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Increasing studies have shown that the interactions between microRNAs (miRNAs) and environmental
factors (EFs) play critical roles in determining phenotypes and diseases. In this study, we revealed a number
of important biological insights by analyzing and modeling of miRNA-EF interactions and their
relationships with human diseases. We demonstrated that the miRNA signatures of EFs could provide new
information on EFs. More importantly, we quantitatively showed that the miRNA signatures of drug/
radiation could be used as indicators for evaluating the results of cancer treatments. Finally, we developed a
computational model that could efficiently identify the possible relationship between EF and human
diseases. Meanwhile, we provided a website (http://cmbi.hsc.pku.edu.cn/miren) for the main results of this
study. This study elucidates the mechanisms of EFs, presents a framework for predicting the results of cancer
treatments, and develops a model that illustrates the relationships between EFs and human diseases.

T
he phenotypes of an organism are determined by the complex interactions between genetic factors (GFs) and
environmental factors (EFs). The interactions between GFs and EFs link them together to form complex
networks and thus work together on the network level to influence phenotypes and diseases, especially

complex ones such as cancer and cardiovascular diseases. Recently, the theories and methods of network medi-
cine have shed light on the network-level study of GF–EF interactions1. The computational analysis and modeling
of the GF–EF interactions greatly improved the understanding of the mechanisms of EFs and explored new GF–
EF interactions. For example, the analysis and modeling of one class of important environmental factors, drugs,
and their interactions with their targets (GFs) has revealed a number of important insights2 and identified new
drug-target interactions3. Moreover, the analysis of the interactions between drugs and genetic factors has
successfully identified new indications for approved drugs that not only generate revenues for pharmaceutical
companies but also benefit patients, which is the real incentive4.

microRNAs (miRNAs) are a class of newly identified GFs, which mainly repress the expression of target
mRNAs at the post-transcriptional level5. Studies have reported that miRNAs are critical in various important
biological processes, such as cell growth, proliferation, differentiation, development, and apoptosis6. In terms of
their importance, a miRNA dysfunction is thus associated with a broad range of diseases7. More recently,
increasing studies have shown that miRNAs can functionally interact with a wide spectrum of EFs, such as
drugs8, virus9, alcohol10, cigarette11, stress12, diet13, and radiation14. Moreover, miRNA–EF interactions critically
affect and determine phenotypes. Hence, the dysfunction of miRNA–EF interactions is associated with abnormal
phenotypes and even diseases15. Given their biological importance, the computational analysis and modeling
of miRNA–EF interactions is becoming increasingly essential in elucidating the mechanisms of EFs, identifying
the miRNA signatures of EFs, and exploring new indications of approved drugs. However, such an analysis and
modeling has not been widely performed because of the lack of a large-scale miRNA-EF interaction dataset.

In a recent study, we gathered the experimentally supported miRNA–EF interactions and released the
miREnvironment database, which contains more than 2500 entries, including ,800 miRNAs, ,260 envir-
onmental factors, ,180 phenotypes, and 17 species. To obtain a comprehensive understanding of miRNA–EF
interactions and their relationships to human diseases, we analyzed and modeled human miRNA–EF interactions
based on the miREnvironment database. As a result, a number of important biological patterns were revealed.
Moreover, we presented quantitative evidence on the potential of miRNA signatures as biomarkers of the results
of cancer treatment. Finally, we developed a model to predict the potential relationship between EFs and human
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diseases, which further led to the identification of new drug-disease
associations based on miRNA–drug interactions.

Results
miRNA–EF interaction is correlated with miRNA characteristics.
It is interesting to investigate whether miRNA characteristics have
roles in miRNA–EF interactions. Hence, we analyzed the correlation
between the number of miRNA-interacting EFs with the expression
level, tissue specificity, conservation, and disease spectrum width
(DSW) of the miRNAs. The miRNA–EF interactions showed
significantly regular patterns. The number of EFs interacting with
a miRNA has a significant positive correlation with the expression
level of the miRNA (R50.50, P51.784310214, Spearman’s
correlation, Figure 1A). This result suggests that highly expressed
miRNAs tend to interact with more EFs. Moreover, the number of
EFs interacting with a miRNA is negatively correlated with the tissue
specificity index of the miRNA (R520.32, P51.85031026,
Spearman’s correlation, Figure 1B). This finding indicates that
miRNAs expressed in a broader tissue profile normally operate
under more diverse cellular conditions and thus interact with more
EF. The number of EFs interacting with a miRNA was also found to
be significantly correlated with the miRNA conservation (R520.47,
P53.117310214, Spearman’s correlation, Figure 1C). More
conserved miRNAs tend to have greater possibilities of interaction
with EFs than less conserved miRNAs (Figure S1). For example,

