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Tremendous efforts to develop high-efficiency reduced-temperature (# 6006C) solid oxide fuel cells are
motivated by their potentials for reduced materials cost, less engineering challenge, and better performance
durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the
cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO32d (SSC) catalyst
coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O32d (LSGM) backbone,
exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial
resistances in air, e.g., 0.021 V cm2 at 6506C and 0.043 V cm2 at 6006C. We further demonstrated that such a
micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive
power densities of 2.02 W cm22 at 6506C and 1.46 W cm22 at 6006C when operated on humidified
hydrogen fuel and air oxidant.

S
olid oxide fuel cells (SOFCs) are attractive for clean efficient conversion of fuels into electricity1. SOFCs also
show compelling potentials for efficient production of fuels from renewable electricity2,3 and electricity
storage4. Although some SOFC systems are available for residential and business power generation, the high

operating temperature of 700–1000uC leads to prohibitive system costs, high degradation rates and slow startup
times, seriously impeding the widespread practical implementation of the technology. An effective approach to
address the above issues is to lower the operating temperature down to T # 600uC5, where the fuel cell efficiency is
nevertheless largely determined by the activation of oxygen reduction reactions (ORR) on the cathodes6. As a
consequence, the last decade has witnessed a significant amount of efforts aimed at identifying new cathode
materials and/or microstructures that would exhibit outstanding ORR catalytic activity and therefore allow low
polarization resistances7–12.

The standard cathode material for SOFCs with the state-of-the-art yttria-stabilized zirconia (YSZ) electrolytes
is a composite of Sr-doped LaMnO3 (LSM) and YSZ1,13. Restriction of oxygen reduction reaction to the contigu-
ous contact of electronic, ionic and gas phases or the so-called triple phase boundaries (TPB)12, due to the pure
electronic conducting nature of LSM, necessitates an operating temperature in excess of 750uC in order to achieve
reasonably high electrochemical activity and thus yield relatively low polarization resistances, e.g., RP , 0.2V cm2

at 800uC. Reducing temperature down to 600uC produced undesirably large RP values (< 2V cm2)14. On the other
hand, mixed-conducting oxides exhibit simultaneous transport of electrons and oxide ions, allow oxygen reduc-
tion reaction to proceed on the whole electrode surface, and thereby enable low RP values at reduced tempera-
tures12,13. Shao and Haile showed that Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF) demonstrated fast kinetics for surface
oxygen exchange and produced low RP values of 0.055–0.071 V cm2 at 600uC or 0.2 V cm2 at 550uC8.
Recently, Zhou et al reported that the RP values were larger for the pristine BSCF cathode, e.g., 0.16 V cm2 at
600uC or 0.45V cm2 at 550uC, while coating the BSCF backbones with a thin shell of A-site deficient BSCF to form
a heterostructured cathode can increase the surface oxygen exchange rate by 220–330%, and can thereby reduce
the RP value down to 0.06 V cm2 at 600uC or 0.15 V cm2 at 550uC 15. Despite these extensive efforts, developing
oxygen electrode catalysts to efficiently catalyze oxygen reduction reaction over the reduced-temperature regime
of 500–600uC remains a significant challenge. Here we report a micro-nano porous oxide hybrid consisting of a
nanoporous SSC catalyst coating supported on the internal surfaces of a high-porosity LSGM backbone that
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exhibited superior ORR catalytic activity and thereby yielded low
polarization resistances at reduced temperatures.

Results
Fabrication and structure of the SSC/LSGM hybrid. The micro-
nano oxide hybrid was based upon porous LSGM backbones (Figure
S1), as synthesized by the ceramic tape casting method. LSGM was
used as the supporting component due to its high oxide ionic
conductivity and negligibly low electronic conductivity at reduced
temperatures16. Use of starch as the fugitive material in the tape
casting formulation resulted in a uniform porous microstructure
with an average pore size of < 3 mm and an estimated porosity of
< 55%. Then, a thin layer of SSC was coated on the internal surfaces
of the porous LSGM backbones using the aqueous nitrate solution
impregnation, followed by calcinations at 850uC. SSC was chosen as
the catalyst due to its high oxide ion diffusivity, fast oxygen surface
exchange kinetics and high electronic conductivity17. A single
impregnation/calcination cycle yielded a SSC loading VSSC of 1.5%
in the porous LSGM backbone, and the SEM micrograph of the
resulting coating indicated that a substantial fraction of the SSC
catalyst particles appeared physically isolated from each other, and
the average particle size was < 70 nm (Figure S2).

