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G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs.
GRK6 levels were found to be altered in Parkinson’s Disease (PD) and D2 dopamine receptors are
supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral
manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in
GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model
of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore,
dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3b and
ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD
mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary
movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity
could be useful in modulating both therapeutic and side-effects of L-DOPA.

P
arkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of nigrostriatal dopami-
nergic neurons, which results in the motor deficits typical of this disease1,2. The most widely used pharma-
cotherapy is L-DOPA, which markedly improves motor deficits; however, long-term therapy often results in

the development of motor side effects such as dyskinesia3–5.
The physiological functions of dopamine are mediated through the activation of dopamine receptors that

belong to the family of G protein-coupled receptors (GPCRs), which can be divided into two major categories: D1-
like (D1, D5) and D2-like (D2, D3, D4) receptors6,7. The activation of a GPCR initiates the classical G protein-
dependent signaling cascade, but also sets in place series of molecular interactions that induce feedback regulation
of G protein coupling, endocytosis of receptor, and signaling through G protein-independent signal transduction
pathways involving barrestin proteins8. In particular, a non-canonical barrestin 2-mediated pathway plays an
important role in the behavioral responses to dopamine9. G protein-coupled receptor kinases (GRKs) promote
barrestin recruitment by phosphorylating activated GPCRs, thereby playing a pivotal role in these subsequent
desensitization and/or signaling events10. GRK6 is the most abundant isoform in the caudate/putamen, and
postsynaptic D2/D3 dopamine receptors are the physiological targets of this kinase11,12. Both in vitro and in vivo
experiments have demonstrated that GRK6 is involved in the desensitization of D2/D3 dopamine receptors,
resulting in altered ability of D2-like, but not D1-like dopamine receptor agonists to affect locomotor behaviors
in GRK6-KO mice12. Based on these observations, it has been suggested that a pharmacological strategy targeted
on GRK6 expression or activity may be beneficial in conditions when dopaminergic signaling is limited, such as
Parkinson’s disease12. In a study involving MPTP-treated monkeys as a model of PD, an elevated expression level
of GRK6 was found in the caudate/putamen and ventral striatum, which could be normalized by L-DOPA
treatment13. On the other hand, 6-OHDA-lesioned rats showed a reduction of GRK6 levels in the caudal
caudate/putamen and globus pallidus, while GRK6 expression was up-regulated in the rostral caudate/putamen
and nucleus accumbens of these animals14. Furthermore, post mortem analysis of the striatum of PD patients
without dementia that were treated with L-DOPA for several years showed a decreased concentration of GRK6, in
agreement with work on MPTP-treated monkeys13. It is also possible that altered levels of GRK6 can result in
dysregulation of DA receptors, inducing an abnormal signaling, thus contributing to the core motor deficits
observed in PD.
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A recent study has convincingly demonstrated that over-express-
ion or reduction of the level of GRK6 expression in the striatum has
significant modulatory effect on the antiparkinsonian and side-
effects of L-DOPA15. Furthermore, over-expression of GRK6 in rats
promotes the internalization not only of D2R, but also of D1R, thus
normalizing the signaling through the regulation of the D1 receptor
as well15. Exaggerated signaling of striatal D1R16–18, D2R19 and D3R20–

22 following chronic L-DOPA has been implicated in L-DOPA-
induced dyskinesia (LID) in rodents and primates, suggesting that
normalization of this excessive signal may be beneficial for prevent-
ing the development of LIDs. Indeed, over-expression of GRK6 alle-
viated LIDs in both rat and monkey models of PD15, likely through
reducing the abnormal signaling of dopamine receptors related to
LID. Taken together, these studies indicate that the changes in GRK6
may play an important role in the pathogenesis of PD and in the
responses to anti-PD drugs. For this reason, it is important to invest-
igate in detail the mechanisms of GRK6 involvement in modulating
the expression of PD symptoms, as well as in responses to L-DOPA
therapy. Therefore, we assessed how behavioral and cellular res-
ponses are altered in mouse models of PD that are also deficient in
GRK6 expression. Moreover, these GRK6-deficient mouse models of
PD provided an opportunity to investigate responses to acute and
chronic treatment with L-DOPA in order to understand how
reduced GRK6 levels affect the therapeutic and side-effects of L-
DOPA.

Results
Reduced expression of haloperidol-induced catalepsy in GRK6-
KO mice. To evaluate the impact of GRK6 deficiency on expression
of haloperidol-induced catalepsy, a physiological output of
postsynaptic D2 dopamine receptor blockade23, we administered
three doses of haloperidol, 0.5 (Fig. 1A), 1 (Fig. 1B) and 2 (Fig. 1C)
mg/kg, i.p., and tested animals in the bar catalepsy test every hour for
four hours after treatment. The results of these measurements were
subjected to a Two-way ANOVA analysis, and when there was an
effect of all interactions between factors (p#0.05), the significance
was further analyzed by Bonferroni post-hoc. As presented in these
graphs, WT and GRK6-KO mice injected with 0.5, 1 or 2 mg/kg of
haloperidol, but not saline, demonstrated a dose-dependent increase
of catalepsy that varied over time. However, the expression and
dynamics of haloperidol-induced catalepsy was altered in GRK6-
KO mice. GRK6-KO mice injected with the 0.5 mg/kg haloperidol
(Fig. 1A) had cataleptic behavior similar to WT mice during the first
two hours, but a reduction of this behavior was observed at the third
and fourth hour. Two-way ANOVA for repeated measures revealed
an effect of all three factors interaction (Category of Time x
Treatment x Genotype, F9,13954.76) and, in particular, Bonferroni
analysis has shown a significant difference between WT and GRK6-
KO at the fourth hour (p,0.05) in the same group (Haloperidol
Treatment). GRK6-KO mice administered with 1 mg/kg of
haloperidol showed a different pattern of development of
catalepsy. These mice demonstrated an increase in cataleptic
behavior along the same time frame as WT group, however, as
presented in Fig. 1B, their response is reduced significantly
compared to WT mice (main effect of the interaction of Time x
Genotype x Treatment, F9,18352.71; p,0.05). With the highest
dose of haloperidol tested (2 mg/kg, i.p., Fig. 1C) we also observed
an increase of the cataleptic behavior of the GRK6-KO mice along the
time, however their total response was significantly lower than in WT
mice (main effect of interaction factors Time x Genotype x
Treatment F9,17155.16, p,0.0001).