more than 60% of the miRNAs conserved in vertebrates or
invertebrates interact with EFs, whereas only 4.8% of the human-
specific miRNAs interact with EFs. In this study, we defined and
calculated the DSW for each miRNA (see Methods). Interestingly,
the DSW of a miRNA is significantly correlated with the number of
interacting EFs (R50.60, P,2.2310216, Spearman’s correlation,
Figure 1D), suggesting that the miRNAs associated with a wider
range of diseases tend to interact with more EFs. For example,
miR-21, which has the widest DSW (0.31), has the most number
(34) of interacting EFs (Figure 1D).

An EF–EF interaction network linked by miRNAs. Next, we
evaluated the relationship between any two EFs through their
miRNA signatures. Two EFs are connected if they share
significantly enriched interacting miRNAs. Using this procedure,
we constructed an EF–EF interaction network (Figure 2). As
shown in Figure 2, the EF-EF interaction network shows a
modularity structure. Related EFs tend to cluster together in the
network. For example, insulin, exercise, and anabolic stimulus are
linked with each other and thus grouped together. Indeed, all of the
three EFs are related to metabolism. Meanwhile, HCV (hepatitis C
virus) and alcohol are related. Among the four miRNAs (miR-122,
miR-126, miR-212, and miR-375) that interact with alcohol and the
11 miRNAs (miR-122, miR-130a, miR-130a, miR-181b, miR-192,
miR-196a, miR-196b, miR-199a, miR-21, miR-375, and miR-99b)

Figure 1 | Correlation between the number of miRNA-interacting EFs (N) and miRNA expression level (A), tissue specificity (B), conservation (C),
and DSW (D).
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that interact with HCV, two are overlapped (miR-122 and miR-135).
The miR-122 is liver-specific and known to be critical to liver
function, whereas miR-373 is highly expressed in pancreas and has
downstream effects on the liver16. Both EFs have effects on the liver.
These results suggest that the miRNA-level signatures of EFs can be
used as metrics for evaluating the relationships among EFs.

The cancer treatment drugs are mainly grouped in two clusters, as
shown by the circled regions in Figure 2. Adriamycin is the hub of the
cluster 1 (denoted by the red circle), suggesting that adriamycin may
be functionally related to the other drugs. Indeed, adriamycin is a
general drug for cancer treatment. Meanwhile, the drugs in the green
circle (cluster 2) are connected by hydrogen peroxide, which is the
hub of the cluster. The American Cancer Society has stated that
‘‘there is no scientific evidence that hydrogen peroxide is a safe,
effective or useful cancer treatment’’17. However, studies have shown
that hydrogen peroxide is an important signaling molecule in the
regulation of various biological processes18 and a potential drug for
cancer chemoprevention and therapy19. In this study, we present
quantitative miRNA-level evidence that hydrogen peroxide is func-
tionally related to a number of anti-cancer drugs, indicating that it
is a potential cancer treatment. Moreover, function enrichment ana-
lysis shows that the miRNAs in the two clusters have common
and cluster-specific functions. Both clusters are rich in cancer-
related functions (i.e. tumor suppressor, onco-miRNAs, cell cycle,
apoptosis, immune response, and epithelial-mesenchymal trans-
ition). Cluster 1 has specific functions such as Akt pathway and
carbohydrate metabolism; whereas cluster 2 has pecific functions

such as bone regeneration, cardiogenesis, cell fate determination,
DNA repair, folliculogenesis, and granulopoiesis (Figure 2).