Note that these SSC infiltrates play dual roles in the porous LSGM
backbones: catalyzing oxygen reduction reaction and collecting the
electrical current. Well-connected coatings are mandatory for effec-
tive implementation of both functions, and can be readily attained at
higher catalyst loadings via multiple impregnation/calcination
cycles. Fig. 1a shows an SEM micrograph of the SSC/LSGM hybrid
at VSSC 5 12.9% that exhibited substantially improved phase con-
nectivity. In the meanwhile, increasing the number of impregnation/
calcination cycles increased the catalyst coating thickness on the pore
walls as well. For example, the SSC particles increased to < 100 nm at
VSSC 5 12.9%, as shown in Fig. 1b. Such an increase in the catalyst
particle size can be ascribed to repeated calcination cycles that inev-
itably caused agglomeration and coarsening of these nanoparticu-
lates. Nevertheless, the cost-effective and manufacturing-scalable
chemical solution impregnation technology enabled the formation
of nanoporous and well intra-connected SSC electrocatalyst coatings
on the internal surfaces of the porous LSGM backbones.

Electrochemical characteristics of the SSC/LSGM hybrid. An
effective measure of the catalytic activity of the fuel cell cathode for
oxygen reduction reactions is the area specific polarization resistance
(RP), which can be obtained from the electrochemical impedance
spectroscopy (EIS) measurements on symmetric cathode fuel cells,
e.g., SSC-LSGM hybrid/LSGM electrolyte/SSC-LSGM hybrid. Such
symmetric cells were based upon an LSGM tri-layer: 300 mm and 60
mm thick porous layers separated by a 15 mm thick dense layer. The
active SSC component was added to the porous LSGM backbones by
wet impregnation and subsequent calcinations, as described above.
The impedance data were collected under a uniform atmosphere of
ambient air.

Fig. 2a shows a representative Nyquist plot of the EIS data in air at
600uC from a symmetric fuel cell at VSSC 5 12.9%, where the high
frequency real-axis intercept is primarily associated with the cell
ohmic loss (Ro) and the difference between the high and low fre-
quency real-axis intercept corresponds to the RP value. Notably, the
polarization resistance at 600uC was 0.043 V cm2 for the micro-nano
porous SSC/LSGM hybrid at VSSC 5 12.9%. For comparison, the
state-of-the-art micron-scale SOFC cathodes have larger Rp values
at comparable temperatures, e.g., . 2 V cm2 for LSM-YSZ14, 0.5 V
cm2 for random Sm0.5Sr0.5CoO32d-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-d

(SSC-LSGMC) composites18, 0.12 V cm2 for Pd-promoted SSC-
LSGMC composites18, 0.055-0.071 V cm2 for BSCF reported by
Shao and Haile8 or 0.06 V cm2 for heterostructured BSCF by Zhou
et al15.

Fig. 2b summarizes the Ro and RP values at varied SSC loadings.
Both values increased slightly with VSSC decreasing from 12.9% to
8.6%, but then increased rapidly with further decrease in VSSC. For
example, the RP value increased substantially to 0.26 V cm2 at VSSC 5

4.3%. The increase in the ohmic resistance and the cathode polar-
ization resistance with decreasing VSSC can be explained by the
decreasing SSC phase connectivity (Figure S2), which decreased
the electronic conductivity and reduced the fraction of total SSC
surface area that is electrochemically active, i.e., where electrons
are available from the external circuit via electrically contiguous
SSC–SSC particle contacts. Additionally, the total SSC surface area
became smaller with decreasing VSSC, resulting in a more pro-
nounced increase in the RP value. For the SSC-LSGM hybrid at
VSSC 5 12.9%, the measured ohmic resistance was < 0.093 V cm2

at 600uC. Based upon the measured oxide ion conductivity of
0.027 S cm21 at 600uC, the expected resistance for a 15 mm-thick
LSGM electrolyte is < 0.056 V cm2. The additional 0.04 V cm2 may
arise from current collection losses or elsewhere in the testing setup
given that the VSSC 5 12.9% SSC-LSGM hybrid showed an electrical
conductivity of < 10 S cm21 at 600uC and thereby yielded negligible
ohmic contribution (0.0036 V cm2 at 0.36 mm thick SSC-LSGM
layers for the present symmetric cells).