pAkt and pGSK3b levels in response to haloperidol in GRK6-KO
mice. It has been demonstrated that activation of D2-class dopamine
receptors in the striatum can promote barrestin 2-mediated Akt/
GSK3b signaling24. To clarify the contribution of GRK6-mediated

Figure 1 | The dynamics of haloperidol-induced catalepsy in GRK6
deficient mice. The histograms illustrate the time the animals spent to

remove both front paws from the bar (as index of cataleptic behavior). All the

animals were tested at 1, 2, 3 and 4 hours (T1, T2, T3 and T4) after the drug

injection. 1A. Effect of haloperidol 0.5 mg/kg, i.p. 4 groups: WT Saline

(n512) and Haloperidol (n57); GRK6-KO Saline (n513) and Haloperidol

(n57). 1B. Effect of haloperidol 1 mg/kg, i.p. 4 groups: WT Saline (n512)

and Haloperidol (n519); GRK6-KO Saline (n513) and Haloperidol

(n521). 1C. Effect of haloperidol 2 mg/kg, i.p. 4 groups: WT saline (n512)

and Haloperidol (n517); GRK6-KO saline (n513) and Haloperidol (n519).

*p,0.05 vs Saline in the same group of genotype; # p,0.05 vs WT in the

same group of dose (Bonferroni post-hoc).
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regulation of D2 dopamine receptors to this pathway, we performed
analysis of the levels of pAkt (Thr308) and pGSK3b (Ser9) in the
striatum of drug-naive WT and GRK6-KO mice. These experiments
revealed that under basal conditions, GRK6-KO mice show only a
trend toward increased pAkt levels, but have significantly increased
levels of pGSK3b compared to WT mice (Fig. 2A–C). Next, we
analyzed the phosphorylation levels of these two kinases follow-
ing 1 or 2 mg/kg doses of haloperidol, 5 hours after admini-
stration, as these conditions demonstrated the strongest response
in the catalepsy test. In agreement with previous results25, the
phosphorylation of Akt in WT increases as a result of D2R an-
tagonist action in a dose-dependent pattern (Fig. 2D and 2E)
(One-way ANOVA, F2,1759,658, p50,0016). Tukey HSD post hoc
test revealed a significant difference between the haloperidol groups
versus the saline control. We noted a similar significant increase of
phosphorylation level for GSK3b in WT mice (Fig. 2D and 2F) (One-
way ANOVA, F2,1753,951, p50,03). In contrast, in GRK6-KO mice,
pAkt levels were not significantly altered following 1 or 2 mg/kg

haloperidol, compared to the vehicle-treated control (Fig. 2G and
2H). In a similar way, the phosphorylation of GSK3b was only
modestly changed in GRK6-KO mice following haloperidol
treatment, with significantly increased level of pGSK3b following 1
but not 2 mg/kg of the drug (Fig. 2G and 2I) (One-way ANOVA,
F2,1657,822, p50,004).

Basal locomotor activity of DAT-KO and DAT/GRK6 double KO
mice. To study the role of GRK6 under conditions of severe acute DA
deficiency, we developed GRK6-deficient DDD mice26. For this
purpose, we first generated DAT/GRK6 double KO mice by
crossing heterozygous mice for dopamine transporter (DAT) and
GRK6, and then crossing double heterozygous mice for DAT/
GRK6 to obtain double DAT/GRK6 KO mice. Double DAT/GRK6
KO mice are viable and do not demonstrate any obvious alterations
beyond those observed in single knockout DAT-KO or GRK6-KO
mice12,27,28. We compared untreated DAT-KO and DAT/GRK6
double KO mice for the potential alterations related to GRK6

Figure 2 | Levels of pAKT and pGSK3b in the striatum of WT and GRK6-KO mice following haloperidol. Western blots and densitometric analysis of

relative levels of pAKT (Thr-308) or pGSK3b (Ser9) were examined in extracts prepared from the striatum of WT and GRK6-KO untreated mice (2A–C),

and WT (2D–F) or GRK6-KO (2G–I) treated mice (n57–19 per group) with saline and two doses of haloperidol (1 and 2 mg/kg, i.p.). One-Way Anova

analysis with Tukey HSD post hoc test. Two-tailed Mann Whitney test. In all experiments total kinase levels in extracts were used as loading controls for

measurement of phospho-protein levels. Data are means 6 SEM; *p, 0.05, **p ,0.01 vs respective controls; #p,0.05 vs 2 mg/kg group.
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deficiency at the level of basal locomotor activity. Double KO mice
demonstrated significantly increased level of total distance traveled
in comparison to spontaneously hyperactive DAT-KO mice, and this
difference was attributable mainly to diminished habituation at later
times, indicating that combination of high DA extracellular
levels due to DAT deficiency with uncontrolled DA receptor
supersensitivity caused by the lack of GRK6 leads to more
pronounced hyperactivity12 (Fig. 3). The analyses of the variance
for repeated measures have shown an effect of Time x Genotype
interaction factors (F23,48353.168, p,0.0001). Notably, activity
levels of GRK6-KO mice are not different from their wild type
controls (Ref 12).

