononic crystal is the superlattice, one dimensional periodic
arrangement of two different materials. It is demonstrated that superlattice crystals are effective to achieve very
low thermal conductivity5–11. Superlattices have been extensively studied to design thermoelectric materials with
high ZT. Preliminary works show that there is a minimum value of thermal conductivity in the direction
perpendicular to the planes of superlattice when the period length is reduced to nanoscale12–14.

Recently, it is demonstrated experimentally that the Si nanomesh film, a two-dimensional (2D) phononic
crystal, exhibited low thermal conductivity15 by modification of phonon band structure. Single crystalline Si by
phononic crystal patterning in 2D has a smaller value of thermal conductivity (,6 W/m-K) than bulk Si because
of the low group velocities and the coherent phononic effects16. It is predicted that atomic-scale 3D phononic
crystal of Ge quantum-dot in Si has very low thermal conductivity in all three spatial directions17. The thermal
conductivity is reduced by several orders of magnitude compared with bulk Si. This reduction of thermal
conductivity is due to the reduction in group velocities and multiple scattering of particle-like phonons.

In this letter, we study the thermal conductivity of nanoscale 3D silicon phononic crystal. The 3D crystal
consists of 28Si atoms and ‘‘isotopes’’ MSi atoms which have the same properties as 28Si except the mass, where M is
the atomic mass of the isotope of Si. The mass ratio, R, is defined as R 5 M/28. The 3D isotopic phononic crystal
could also be named as 3D superlattice because different material arranged periodically in three spatial directions.

We find the 3D isotopic phononic crystal has the ability to flatten phonon dispersion curves compared with
that of bulk Si and it could show band gaps when properly arranged. We studied how the period length and the
mass ratio affect the thermal conductivity of the 3D phononic crystal. The phonon dispersion curves and inverse
participation ratio are also computed to understand the mechanism of the reduction of thermal conductivity.
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On the other hand, the scatterings of isotopic doping could sig-
nificantly reduce the lattice thermal conductivity without much
reduction of the electrical conductivity1,14. As a result, the thermal
conductivity of 3D isotopic phononic crystal has a quite low value,
which can lead to a larger ZT than unity.

Results
Fig. 1 shows the structures of the isotopic nanoscale 3D phononic
crystal, where 28Si and MSi atoms are assembled periodically in three
spatial directions. Fig. 1(a)–(d) shows the structures of 3D phononic
crystals with different period lengths, corresponding to 1.09 nm,
2.17 nm, 3.26 nm and 6.52 nm, respectively. The volume of simu-
lation cell is 12 3 12 3 12 unit3 (1 unit is 0.543 nm), which has
13,824 atoms.

There is finite size effect in calculating thermal conductivity when
the simulation cell is not big enough18,19. As shown in Fig. 2, we
calculated thermal conductivity of isotopic nanoscale 3D phononic
crystal with different size of simulation cell by equilibrium molecular
dynamic (EMD) method at 1000 K. The period length is set as
2 units and the mass ratio is set as 2. The calculated value of thermal
conductivity converges when the side length of cubic simulation cell
is larger than 10 units. To overcome the finite size effect on the
calculated thermal conductivity, we use the side length of simulation
cell as 12 units in the following simulations.

For comparison with the thermal conductivity of pure 28Si at
1000 K, we also calculate its value as 50 6 2 W/m-K (the dash dot
line in Fig. 3(a)). Our result is comparable to Schelling et al.’s results
of MD simulation, 61 W/m-K18. However, MD results can not
exactly coincide with the experimental value of 28Si at 1000 K20,
around 30 W/m-K, because of the inaccuracies of semi-empirical
potentials and the impurity of the sample in measurements. This
non-coincidence has little effect on the comparing MD results cal-
culated using same potential parameters.