Durability is a potential concern for the present micro-nano por-
ous SSC/LSGM hybrid since nano-particle coarsening can reduce the
surface area available for surface oxygen exchange. Prior report has

Figure 1 | Cross-sectional SEM micrographs showing the structure of the
micro-nano porous SSC/LSGM hybrid. (a) A low magnification survey of

the hybrid. (b) A high magnification view of the SSC catalyst.
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shown that the time-dependence of the cathode polarization resist-
ance followed a power law model based upon surface diffusion lim-
ited coarsening, and that the RP value became increasingly stable with
decreasing the aging temperature from 850uC to 650uC19. Indeed,
a few tests on the present SSC/LSGM hybrid indicted that the
cathode polarization resistance remained almost unchanged, e.g.,
< 0.135 V cm2, over a duration of 100 h at 550uC. Nevertheless,
more extended testing is required for better evaluation of the
performance durability.

Fuel cell performance. The electrochemical properties of the micro-
nano porous SSC/LSGM hybrid were also examined on an anode-
supported fuel cell (Figure S3). The LSGM electrolyte was typically
15mm thick. The anode consisted of 7.2 vol% Ni in the porous LSGM
(Figure S4), and these nano-scale Ni particles could yield a high TPB
density to produce small polarization resistances, e.g., 0.026 V cm2 in
97% H2 – 3% H2O at 650uC6. Fig. 3a shows the cell voltages and
power densities as a function of current densities for such a fuel cell,
operating on 97% H2 – 3% H2O and ambient air at 500–650uC. Note
that the fuel utilization was typically low, e.g., , 6% at 0.7 V, such
that the influence of the gas flow geometry on the fuel cell
performance was excluded. The cell exhibited high open circuit
voltage (OCV) values between 1.09 V and 1.11 V and provided
maximum power densities of 2.02, 1.46, 0.91 and 0.47 W cm-2 at
650, 600, 550 and 500uC, respectively. The Nyquist plot of the
impedance data, as shown in Fig. 3b, showed that the overall area
specific resistance (ASR) was as small as < 0.17 V cm2 at 650uC and
open circuits for the fuel cell. The present results compare favorably
with prior reduced-temperature fuel cells. Yan et al reported

maximum power densities of 1.95 W cm22 at 600uC for the pulsed
laser deposited LSGM/doped ceria bi-layer electrolyte fuel cells20,21.
However, such high power densities were obtained with pure oxygen
as the oxidant that could substantially increase the cathode
performance6. Shao and Haile reported maximum power densities
of 1 W cm22 at 600uC for thin doped-ceria electrolyte fuel cells8.
Nonetheless, the electronic conduction in doped-ceria resulted in
reduced OCV values and fuel efficiency losses8. Recently, anode-
supported Er0.8Bi1.2O3/doped-ceria bi-layer electrolyte fuel cells
were fabricated by combining high temperature ceramic process-
ing and low temperature pulsed laser deposition, and demon-
strated maximum power densities of 1.95 W cm22 at 650uC22.
While the 4 mm-thick Er0.8Bi1.2O3 layer has no appreciable
electronic conductivity in air, a much thicker layer of doped ceria
(10 mm thick in ref. 22) was used on the fuel side to prevent
decomposition of the Er0.8Bi1.2O3 layer. Despite the synergistic
structure, the resulting open circuit voltage of 0.77 V was still
much lower than the theoretically expected value of 1.13 V.
Increasing the thickness ratio of doped-ceria/Er0.8Bi1.2O3 to 48mm/
4mm could yield a high OCV value of 0.88 V at 650uC5, but in the
meanwhile produce much larger ohmic resistances that might limit
the fuel cell performance.

Discussions
Oxygen reduction on the fuel cell cathode is complicated and consists
of consecutive steps including oxygen molecule diffusion within the
pores, dissociative adsorption of oxygen molecules, surface diffusion
and ionization of adsorbed oxygen atom, oxide ion conduction in the
bulk cathode and oxide ion transfer at the cathode/electrolyte

Figure 2 | Impedance measurements on symmetric cathode fuel cells in ambient air. (a) Representative impedance spectra measured at 600uC for the