Effect of L-DOPA in DDD mice. To evaluate the acute effects of L-
DOPA in dopamine deficiency model, we first administered a-
methyl-p-tyrosine (aMT; 250 mg/kg, i.p.), a potent irreversible
inhibitor of TH, to DAT-KO and DAT/GRK6 double KO mice to
deplete dopamine in the brain of these animals (dopamine-deficient
DAT-KO mice, DDD mice26) (Fig. 4). It is known that aMT induces
virtual disappearance of extracellular DA in DDD mice while L-
DOPA effectively restores DA levels in this model as evidenced by
in vivo microdialysis experiments26,29. One hour after aMT, the
dopamine-deficient animals received an injection of L-DOPA/
Carbidopa (10/10 mg/kg, i.p.), followed by another dose of L-
DOPA (20 mg/kg, i.p.) one hour later (Fig. 4A). In a second group
of animals, one hour after aMT injection, DDD mice received an
injection of L-DOPA/Carbidopa at higher dose 30/10 mg/kg, i.p.
(Fig. 4B). After aMT treatment, all the mutant mice became
akinetic due to dopamine deficiency, as reported before26. As
expected, L-DOPA treatment reversed this phenotype and induced
an increased activity proportionally to the dose of the drug (Fig. 4A–
B). However, the effect of L-DOPA on the double KO was much
stronger in comparison to the DAT-KO mice. The analyses of the
variance on the total distance have shown a significant effect for the
interaction factors Time x Genotypes in both experiments (first
group of treatment (Fig. 4A) F36,50454.928, p,0.0001; second
group of treatment (Fig. 4B) (F36,54052, p50.0006).

Effect of GRK6 deficiency in unilateral 6-OHDA model of PD.
Lesion verification: quantitative western blotting for TH of the
striatum. To develop unilateral 6-OHDA model in normal and
mutant mice we elected to use intrastriatal injection of the toxin,
which has been shown to develop significant lesion in the
dopamine terminal regions with lesser mortality and larger
therapeutic window for L-DOPA treatment in comparison to medial forebrain bundle (MFB) lesion protocol30. To verify the

degree of lesion induced by intrastriatal 6-OHDA infusion, we
have analyzed the TH immunoreactivity of the striatal samples by
western blot in operated mutant and WT mice. We used as control
the mean of TH levels in the striatum of sham-operated mice
separately for WT and GRK6-KO; then we compared each band
of the lesioned mice with the appropriate control (representative
blots are shown in Supplementary Fig. S1). Only the data from
WT or GRK6-KO mice that demonstrated TH depletion of more
than 75% compared to their control were included in the statistical
analysis30.

Rotational behavior and AIMs. Following chronic treatment with L-
DOPA/carbidopa, unilaterally-lesioned WT and GRK6-KO animals
showed progressive increase in rotational behaviors known to be
induced by this treatment14,15,22. In contrast, non-lesioned WT and
GRK6-KO mice (sham-operated) did not demonstrate turning beha-
vior. However, unexpectedly, we found a reduced rotational response
to L-DOPA in GRK6-KO-lesioned compared to the WT-lesioned
mice. Two-way ANOVA has shown an effect of the Days Treat-
ment x Genotype x Lesion interaction (F3,9053,539, p50,01), with
Tukey HSD post hoc analysis revealing significant points as shown in

Figure 3 | Basal locomotor activity of GRK6/DAT double KO mice.
Spontaneous locomotor activity of DAT-KO and GRK6/DAT-KO mice

was measured through 2 hours recording. One-Way Anova for repeated

measures, Tukey HSD post hoc analysis. * p,0.05 vs DAT-KO in the same

group of time point.

Figure 4 | Effect of L-DOPA on locomotor activity of GRK6-deficient
DDD mice. After 30 minutes of habituation, all groups received aMT

250 mg/kg, i.p. and 1 hour later they received an injection of L-DOPA/

Carbidopa 10/10 mg/kg, i.p. followed by of L-DOPA 20 mg/kg, i.p. one

hour later (4A). A second group of animal was treated with 30/10 mg/kg,

i.p. of L-DOPA/Carbidopa (4B). Statistical analysis: One-Way Anova for

repeated measures, Bonferroni post hoc analysis. *p,0.05 vs DDD mice at

the same time point.
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the graph (Fig. 5). Furthermore, we analyzed a time course of rota-
tions of the last day of treatment (Supplementary Fig. S2) and found a
significant difference in the circling behavior along all the time per-
iods tested between WT and GRK6-KO with an effect of all three
factors of interaction (F5,15052,917, p50.01). While this finding
seems not to be in agreement with the recent publication of
Ahmed, et al (2010)15, we note that there are significant differences
in experimental procedures between the two studies. In particular,
we used full knockout mice for GRK6 that have deficiency in GRK6
in both striata, while Ahmed et al (2010)15 induced knockdown or
overexpression of GRK6 only in the lesioned striatum. In our case,
the dopaminergic supersensitive state due to GRK6 deficiency12