We calculated the thermal conductivity of 3D phononic crystal
with different period length, where the mass ratio R is 2. As shown in
Fig. 3(a), the thermal conductivity rapidly decreases as the period
length increases. The smallest value of thermal conductivity is
2.14 W/m-K, which is only 4.3% of pure 28Si calculated by EMD
method. Simkin and Mahan show12 that increasing period length

may increase the amount of band folding and decrease the average
velocity in the superlattice, resulting in a decrease of thermal con-
ductivity. The phonon mean free path of Si is around 60 nm at
1000 K18, which is much longer than the period length in our simu-
lation. The tendency of thermal conductivity in Fig. 3(a) is consistent
with Simkin and Manhan9s results when the phonon mean free path
is larger than period length12.

Another way to modulate the phonon transport in the 3D pho-
nonic crystal is to vary the mass. The mass of impurity atoms could
perturb the phonon density of state and phonon dispersion curves,
which can affect the group velocities.

Fig. 3(b) shows the dependence of thermal conductivity on the mass
ratio, where the period length is 12 units. Our results indicate that
thermal conductivity rapidly decreases as the mass ratio increases
from 1 to 6. The heaviest Si isotope atoms produced is 43Si 21. where
the mass ratio R corresponds to 1.5. The value of thermal conductivity
is 4.2 W/m-K, that is, 8.4 percent of pure 28Si (50 W/m-K).

Figure 1 | The structures of the isotopic nanoscale 3D phononic crystals -
three dimensional periodic arrangements of 28Si and MSi atoms. From (a)

to (d), the period lengths of those 3D phononic crystals are 2, 4, 6 and

12 units, respectively. The lattice constant is 0.543 nm, that is, 1 unit

represents 0.543 nm. In simulations, the periodic boundary condition is

applied in all three directions.

Figure 2 | Thermal conductivity versus the side length of simulation cell.
The mass ratio of the 3D isotopic phononic crystal is 2 and the period

length is 2 units. The error bars are calculated from 16 simulations with

different initial conditions. All values are calculated at 1000 K which is

larger than the Debye temperature, TD, of Si (,658 K).

Figure 3 | (a) Thermal conductivity versus the period length of isotopic

nanoscale 3D phononic crystal of Si. The mass ratio is 2. The dash dot line

corresponds to the molecular dynamic result of thermal conductivity of

pure 28Si. (b) Thermal conductivity versus the mass ratio of isotopic

nanoscale 3D phononic crystals of Si. The period length is 12 units. All

values are calculated at 1000 K.
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Artificial Si isotopic atoms are used here to explore the mass
influence on thermal transport and show the trend of large mass
effects. The smallest value of thermal conductivity is 0.54 W/m-K
(when R is 6), which is only 1.1% of pure 28Si. Artificial MSi atoms can
be looked as other atoms, such as 54Fe 22. When there are other kind
atoms, the system is more complicated. That is, the mass is not the
only factor involved. The bond strength and lattice relaxations must
play a role, which is not studied in this letter.

In a 28Si182
MSi10 quasi-1D supercell with 10 MSi atoms (5%) ran-

domly distributed, Gibbons and Estreicher22 found the thermal con-
ductivity decreased first and reached a minimum when the mass
ratio was ‘‘two’’, and then the thermal conductivity increased as
the increase of M. However, they stated that they cannot comment
about the reasons for this minimum and do not know if the factor
‘‘two’’ remains valid for concentrations other than 5%. Different
from randomly distributed, MSi in 3D phononic crystal is periodic
distributed in 28Si. The concentration of MSi (50%) is much bigger
than 5%. Our results show that the thermal conductivity of 3D pho-
nonic crystal decreases monotonously with increase of M. This is
coincidence of the monotonous decrease of group velocities
(Fig. 4(b)).

As shown above, changing the mass of impurity atoms and the
period lengths are two effective ways in modulating the thermal
conductivity. To find the mechanism in the decrease of thermal
conductivity of 3D phononic crystal, the phonon dispersion curves
are calculated through classical lattice dynamics. We calculated the
dispersion curves by general utility lattice program (GULP)23, and
Stillinger-Weber potential24 which is the same atom interaction as in
our MD simulation.