SSC/LSGM hybrid at VSSC 5 12.9%. (b) The cathode polarization resistance (Rp) and the ohmic resistance (Ro), derived from the impedance data,

plotted versus the SSC loading.
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interface. The Nyquist plot in Fig. 2a consists of a small high-fre-
quency arc (Rh) at < 3 kHz and a large low-frequency arc (Rl) at <
50 Hz, which can be attributed to the charge transfer reaction on the
SSC/LSGM and oxygen surface exchange on the SSC/gas interfaces23.
Note that the oxide ion conduction through the bulk SSC coating in
the micro-nano porous hybrid made little contribution to the low-
frequency diffusion resistances since the characteristic thickness (Lc)
for SSC, defined as the ratio of oxygen self-diffusion coefficient D*
(cm2 s21) to the surface exchange coefficient k (cm s21), i.e., Lc 5 D*/
k, is on the order of 100 mm which is three orders of magnitude larger
than the thickness of the SSC coatings in the present work (0.1 mm)17.
The Rh and Rl values at varied temperatures are estimated from the
Nyquist plots, as summarized in Fig. 4 together with the total RP

values. The overall cathode polarization resistance increased from
0.021 V cm2 at 650uC to 0.3 V cm2 at 500uC. The Rl value is 3–5 times
larger than Rh, suggesting that surface oxygen exchange is the rate-
limiting step in the electrochemical oxygen reduction reactions. The
activation energies for the charge transfer reaction, surface oxygen
exchange and the overall oxygen reduction are 0.88, 1.14 and
1.09 eV, respectively. The Simple Infiltrated Microstructure
Polarization Loss Estimation (SIMPLE) model24, derived from the
Tanner, Fung and Virkar (TFV) model25, was proposed by Nicholas
and Barnett to correlate the cathode polarization resistance to the
SSC surface area and the intrinsic SSC surface resistance. The validity
of the model was further confirmed by the cathode surface oxygen
exchange resistance predictions that were within 15% of the experi-
mentally measured Rl values at all temperatures (Table S1). The
impressively low polarization resistance for the present SSC/LSGM
hybrid as the fuel cell cathode can be ascribed to the nano-scale SSC

particles and the resulting high surface area available for oxygen
reduction reactions.

The oxide ionic conductivity of the supporting component and the
electrolyte critically influences the electrochemical and catalytic
behavior of the micro-nano porous hybrids. For comparison,
another hybrid of SSC/YSZ (Figure S5) was fabricated based upon
a porous j dense j porous YSZ tri-layer structure that had almost the
same pore structure as the LSGM counterpart. YSZ was chosen since
it is also a pure oxide ionic conductor, but has much smaller con-
ductivities (e.g., 0.002 S/cm at 600uC) than the present LSGM sup-
port. Impedance measurement showed substantially larger RP values
for the SSC/YSZ hybrid. For example, the polarization resistance at
650uC was 0.40 V cm2 for the SSC/YSZ hybrid at VSSC 513%, which
is approximately 20 times the value for the above SSC/LSGM hybrid
at a comparable SSC loading (Figure S6). Note that the low calcina-
tion temperature of 850uC was critical to minimize the formation of
an insulating SrZrO3 from the interaction between the SSC infiltrates
and the YSZ backbones that might produce undesirably large RP

values26. This is further supported by the low RP value of 0.04 V
cm2 at 800uC for the SSC/YSZ hybrid (Figure S6). Given that both
hybrids had very similar nanoporous SSC coatings, it is reasonable to
assume that the surface oxygen exchange kinetics was essentially the
same. The large difference in the RP value at 650uC can thereby be
attributed to very different oxide ionic diffusivities in the supporting
component that are closely related to the charge transfer reaction
occurring on the SSC/backbone interfaces. As a matter of fact, the
activation energy for the overall oxygen reduction over the SSC/YSZ
hybrid was 1.30 eV, indicating that charge transfer reaction might be
the rate-limiting step. Therefore, the combined features in the SSC/
LSGM hybrid – high oxide ionic conductivity of the LSGM support
and rapid surface oxygen exchange of the nanoporous SSC coating –
enabled the outstanding oxygen reduction kinetics and the resulting
low polarization resistance values.