appears on both sides, thus reducing potential for rotations in
lesioned animals, while manipulating GRK6 only on the lesioned
side will likely exacerbate the differences between sides, increasing
potential for rotations15. Furthermore, similarly to rotational experi-
ments, GRK6-KO mice with unilateral lesion showed a reduced fre-
quency of AIMs compared to WT mice (Fig. 6A–C). The AIM rating
increased with days of treatment as shown in the graph of the total
dyskinesia in a similar way in both groups (combined scores of limb
and axial AIMs) (Fig. 6C). However, Two-way ANOVA analysis has
revealed an effect of the Genotype factor (F1,15512.512, p50.003),
indicating that there is a difference in the AIMs manifestations
between the genotypes. In particular, GRK6-KO mice showed
reduced levels of AIMs compared to the WT controls. We obtained
the same statistical result for axial dyskinesia (Fig. 6A) (F1,15515.412,
p50.001). Regarding limb dyskinesia (Fig. 6B), both WT and GRK6-
KO showed an increase of AIM rating with time but GRK6-KO mice
had a somewhat reduced level of dyskinesia compared to WT group
despite not reaching statistically significant effect of the factors.
Analysis of the time course of AIMs at the last day of treatment
(Supplementary Fig. S3) revealed an effect of the Genotype in the
total (F1,1556.091, p50.02) and axial (F1,1555,170, p50.03) AIMs
score. In the total AIM scoring, we did not consider the orolingual
subtype of AIMs31 because of experimental difficulties in detecting
these behaviors in our study.

pERK1/2, pAkt and pGSK3b levels in response chronic L-DOPA
treatment. It has been reported that in 6-OHDA-lesioned mice,
chronic treatment with L-DOPA results in elevated ERK pho-
sphorylation32. While no significant difference in pERK1 or pERK2
level was seen between WT and GRK6-KO mice for either sham-
operated or lesioned groups treated chronically with L-DOPA for 21

days (Fig. 7A–F), we observed a significant increase of pERK2 in L-
DOPA-treated WT lesioned mice compared to their sham-operated
controls (Fig. 7G and 7I). The same trend of increase can be seen for
the pERK1 levels; however, this effect does not reach statistical sig-
nificance (Fig. 7G and 7H). At the same time, we found no significant
differences in phosphorylation of ERK1 or ERK2 between GRK6-KO
lesioned and sham-operated mice after chronic L-DOPA treatment
(Fig. 7J–L), conditions that did show a reduced level of rotations and
AIMs. This result seems to be in agreement with the positive
correlation between AIMs rating and pERK1 and pERK2 levels
reported by other labs32. The total levels of ERK1 and ERK2 were
not changed in any of the groups (data not shown). We have also
analyzed the levels of phosphorylation of pAkt and pGSK3b proteins
in WT and GRK6-KO chronically treated with L-DOPA. However,
in these experiments we did not observe any significant differences
between any of the group analyzed (data not shown).

Figure 5 | L-DOPA-induced rotations in 6-OHDA lesioned WT and
GRK6-KO. In these experiments we had two groups for WT: Sham and

Lesioned and two for GRK6-KO: Sham and Lesioned. All the animals were

treated with 20/12 mg/kg of L-DOPA/Carbidopa for 21 days. The

rotations (means, 6SEM) are counted as controlateral minus ispilateral

rotations. Two-Way Anova for repeated measures, Tukey HSD post hoc.

*p,0.05 vs Sham in the same group of genotype and time point; # p,0.05

vs GRK6-KO lesioned in the same time point.

Figure 6 | Chronic L-DOPA induced AIMs in GRK6-KO mice. Axial

AIMs (6A); Limb AIMs(6B); Combined AIMs score (6C). WT and GRK6-

KO 6-OHDA-lesioned animals received L-DOPA treatment for 21 days

and AIMs were scored using the rodent AIM rating system described in

Cenci and Lundbland (2007)51. No significant AIMs were detected in

sham-operated controls.
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GRK6 overexpression in vitro modulates both the G protein-
mediated cAMP signaling and barrestin 2 recruitment. To gain
more insights on the mechanism of GRK6 involvement in D2

dopamine receptor signaling and regulation we have used an in vitro
cell-based assay to test the GRK6 influence on G protein-dependent
and independent processes. Thus, we evaluated the effect of over-
expression of GRK6 in HEK-293 cells on the ability of D2R to
modulate cAMP levels and barrestin 2 recruitment using two

different Bioluminescence Resonance Energy Transfer (BRET)
techniques that has been proven to have great utility in studying
these phenomena33. In the first experiment, cells were transfected
with a cAMP EPAC biosensor that appears to be sensitive tool in
monitoring cAMP fluctuations34. Cells were pretreated for 5 minutes
with the D2 agonist quinpirole at 10 mM and then stimulated with
forskolin at 3 mM. As shown in Fig. 8A, in WT cells quinpirole was
able to induce a decrease of about 50% of forskolin stimulation, but