miRNA signatures of cancer treatment drug/radiation can be
indicators for therapeutic result evaluation. Cancer is one of
the most common fatal diseases worldwide. Therefore, a molecular
signature that can evaluate and predict the therapeutic results of
a cancer treatment drug or radiation is critical for patient survival.
Such a signature is also helpful in finding better therapeutic strategies
for cancer. At the molecular level, the formation and development
of cancer is normally accompanied by the gain- and loss-of-function
changes of oncogenes and tumor suppressors, respectively. As a class of
newly identified genes, some miRNAs also show strong oncogenic or
tumor-suppressing abilities6. We previously arranged a comprehensive
collection of human miRNA oncogenes and miRNA tumor suppressors
and showed that the two classes of miRNAs have various biological
differences, including functions and targets20. Given that cancer samples
normally show gain- and loss-of-function changes in miRNA
oncogenes and tumor suppressors, respecitively6, a successful (drug/
radiation sensitive) cancer treatment should inhibit the activity of
miRNA oncogenes while amplifying the activity of miRNA tumor
suppressors. In contrast, a failed (drug/radiation resistant) treatment
can resulted from failure in the inhibition and amplification of
miRNA oncogenes and tumor suppressors, respectively. Thus, to
evaluate and predict the results of cancer treatment, we analyzed the
enrichment of the differentially expressed miRNAs after cancer
treatment in the two groups of miRNAs (miRNA oncogenes and

Figure 2 | EF–EF interaction network and the enriched functions of the miRNAs that interact with the two main clusters of cancer drugs. The blue box

represents the common functions of miRNAs that interact with two clusters of drugs. The red box represents the functions of miRNAs that only interact

with drugs of cluster 1. The green box represents the functions of miRNAs that only interact with drugs of cluster 2.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 318 | DOI: 10.1038/srep00318 3



tumor suppressors) (see Methods, Figure 3A). We performed three
independent studies with the following subjects: (1) resistant leukemia
treated by adriamycin21; (2) sensitive lung cancer treated by
irradiation22, and (3) resistant pancreatic cancer treated with
gemcitabine23 (Table 1). Results showed that although the
differentially expressed miRNAs from the three studies were quite
different at the single-miRNA level, all miRNA signatures showed
significant and regular patterns in terms of the two miRNA sets,
namely, miRNA oncogenes and tumor suppressors (Table 1,
Figure 3B). For the treatment-resistant cancer, the miRNA oncogenes
were significantly up-regulated, whereas the miRNA tumor suppressors
were significantly down-regulated. On the other hand, for the
treatment-sensitive cancer, the miRNA tumor suppressors were
significantly up-regulated, whereas the miRNA oncogenes were
significantly down-regulated. These results indicate that a successful
cancer treatment inhibits the activity of miRNA while amplifying the
activity of miRNA tumor suppressors. The resistance of patients to
treatments resulted from the unsuccessful inhibition and
amplification of miRNA oncogene and tumor suppressor functions,
respectively. This observation also indicates that the enrichment
analysis of the miRNA signatures of the cancer treatment drugs or
radiation in the two pre-defined miRNA sets efficiently evaluated and

predicted the results of cancer treatment. This finding further implies
that a method for improving the results of cancer treatment is to look
for strategies that inhibit and amplify the activities of miRNA oncogenes
and tumor suppressors, respectively.

miRNA signatures can connect EFs with human diseases. The
signatures of the proteincoding genes of a drug and a disease can
connect the drug with the disease if they are associated with each
other4,24,25. In this study, we hypothesize that the miRNA signatures
of EFs and diseases should be intrinsically connected if the EFs and
diseases are associated by nature. The miRNA–EF or miRNA–drug
interactions are a new dimension of information regarding EFs,
particularly drugs. Hence, new and valuable relationships between
EFs and human diseases can be found based on their miRNA
signatures. In this study, we developed a model to predict potential
associations between EFs and human diseases (Figure 4) by
evaluating the significance of the similarity of two sets of
independent miRNA signatures (see Methods). As a result, we
identified a number of potential associations between EFs and
human diseases. To evaluate the accuracy and reliability of the
prediction, we validated the top 30 predictions with previous
literature. The results showed that 80.0% (24) of the top 30