Fig. 4(a) shows acoustic branches and partial optical branches of
the dispersion curves of the 3D phononic crystal, where period
lengths are different, and the mass ratio is the same. The Brillouin
zone with 2 units in period length is eight times as large as that with
4 units in period length. In calculating the dispersion curves of struc-
ture with 2 units in period length, we use a larger unit cell whose size
is as the same as that of structure with 4 units in period length.

As the optical phonons contribute less to the thermal conductivity
due to the lower group velocities, we focused on the acoustic pho-
nons. It is clearly shown in Fig. 4(a) close to R point that the group
velocities decrease as the period length increase, which causes the
reduction of the thermal conductivity (shown in Fig. 3(a)). Fig. 4(b)
shows acoustic branches of the 3D phononic crystal with different
mass ratios, where the period length is 2 units. The dispersion curves
are affected by the mass of impurity atoms and the group velocities
decrease as the mass of impurity atoms increase, which contributes to
the decrease of thermal conductivity (shown in Fig. 3(b)).

To understand more about the underlying physical mechanism of
thermal conductivity reduction, we carry out a vibration eigen-mode
analysis on 3D phononic crystals. The mode localization can be
qualitatively characterized by the normalized inverse participation
ratio (NIPR)25. The NIPR for phonon mode k is defined through the
normalized eigenvector uk

P�1
k ~N:

XN

i~1

X3

a~1

u2
ia,k

 !2

ð1Þ

Figure 4 | (a) Acoustic and partial optical branches along the [1, 1, 1]

direction. Dispersion curves in red (black) correspond to the nanoscale 3D

phononic crystal with 2 (4) unit cells in period length. The mass ratios are

2. It is clearly shown close to R point that the group velocities decrease as

the period length increases, which causes the reduction of the thermal

conductivity. (b) Acoustic branches along the [1, 1, 1] direction. The mass

ratio of 3D phononic crystals changes from 1 to 2.5. Different color is

referred to different mass ratio. The period lengths of 3D phononic crystals

are kept same, 2 units. The dispersion curves are affected by the mass of

impurity atoms and the group velocities decrease as the mass of impurity

atoms increase, which contributes to the decrease of thermal conductivity.

Figure 5 | The normalized inverse participation ratio (NIPR) spectra.
NIPR is calculated based on Eq. (1). The larger of the value of NIPR the

more localized of a phonon mode. (a) NIPR spectra of 3D phononic

crystals with different period length. The left and right panels are

corresponding to 3D phononic crystals with 2 unit and 4 unit period

length, respectively. The mass ratios are the same as 2. (b) NIPR spectra of

3D phononic crystals with different mass ratio, R. The period lengths are

the same as 2 units. The upper left panel (R 5 1) corresponds to pure Si.
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where N is the total number of atoms. When there are less atoms
participating in the motion, the phonon mode has a larger NIPR
value. For example, NIPR is N when there is only one atom vibrates
in the localized mode. When all atoms participate in the motion,
NIPR is calculated out as 1. That is, the larger of the value of NIPR
the more localized of a phonon mode.

Fig. 5(a) shows the NIPR spectra of 3D phononic crystal with
two different period lengths, where the mass ratio R is 2.
Obviously, the NIPR for 3D phononic crystal with 4 units in per-
iod length has larger values than that with 2 units in period length.
That is, there are more modes localized in 3D phononic crystal
with 4 units in period length, which also leads to a reduction of its
thermal conductivity. Fig. 5(b) shows the NIPR spectra of 3D
phononic crystal with different mass ratio R, where the period
length is 2 units. The values of NIPR for R 5 1.5, R 5 2 and R
5 2.5 are close to each other and larger than pure Si (R 5 1),
which show that the isotopic atoms could cause more localizations.
In Fig. 5(b), band gaps appear in the high frequency part
(.12 THz) of spectra for R 5 2 and R 5 2.5, and the band gaps
for R 5 2.5 are wider than those for R 5 2. That is, the phonons
with frequency in the range of band gaps cannot exist in the 3D
phononic crystal. When R is smaller than 1.5 (corresponding to
43Si), band gaps are not observed in 3D isotopic phononic crystal.
So, band gaps are minor effects when the mass difference is not big
enough.