Figure 7 | Levels of pERK1 and pERK2 in the striatum of unilaterally lesioned L-DOPA treated WT and GRK6-KO mice. Western blots and

densitometric analysis of relative levels of pERK1 and pERK2 were examined in extracts prepared from the striatum of WT and GRK6-KO chronically

treated with L-DOPA for 21 days (n57–10 per group). Comparison of pERK1 and pERK2 levels in sham-operated WT and GRK6-KO mice (7A–C) and

lesioned WT and GRK6-KO mice (7D–F). Comparison of pERK1 and pERK2 levels in sham-operated and lesioned WT mice (7G–I) and sham-operated

and lesioned GRK6-KO mice (7J–L). Total protein levels in extracts were used as loading controls for measurement of phospho-protein levels. Data are

means 6 SEM; *p, 0.05, two-tailed Mann Whitney test.
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when GRK6 was overexpressed this effect was significantly impaired
(quinpirole WT 5 47 6 1.6 %, quinpirole GRK6 5 89 6 4.6 %,
p,0.05, n54). These data confirm previous observations revealing
that GRK6 overexression reduces the coupling of G protein to D2

receptors as measured in [35S]GTPcS binding experiments12.
Further, we investigated the role of GRK6 in barrestin 2 recruit-

ment to D2 receptors. We transfected HEK-293 cells with D2-Rluc
and barrestin 2-YFP33 and stimulated the cells with quinpirole at 10
mM. As expected, quinpirole produced an increase in BRET ratio in

WT cells, indicating recruitment of barrestin 2, with a delta-BRET of
0.03 6 0.002 (Fig. 8B). Importantly, in GRK6 overexpressing cells,
quinpirole induced a significant increase in the delta-BRET (0.046 6

0.005, p,0.05, n54) over that in control cells. This effect confirmed
that the GRK6-dependent phosphorylation is of importance for the
recruitment of barrestin 2 to D2 receptors that may have functional
consequences for both the G protein mediated processes and barres-
tin 2 – mediated signaling6,12.

Discussion
In this study, we investigated the role of GRK6 in behavioral and
intracellular signaling manifestations of dopamine deficiency in
three different animal models of PD and analyzed responses to acute
and chronic L-DOPA in these models. While this study generally
highlights the role GRK6 plays in the regulation of dopamine recep-
tors, these observations also indicate that modulation in GRK6
expression or function may provide a basis for enhancement of
dopaminergic signaling in conditions when dopamine signaling is
limited or correction of abnormal striatal plasticity caused by chronic
L-DOPA.

We observed that GRK6-KO mice display a reduction of cataleptic
behavior induced by haloperidol compared to wild type controls. A
possible mechanism for this effect could be that under conditions of
GRK6 deficiency there is an enhanced coupling of striatal D2-like
receptors to their G proteins12. The role of GRK6 in the regulation of
G protein-dependent D2R regulation is also indicated by the ability of
over-expressed GRK6 to significantly decrease D2R coupling to G
proteins12 and reduce the effect of D2R agonist quinpirole on cAMP
levels in cellular systems (Fig. 8). The pronounced D2Rs supersensi-
tivity in GRK6-KO mice may also favor displacement of antagonist
by endogenous agonist, decreasing the ability of haloperidol to
induce catalepsy. Furthermore, haloperidol’s ability to induce an
increase in striatal Akt and GSK3b phosphorylation in WT mice25

is significantly blunted in the GRK6-KO mice. It has been demon-
strated that the phosphorylation level of Akt is regulated by dopa-
mine through barrestin 2/PP2A pathway leading to Akt
dephosphorylation and consequently to a reduction of phosphoryla-
tion of its substrate, GSK3b9. But when D2R is blocked by haloperidol
it does not recruit barrestin 233,35, and thus causes an increase in levels
of pAkt and pGSK3b. However, in GRK6-KO mice this effect of
haloperidol is significantly reduced. Intriguingly, GRK6-KO mice
have also increased basal level of pAkt and pGSK3b compared with
the control group. A potential explanation for this phenomenon is
that untreated WT mice respond to a basal tone of dopamine action
that could maintain the phosphorylation of Akt and GSK3b at
reduced level through the barrestin 2 signaling complex, but under
conditions of GRK6 deficiency it is likely that the non-phosphory-
lated or partially phosphorylated D2R has reduced ability to engage
in barrestin 2-mediated Akt dephosphorylation. In fact, our cell
culture experiments directly support this possibility by demonstrat-
ing that over-expression of GRK6 increases recruitment of barrestin
2 to D2R following agonist stimulation (Fig. 8). These observations
also suggest that barrestin 2-mediated Akt/GSK3 signaling may be
generally protective against catalepsy. Intriguingly, a recent study has
demonstrated that severalbarrestin-biased dopamine D2 ligands that
are devoid of cataleptic activity in normal mice become catalepto-
genic in barrestin 2 knockout mice36.

So far, it has been demonstrated that GRK6 is important for the
desensitization of D2R12,37,38; however it remained unclear if striatal
GRK6 promoted D2R phosphorylation leads also to barrestin 2
recruitment. Since barrestin 2 can play dual roles, both as a termin-
ator of G protein-mediated signaling (desensitization) and as an
inducer of G protein-independent signaling events39, it seems likely
that GRK6 may be involved in both these processes. Indeed, in other
receptor systems, GRK6 is a primary player in regulating barrestin 2
recruitment for G protein-independent signaling, especially leading