To illustrate the importance of the pore structure of the support in
promoting oxygen reduction kinetics, an alternative pore former
with very different morphology was used in the tape casting formula-
tion for the porous LSGM layer. The resulting porous j dense j porous
LSGM tri-layer structure had approximately the same porosity of
55% but with a larger mean pore size of 10 mm (Figure S7).
Despite the fact that oxygen molecular transport became facilitated
within larger pores, impedance measurement showed an approxi-
mately 2–4 times increase in the cathode polarization resistance for

Figure 3 | Characteristics of an anode-supported, thin LSGM electrolyte
fuel cell with electrode loadings VNi 5 7.2% and VSSC 5 12.9% measured
in 97% H2 – 3% H2O fuels and ambient air oxidants. (a) Plots of voltage

and power density versus current density at 500–650uC. (b) Representative

impedance spectra measured at 650uC and open circuits.

Figure 4 | Impedance analysis on the symmetric cathode fuel cells in
ambient air. The total cathode polarization resistance, the high-frequency

and low-frequency polarization resistances for the SSC/LSGM hybrid at

VSSC 5 12.9%, derived from the impedance data, plotted versus inverse

temperature.
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the resulting 10 mm SSC/LSGM hybrid when compared with the
above 3 mm SSC/LSGM hybrid at comparable SSC loadings. In par-
ticular, the RP values in air at VSSC 513% were 0.08 V cm2 at 650uC
and 0.26 V cm2 at 550uC (Figure S8). These results demonstrate that
an optimal pore structure of the support, in addition to the high oxide
ionic conductivity, is also mandatory for fast oxygen reduction kin-
etics on the micro-nano porous hybrid.

In summary, we have fabricated a novel hybrid of SSC/LSGM by
coating a thin nanoporous SSC layer onto the internal surface of a
micron-porous LSGM backbone. We have also demonstrated that
the pore structure and the oxide ionic conductivity of the LSGM
support, in addition to the nano-scale structure of the SSC coating,
are critically important for obtaining rapid oxygen reduction kinetics
in the application as the reduced-temperature solid oxide fuel cell
cathode. The area specific resistance for oxygen reduction can be as
low as 0.021 and 0.043 V cm2 in air at 650 and 600uC, respectively.

Methods
The porous j dense j porous LSGM tri-layer structure was produced by laminating
three tape-cast ceramic green tapes, with 40 wt% rice starch filler used as the fugitive
material for the two porous layers. The LSGM powders (5 m2g21) were supplied by
Praxair Specialty Ceramics. The laminated green tapes were co-fired at 1450uC to
produce the final ceramic structures. SSC was added into the porous LSGM back-
bones by impregnating an aqueous nitrate solution of 2 M containing
Sm(NO3)3?6H2O, Sr(NO3)2 and Co(NO3)2?6H2O in appropriate ratios into the
porous LSGM backbones, followed by calcinations at 850uC for 4 hours. These
nitrates were 99% pure and purchased from Sinopharm Chemical Reagent. The X-
Ray diffraction patterns confirmed that the catalyst consisted predominantly of
perovskite structure SSC with minor impurity phases Co3O4, SmCoO3, and SrCoO3

24.
Note that multiple impregnation/firing cycles were usually used in order to introduce
a sufficient amount of SSC into the LSGM backbones. The quantity of the deposited
SSC catalysts was estimated by the weight difference before and after each impreg-
nation/firing cycle. For comparison, the SSC-YSZ hybrids were prepared in the same
manner as the SSC-LSGM hybrids. The YSZ powders (7 m2g21) were purchased from
Tosoh Corporation.

The electrochemical properties of the SSC-LSGM hybrid were assessed on both
symmetric cells and anode-supported cells. For the symmetric cells, SSC was
impregnated into both porous layers. For the anode-supported cells, the 60 mm thick
porous LSGM layers were impregnated with SSC, while the 300 mm thick porous
LSGM substrates were impregnated with a 4 M aqueous nickel nitrate solution fol-
lowed by calcinations in air at 700uC for 30 minutes that would produce a thin layer of
NiO on the internal surfaces of the porous backbones. Silver ink was painted on the
electrode surface as the current collector, and silver wires were used as the current
leads. The active cathode area was 0.28 cm2.

All impedance data were obtained using an IM6 Electrochemical Workstation
(ZAHNER, Germany) with a frequency range from 0.1 Hz to 100 kHz and an ac
perturbation of 20 mV. Ambient air was used for the measurement of the cathode
polarization resistance in the symmetric cells. The anode supported fuel cell was
tested at temperatures from 500uC to 650uC with the cathode exposed to ambient air
and the anode to humidified (3% H2O) hydrogen at a flow rate of 100 mL/min. The
cell structure was examined after testing using scanning electron microscopy (SEM)
in a Hitachi S-4800-II microscope.
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