Besides decreasing group velocity and phonon modes localization,
interface disorder is another factor in reducing the thermal conduc-
tivity for superlattices11 and phononic crystal16. In our simulation,
28Si and MSi atoms has a perfect interface which do not include the
disorder effect. There will be a further deduction in thermal conduc-
tivity after considering the interface disorder. So, the disorder effect
will be studied in the future work.

Discussion
Using the Green-Kubo method, we have calculated thermal conduct-
ivities of isotopic nanoscale 3D phononic crystals, where 28Si and MSi
atoms are assembled periodically in the three directions. Results
show that the thermal conductivity decreases as the increasing of
period length from 1 nm to 6 nm. The thermal conductivity of struc-
ture with 6 nm period length and 2 in mass ratio is 2.14 W/m-K at
1000 K, which is only 4.3% of pure 28Si and can lead to a larger ZT
than unity.

Moreover, the thermal conductivity rapidly decreases as the
mass ratio increases. The phonon localizations and bandgaps at
high frequency in the 3D phononic crystal are shown clearly in
the spectra of the normalized inverse participation ratio. The
appearance of band gaps blocks a range of frequency of phonon
modes and flattens phonon dispersion curves. The phonon dis-
persion curves show the phonon group velocities decrease in 3D
phononic crystal. In a word, the decrease of thermal conductivity
in 3D phononic crystal is attributed to both the decrease of group
velocities and the localization.

Thermal conductivity is mainly contributed from acoustic pho-
nons. If the bandgaps of the 3D phononic crystals can exist at low
frequencies, there will be greater reduction of the thermal conduc-
tivity. However, manipulating band gaps to low frequencies in
nanoscale 3D phononic crystal is a challenging work which is worthy
of effort in the future. There are advances in obtaining the nanoscale
2D phononic crystal. However, the limitation in fabricating nanos-
cale 3D phononic crystal is still challenging nowadays.

Methods
The Green-Kubo method, equilibrium molecular dynamics (MD), is employed to
calculate the thermal conductivities of 3D phononic crystal at 1000 K. MD simulation
is a popular method in calculating thermal conductivity at high temperature18,26,27. In
this letter, we focus on the thermal conductivity of 3D phononic crystal at 1000 K,
which is larger than the Debye temperature, TD, of Si (,658 K)28.

In simulations, the periodic boundary condition is applied in all three directions.
To derive the force term, we use Stillinger-Weber (SW) potential for Si24, which
includes both two-body and three-body potential terms. The SW potential has been
used widely to study the thermal properties of Si bulk material14,26,29 for its accurate fit
for experimental results on the thermal expansion coefficients. The heat current is
defined as18
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where F
?

ij and F
?

ijkdenote the two-body and three-body force, respectively. Thermal
conductivity is calculated from the Green-Kubo formula30
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1
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where k is thermal conductivity, kB is the Boltzmann constant, V is the system
volume, T is the temperature, and the angular bracket denotes an ensemble average.

Generally, the temperature in MD simulation, TMD, is calculated from the kinetic
energy of atoms according to the Boltzmann distribution:

hEi~
XN

i~1

1
2

mv2
i ~

3
2

NkBTMD ð4Þ

where hEi is the total kinetic energy, vi is the velocity, m is the atomic mass, N is the
number of particles in the system, and kB is the Boltzmann constant. This equation is
valid at high temperature (T?TD, TD is the Debye temperature).

Numerically, velocity Verlet algorithm is employed to integrate equations of
motion, and each MD step is set as 1.0 fs. Firstly, canonical ensemble MD with
langevin heat reservoir runs for 220 steps to equilibrate the whole system at 1000 K.
Then, microcanonical ensemble (NVE) MD runs for another 225 steps (33.5 ns).
Meanwhile, heat current is recorded at each step. At the end, the thermal conductivity
is calculated by Eq. (3). In the calculation of thermal conductivity, the integration is
from zero to a cut-off time which is determined by ‘‘first avalanche’’ method31. The
final result is averaged over sixteen realizations with different initial conditions to
satisfy ergodicity.
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