Figure 8 | Effect of GRK6 overexpression on the D2R-dependent G
protein-mediated signaling and barrestin 2 recruitment. 8A, In cells

transfected with EPAC sensor and D2R, cAMP level was monitored for 25

minutes. Cells were pretreated with quinpirole at 10 mM and then cAMP

production was stimulated by forskolin at 3 mM. In wild type cells

quinpirole decreased forskolin effect by about 50% (p,0.05), while in

GRK6 overexpressing cells it had no significant effect. 8B, barrestin 2

recruitment was evaluated by coexpression of D2-Rluc and barrestin 2-

YFP. Cells were stimulated with quinpirole at 10 mM and then BRET ratio

was monitored for 25 minutes. Quinpirole was able to induce an increase

in BRET ratio. Coexpression of GRK6 produced a significant increase in

delta-BRET (p,0.05). All values are expressed as means 6 SEM (n54

independent experiments for each experimental condition).
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to Erk activation40–42. Here we show that at one dose haloperidol can
enhance pAkt level both in WT and GRK6-KO mice. Based on this
observation we can hypothesize that GRK6 is not the exclusive kinase
involved in D2R/barrestin 2 recruitment in the striatum. While the
role of GRK6 in the D2R-mediated AKT/GSK3 signaling cascade still
requires further characterization, it is clear that at the behavioral
level, an inhibition of GRK6 can potently reverse haloperidol’s action
on catalepsy.

Hyperdopaminergic mice lacking GRK6 (DAT/GRK6 double KO
mice) are more active in comparison to the already-hyperactive
DAT-KO mice in a novel environment. When DAT is deficient,
the dopamine in the extracellular space cannot be re-captured back
into the pre-synaptic terminal, thus causing a prolonged increase in
neurotransmitter levels in the extracellular space. It has been shown
previously that mice lacking GRK6 are supersensitive to amphet-
amine and cocaine12, drugs that induce an increase in dopamine level
in the extracellular space. Our present results confirm and extend
these observations in a genetic model of hyperdopaminergia.
Furthermore, by introduction of GRK6 deficiency to a novel phar-
macogenetic model of PD, DDD mice, we demonstrated that L-
DOPA treatment is more effective in counteracting akinesia under
conditions of GRK6 deficiency. It has been shown that DAT-KO
mice have reduced levels of striatal D1R and D2R, presumably due
to continuous DA hyperstimulation26, while the opposite was found
in mice over-expressing DAT43. In mice lacking both DAT and
GRK6, DA receptor sensitivity is likely increased due to lack of
GRK6-dependent receptor desensitization as in single GRK6-KO
mice as described above, thus providing a stronger response to L-
DOPA in GRK6-deficient DDD mice.

In the unilateral 6-OHDA lesion hemiparkinsonian model of PD,
we observed that the rotational response to chronic L-DOPA was
reduced in GRK6-KO mice compared to WT controls. Furthermore,
a reduction of L-DOPA induced AIMs was observed in GRK6-KO
mice. These results are in contrast to a study by Ahmed et al.15, where
an increase of L-DOPA induced rotations and AIM score was found
under conditions of GRK6 deficiency. However, one should consider
the particularities of the unilateral 6-OHDA lesion hemiparkinso-
nian model of PD: in this model, the rotational bias is determined by
the difference in intensity of dopamine signaling between the
lesioned and intact striata of animals. In our experimental model,
genetic GRK6 deficiency occurs on both sides, so both the intact and
lesioned striata have supersensitive dopamine receptors. Thus, both
the denervation-related supersensitivity and effects of chronic L-
DOPA treatment leading to abnormal plasticity in the lesioned side
may be less prominent in the GRK6-KO animals that already have
supersensitive dopamine receptors on the intact side. Ahmed and
colleagues (2010)15 used lentivirus to knock-down GRK6 just in the
lesioned-side striatum, thus likely creating a greater imbalance in the
dopaminergic response between the two sides and exacerbating rota-
tional behavior. While the importance of such dopaminergic imbal-
ance is well established for the induction of rotation44, these results
also suggest that it is also important for manifestation of dyskinesia
in the hemiparkinsonian model of PD. Although at present it is
difficult to rule out the possibility of compensatory mechanisms,
these observations further indicate an important role of this kinase
in dopamine receptor-mediated signaling and desensitization.

It has been reported that dopamine depletion in the striatum
induces an increase in the ability of D1R to activate ERK45. While
chronic treatment with L-DOPA leads to a reduction of ERK activa-
tion, L-DOPA treatment is not able to reverse this mechanism in
subjects that display dyskinesia13,46. The occurrence of sensitized
ERK signaling in association with dyskinesia has been described in
several studies47,48. In agreement with these studies, we found that
WT mice that develop significant LIDs have also increased levels of
pERK, while GRK6-KO mice that show less pronounced LIDs have
also similar pattern of reduced pERK levels relative to WT controls. It

has been hypothesized that LIDs are induced by overstimulation of
postsynaptic dopamine receptors located on the GABAergic neurons
of the dorsal striatum16,49. Our model is characterized by GRK6 defi-
ciency that leads to hypersensitivity of dopamine receptors, so logic-
ally we should have found an increase of AIMs and so enhanced level
of pERK; however, we obtained a reduction for both. While it may
reflect altered dopaminergic imbalance in lesioned GRK6-KO mice
as described above, it may also indicate the role of GRK6 in regu-
lation of D1Rs as recently reported15. Furthermore, other signaling
pathways in addition to ERK are likely also important for the
development of AIMs in mice. A recent study has shown that dopa-
mine depletion and subsequent treatment with L-DOPA enhances
activity of the Akt pathway in the striatum22. However, in the present
study we did not observe significant alterations in Akt and GSK-3
activity between any of the groups tested. These data indicate that the
D2R triggered Akt/GSK3 pathway may not be critical for the L-
DOPA-induced rotations and the development of AIMs in 6-
OHDA mouse model of PD. However, we also did not detect the
expected changes in dopamine-dependent Akt and GSK3 activity
caused by dopamine denervation9 or by GRK6 deficiency that is
observed in unlesioned GRK6-KO mice (Fig. 2). It should be pointed
out that in experiments involving 6-OHDA-lesioned mice all the
groups have received chronic L-DOPA treatments, and such puls-
atile dopaminergic stimulation may alter the mechanism of regu-
lation of Akt/GSK3 pathway by dopamine.