Figure 3 | Framework for evaluating the outcome of cancer therapy by drug/radiation (A) and the enrichment of up-/down-regulated miRNAs of
drug/radiation cancer treatment from three independent datasets in the miRNA oncogenes and tumor suppressors. Length of bar indicates significance

of enrichment.
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predictions are experimentally supported (Table 2). Of the six
unsupported predictions, four can be supported by expert
knowledge or indirect evidences. The EF ‘‘anabolic stimulus’’ is
known to have muscle-related functions and can therefore be truly
associated with the predicted muscle-related disease ‘‘Distal
Myuophies’’. In addition, etoposide is a general anti-cancer drug
and therefore can be used to treat pituitary cancer, as predicted.
For the relationship between exercise and rhabdomyosarcoma
association, both the EF and the disease are muscle related, and
thus, the prediction seems reasonable. Surprisingly, we identified a
connection between the Human T-lymphotropic virus type 1
(HTLV-1) and Type 2 diabetes mellitus. A study in Japan revealed
that the seroprevalence of HTLV-1 in patients with Type 1 diabetes
mellitus is significantly higher than that in the healthy controls
group26. This result suggests that the prediction of relationship
between HTLV-1 and Type 2 diabetes mellitus, which is highly
related to Type 1 diabetes mellitus, is seemingly accurate. The
results showed that the proposed model generates reliably accurate
predictions and further provides quantitative evidence that EFs and
human diseases can be linked by their miRNA signatures. This model
suggests a method for finding new relationships between EFs (i.e.
drugs) and human diseases.

Discussion
In summary, we analyzed and modeled the interactions between
miRNAs and EFs and their relationship to human diseases. We
found that miRNA–EF interactions are significantly correlated to
miRNAs characteristics, including the miRNA expression level, tis-
sue specificity, conservation, and DSW. This result indicates that the
interactions between miRNAs and EFs are not random but have
significant regular patterns. The uncovered patterns suggest new
ways of identifying new miRNA-EF interactions. In addition, we
constructed an EF–EF interaction network using miRNA signatures
of EFs. We found that the module structure of the network is coupled

with miRNAs of specific functions. More importantly, we discovered
that the miRNA signatures of cancer treatment drugs and radiation
could predict the results of cancer treatment. This finding suggests
that the miRNA signatures of drugs are potential indicators for the
evaluation of disease therapy results and propose a possible way of
improving disease therapy at the miRNA level. The outcome of can-
cer therapy can be evaluated by monitoring the differentially
expressed miRNAs of the patients after the drug or radiation treat-
ment. Finally, we presented a computational model to predict poten-
tial associations between EFs and human diseases by combining the
miRNA signatures of the EFs and human diseases. The results
showed that the model has reliable accuracy of prediction. The model
and the prediction can provide an important framework and
resources for finding new indications for approved drugs, as well
as new drugs for human diseases. We can associate drugs to human
diseases conveniently using this model once we have obtained the
miRNA signatures of drugs. This study quantitatively confirmed
that miRNA–EF interactions, particularly miRNA-drug interactions,
are a new dimension in biomedical resources, which is helpful not
only for miRNAs and EFs but also for diseases. Our analysis and
modeling provide system-level insights on the interactions between
miRNAs and EFs as well as a number of important findings that can
help not only in understanding miRNA–EF interactions and their
effect on diseases but also in elucidating the mechanisms of EFs.

Methods
Human miRNA–EF interaction data. We downloaded the whole dataset of miRNA
and EF interactions from the miREnvironment database (http://cmbi.bjmu.edu.cn/
miren)15, which has ,2500 entries, including ,800 miRNAs, ,260 EFs, ,180
phenotypes, and 17 species from ,370 publications. Then, we extracted the human
miRNA–EF interaction data from the above dataset. Researchers double-checked the
human miRNA–EF interaction data, especially the names of miRNAs and EFs.

miRNA expression level, tissue specificity, and conservation data. We obtained the
miRNA expression profiles of 40 normal tissues from the study of Liang et al.27. We
used the expression levels of the 40 tissues as the expression level for each miRNA.