In conclusion, significant alterations in motor functions observed
in animal models of PD that also lack GRK6 suggest the important
role of this kinase and its potential involvement in PD manifestations
and in responses to antiparkinsonian drugs.

Methods
Animals. Animal care and treatments were performed in accordance with the Guide
for Care and Use of Laboratory Animals (USA National Institutes of Health
publication #865-23, Bethesda, MD) and the protocols were approved by the Italian
Ministry of Health. GRK6 and Dopamine Transporter knockout (GRK6-KO and
DAT-KO) mice of mixed C57BL/6J x 129Sv/J background were generated as
described before12,28, and were crossed to generate GRK6/DAT double KO mice. All
the single KO and WT littermates were obtained from heterozygous matings, while
double KO mice were obtained from double heterozygous mice. Genotyping was
performed in all individuals by PCR (representative PCRs for DAT/GRK6 double KO
are shown in Supplementary Fig. S4). Mice of both sexes older than 3 months were
used in all these experiments.

Drugs. All the drugs used for this work were purchased from Sigma Aldrich (Milan,
Italy) with exception of Carbidopa ((S)-(-)-Carbidopa, Tocris, Bristol, UK) and
amphetamine (Poole, UK). All drugs were prepared with a final volume of injection of
10 ml/kg. L-DOPA (3,4-dihydroxyphenylalanine) was freshly dissolved in saline
solution and injected i.p. Carbidopa was sonicated first in water containing few
microliters of Tween-20 and then diluted in water. Haloperidol was dissolved in few
microliters of glacial acetic acid and then diluted in PBS solution. aMT (a-Methyl-
DL-tyrosine methyl ester hydrochloride) and amphetamine were dissolved in saline.
Apomorphine (R-(2)-Apomorphine hydrochloride hemihydrates) was dissolved in
ascorbate-water (0.02%) solution and injected s.c.

Behavioral apparatus and procedure. Catalepsy test. The presence of catalepsy was
determined and measured by placing the forepaws of mice on a horizontal wooden
bar (0.7 cm in diameter), 4 cm above the tabletop. The time until the mouse removed
both forepaws from the bar was recorded, with a maximum cut-off time of 3 minutes.
For this test, all the mice were injected either with vehicle as control or with 0.5, 1 or
2 mg/kg of haloperidol and tested for catalepsy every hour for four hours after
treatment.

Locomotor activity test. Locomotor activity was measured in an Omnitech
CCDigiscan activity monitor (Accuscan Instruments, Columbus, OH, USA) under
bright illumination. To evaluate the impact of mutation or effects of drugs on motor
behaviors, mice were placed into activity monitor chambers (20320 cm). Various
parameters of locomotor activity were measured at 5-min intervals12.

Evaluation of acute effects of L-DOPA in DDD mice. To evaluate effects of pharma-
cologically active compounds under conditions of absolute DA deficiency, the
dopamine-deficient DAT-KO mice (DDD mice) model of dopamine deficiency was
used26. In this experimental procedure we used two groups of mice: DAT-KO and
GRK6/DAT double KO mice. Mice were placed to the locomotor chamber for 30
minutes and then were treated with a-methyl-p-tyrosine (aMT, 250 mg/kg, i.p.), a
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potent irreversible inhibitor of Tyrosine Hydroxylase (TH), to eliminate dopamine in
the brain26. One hour after aMT, the animals, received an injection of L-DOPA/
Carbidopa (10/10 mg/kg, i.p.), followed by another dose of only L-DOPA (20 mg/kg,
i.p.) one hour later. In a second group of animals, one hour after aMT injection the
animals received an injection of L-DOPA/Carbidopa at 30/10 mg/kg (i.p.).

Evaluation of chronic effects of L-DOPA in unilaterally 6-OHDA lesioned mice.

6-Hydroxy-Dopamine (6-OHDA) striatal lesion in mice. Dopamine neuron lesions
were performed by unilateral injection of 6-OHDA into the striatum. 30 minutes
before the neurotoxin injection all the animals received a desipramine 35 mg/kg
injection (i.p., dissolved in saline) to protect the noradrenergic innervations into the
striatum. Then the animals were anesthetized by a mixture of isoflurane/oxygen and
placed on a stereotaxic apparatus (David Kopf instrument, Tujunga, CA, USA) with
mouse adaptor and lateral ear bars. The skin on the skull was cut and two holes were
made on the same side by a surgical drill. The coordinates were chosen in according to
Franklin and Paxinos atlas (1997)50: AP511, L522.1, DV523 and AP510.4,
L522.3, DV523. The injections were performed by using injection cannulae (31
Gauge) connected with a polyethylene tube to a 1 ml Hamilton Syringe at the 0.7 ml/
min rate; to let the solution diffuse in the tissue the cannulae was kept in the same
position 3 minutes more. 6-OHDA was dissolved in 0.02 % ascorbate – artificial CSF
(CMA/Microdialysis, Solna, Sweden) solution at the concentration of 6 mg/ml. 2 ml of
this solution was used for infusion into striatum in both injections. In order to assess
the lesion grade, at the end of the behavioral studies the striatum were collected and
the TH expression was evaluated by Western blot analysis.

Circling Behavior. To measure circling behavior we used glass cylinders with a dia-
meter of 19 cm and height of 25 cm. All animals were recorded by video camera for
1 hour immediately after treatment and were scored for rotations. Each 360u rotation
of the body axes was counted as a rotation.

Abnormal Involuntary Movements (AIMs). 6-OHDA-lesioned mice were monitored
for abnormal involuntary movements for one minute every 20 minutes during the
rotational screening after L-DOPA treatment31 with minor modification. AIMs were
divided into two subtypes, axial and limb AIMs. Each of these subtypes was scored on
a severity scale from 0 to 4 (05no dyskinesia; 15occasional dyskinesia displayed less
than 50% of the observation time; 25sustained dyskinesia displayed more than 50%
of observation time; 35continous dyskinesia; 45continous dyskinesia not inter-
ruptible by outer stimuli). The level of dyskinesia was counted as a sum of each score
in the different time points. In this study, orolingual AIMs31 were not analyzed
because of difficulties in assessing this parameter in our experimental conditions.

The experimental procedure for chronic L-DOPA treatment. Twenty eight days after
the surgery, 6-OHDA-lesioned and sham-operated WT and GRK6-KO mice were
treated with L-DOPA/Carbidopa (20/12 mg/kg, i.p.) for 21 days and they were tested
every week for circling behavior and AIMs immediately after the injections).

Antibodies and Western Blot Analyses. The anti-phospho Akt (Thr-308), anti-Akt,
anti-phosphoGSK3b (Ser-9), anti-GSK3b, anti-phosphoERK1/2 and anti-ERK1/2
were purchased from Cell Signaling Technology (Beverly, MA); while the anti-
Tyrosine Hydroxylase antibody was purchased from Santa Cruz Biotechnology
(Heidelberg, Germany) and the anti-actin antibody from Sigma Aldrich (Milan,
Italy). Western blot analyses of brain samples were performed as described9. Briefly,
mice were euthanized by decapitation, after which the heads of the animals were
immediately cooled by immersion in liquid nitrogen for 6 s. Both hemispheres of
striatum were rapidly dissected (within 60 s) on an ice-cold surface and frozen in
liquid nitrogen before protein extraction. Tissue samples were homogenized in
boiling 1% SDS solution supplemented with inhibitor of protease (Hoffmann-La-
Roche, Basel, Switzerland) and phosphatase (Termo Scientific, MA, USA) and boiled
for 10 min. Protein concentrations were measured using a DC-protein assay (Bio-
Rad, Hercules, CA). Protein extracts (25 mg) were separated on 10% SDS/PAGE and
transferred to nitrocellulose membranes. Blots were incubated with primary
antibodies overnight at 4uC. Immune complexes were detected using appropriate
peroxidase-conjugated secondary antibodies (Jackson Immuno-Research, West
Grove, PA) and a chemiluminescent reagent (SuperSignal West-Pico; Pierce
Biotechnology, Rockford, IL). Densitometric analysis was performed by IMAGEJ
software. For quantitative analysis, total proteins were used as loading controls for
phosphoprotein signals. Results were normalized to respective control conditions and
presented as means 6SEM.

BRET assay to analyze cAMP regulation and barrestin 2 recruitment to D2
dopamine receptor following GRK6 over-expression in vitro. The experiments
were performed in Human embryonic kidney 293 cells (HEK293T) cells with over-
expressed GRK6 as described12,33,34 (see Supplementary Information for details).

Statistical analysis. The catalepsy data for each dose of haloperidol were analyzed by
Two-Way ANOVA repeated measure with Genotype (WT and GRK6-KO) and
Treatment (Saline and Haloperidol) as between factor and Time (four time point) as
repeated measures factor. The basal locomotor activity of DAT-KO and DAT/GRK6-
KO was analyzed by One-Way ANOVA for repeated measures with Genotype (DAT-
KO and DAT/GRK6-KO) as between factor and Time (24 time points) as repeated
measures. The effect of L-DOPA in DDD mice was analyzed by One-Way ANOVA

for repeated measures with Genotype (DAT-KO and DAT/GRK6-KO) as between
factor and time (37 time points) as repeated measures. The effect of L-DOPA chronic
treatment on the hemiparkinsonian model were analyzed by Two-Way ANOVA with
Genotype (WT and GRK6-KO) and Lesion (sham-operated and lesioned) as between
factor and Time (Day1, Day7, Day14, Day21) as repeated measures. The AIMs score
were analyzed by One-Way ANOVA for repeated measures with Genotype (WT and
GRK6-KO) as between factor and Time (Day1, Day7, Day14, Day21) as repeated
measures. Neurochemical data for the dose response of haloperidol in the catalepsy
experiment were analyzed by One-Way ANOVA with Treatment (Saline, 1 and
2 mg/kg of haloperidol) as between factor. Tukey honestly significant difference
(HSD) or Bonferroni post hoc analyses were used when appropriate. The other
neurochemical and biochemical data were analyzed by either non-parametric one-
way ANOVA or Mann-Whitney u-test.
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