Table 1 | Enrichment analysis of the oncogenes or tumor suppressors of differentially expressed miRNAs in cancer treatment

Environmental factor Cancer Up-regulated miRNAs Down-regulated miRNAs Treatment Result Reference PubMed ID

adriamycin Leukemia miRNA oncogene
P59.2131023

miRNA tumor suppressor
P58.9031025

Resistant 21122348

gemcitabine Pancreatic Cancer No miRNA data miRNA tumor suppressor
P56.8631028

Resistant 19654291

irradiation Lung Cancer miRNA tumor suppressor
P52.6931023

miRNA oncogene
P52.7631024

Sensitive 20728239

Figure 4 | Workflow for inferring potential associations between EFs and human diseases.
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The miRNA tissue specificity index values were obtained from the study of Lu et al.7.
The tissue specificity of a miRNA represents the broadness of its expression spectrum.
Finally, the miRNA conservation data were obtained from the study of Wang et al.20.
Human miRNAs are divided into five categories according to their conservation,
namely, a miRNA is conserved only in humans (G5), primates (G4), mammals (G3),
vertebrates (G2), or other more distant species (G1, which is the most conserved
group).

Human miRNA and disease association data. We downloaded the human miRNA
and disease association data from the Human microRNA Disease Database (HMDD,
http://cmbi.bjmu.edu.cn/hmdd, September 2011 version)7, which integrated ,6000
entries, including ,500 miRNA genes and ,300 diseases from ,1500 publications.
Since its release on December 2007, HMDD has been updated almost every month
and is one of the most comprehensive databases of human miRNA-disease
associations. We then extracted the distinct miRNA-disease association data from the
entire HMDD dataset. Because some of the HMDD data is also integrated into the
miREnvironment database, the overlapping datasets in the HMDD database were
removed to ensure that the miRNA signatures of the human diseases are independent
from the miRNA signatures of the EFs. We standardized the names of miRNAs
according to those in miRBase.

Disease spectrum width of a miRNA. In this paper, the ‘‘disease spectrum width’’
(DSWi) of a given miRNA ( mi) was defined as

DSWi~
ni

N
ð1Þ

where ni is the number of diseases associated to mi and N is the total number of
diseases associated to all miRNAs. DSW is a parameter that evaluates the effect of a
miRNA in human diseases.

Enrichment analysis of the miRNA signatures of cancer treatment drug/radiation
in miRNA oncogenes and tumor suppressors. We used TAM28, a tool for miRNA
set enrichment analysis, to explore the regular patterns of the miRNA signatures of a
cancer treatment drug/radiation. The miRNA set was defined as a group of miRNAs
with related meanings according to some rules (i.e. function)7. We evaluated the
significance of the miRNA signature enrichment of cancer treatments in terms of two
miRNA sets highly related with cancer, namely, the miRNA oncogenes and tumor
suppressors20. For each miRNA signature of drug/radiation treatment, we first
curated the up-regulated and down-regulated miRNAs, as shown in Figure 3A. Then,

we evaluated the significance of the up-regulated miRNAs in the miRNA oncogenes
and tumor suppressors, respectively. This procedure was repeated for the down-
regulated miRNAs. Combining the results of the up-regulated and down-regulated
miRNAs, we can now examine the cancer treated by the given drug or radiation is
either sensitive or resistant to the treatment.

EF-disease association identification model. The theoretical basis for the inference
of drug and disease association based on molecular activity is the intrinsic connection
between the molecular signatures of the drug and disease if there are indeed associated.
This theoretical basis was confirmed by successful studies on drug-repositioning4,24. In
this study, we hypothesized that the miRNA signatures of the EFs, including drugs,
and human diseases should be intrinsically connected. We obtained the miRNA
signatures of human diseases from the HMDD database and the miRNA signatures of
environmental factors, as described above. To ensure the independence of the two sets
of miRNA signatures, we removed the overlapping data from the HMDD database.
Most of the miRNA in both sets of signatures do not have information on differential
expressions. Thus, we used Fisher’s exact test to evaluate the significance of the
overlapping between the miRNA signatures of the given EF and disease.

Statistical analysis. Statistical computions and tests were performed using R, a
statistical computing language (http://www.r-project.org/), and the correlations were
calculated using Spearman’s orrelation, a non-parametric method. Moreover, we
evaluated the significance of the enrichment between the miRNA signatures of two
EFs using Fisher’s exact test. The same test was used to evaluate the significance of the
enrichment among miRNA signatures of EFs and human diseases.
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