Beyond Streptococcus mutans: clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome

Key Points

  • Provides an update on the current understanding of the aetiological paradigms of the dental caries process.

  • Emphasises the importance of maintaining a healthy diverse oral microbiome for long-term caries control.

  • Discusses oral care implications of the new aetiological concepts of dental caries.

Abstract

Aetiological concepts of dental caries have evolved over the years from being considered as a disease initiated by nonspecific microorganisms, to being regarded as an 'infectious' disease caused by specific bacteria, to the current paradigms that emphasise a 'mixed bacterial-ecological approach' as being responsible for lesion initiation and pathogenesis. These aetiological paradigms are not just intellectual concepts but have important implications on how clinicians manage this age-old disease in the twenty-first century. Despite evidence-backed recommendations for adopting more biological measures to counter the disease, a significant proportion of dentists continue following traditional caries management guidelines in their daily clinical practice. This paper will review the evolving dental caries aetiological concepts and highlight the current evidence for adopting a more ecological approach to caries prevention, risk assessment, and treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Benjamin R M . Oral health: The silent epidemic. Public Health Rep 2010; 125: 158–159.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Kassebaum N J, Bernabe E, Dahiya M et al. Global burden of untreated caries: A systematic review and metaregression. J Dent Res 2015; 94: 650–658.

    Article  Google Scholar 

  3. 3

    Fejerskov O . Changing paradigms in concepts on dental caries: Consequences for oral health care. Caries Res 2004; 38: 182–191.

    PubMed  Article  Google Scholar 

  4. 4

    Miller W D . The microorganisms of the human mouth: The local and general diseases which are caused by them. Basel; New York: The S S. White Dental Mfg. Co., Philadelphia, 1973. Reprint of the 1890 edition.

  5. 5

    Black G V . Susceptibility and immunity in dental caries. Dent Cosmos 1899; 41: 826–830.

    Google Scholar 

  6. 6

    Rosier B T, De Jager M, Zaura E et al. Historical and contemporary hypotheses on the development of oral diseases: are we there yet? Front Cell Infect Microbiol 2014; 4: 92.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Keyes P H . The infectious and transmissible nature of experimental dental caries. Findings and implications. Arch Oral Biol 1960; 1: 304–320.

    PubMed  Article  Google Scholar 

  8. 8

    Tanzer J M . Dental caries is a transmissible infectious disease: the Keyes and Fitzgerald revolution. J Dent Res 1995; 74: 1536–1542.

    PubMed  Article  Google Scholar 

  9. 9

    Loesche W J . Chemotherapy of dental plaque infections. Oral Sci Rev 1976; 9: 65–107.

    PubMed  Google Scholar 

  10. 10

    Loesche W J, Bradbury D R, Woolfolk M P . Reduction of dental decay in rampant caries individuals following short-term kanamycin treatment. J Dent Res 1977; 56: 254–265.

    PubMed  Article  Google Scholar 

  11. 11

    Beighton D . The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 2005; 33: 248–255.

    PubMed  Article  Google Scholar 

  12. 12

    Aguilera Galaviz L A, Premoli G, Gonzalez A et al. Caries risk in children: Determined by levels of mutans streptococci and Lactobaccilus. J Clin Paediatr Dent 2005; 29: 329–333.

    Article  Google Scholar 

  13. 13

    Kleinberg I . A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med 2002; 13: 108–125.

    PubMed  Article  Google Scholar 

  14. 14

    Marsh P D . Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994; 8: 263–271.

    PubMed  Article  Google Scholar 

  15. 15

    Marsh P D . Are dental diseases examples of ecological catastrophes? Microbiology 2003; 149: 279–294.

    PubMed  Article  Google Scholar 

  16. 16

    Marsh P, Martin M V . The resident oral microflora. In Oral Microbiology. pp. 17–33. Woburn: Reed Educational and Professional Publishing Ltd, 1999.

    Google Scholar 

  17. 17

    Takahashi N, Nyvad B . Caries ecology revisited: microbial dynamics and the caries process. Caries Res 2008; 42: 409–418.

    PubMed  Article  Google Scholar 

  18. 18

    Takahashi N, Nyvad B . The role of bacteria in the caries process: ecological perspectives. J Dent Res 2011; 90: 294–303.

    PubMed  Article  Google Scholar 

  19. 19

    Bowden G H . Possibilities for modifying the caries attack by altering the oral microflora. J Can Dent Assoc 1984; 50: 169–172.

    PubMed  Google Scholar 

  20. 20

    Simon-Soro A, Mira A . Solving the aetiology of dental caries. Trends Microbiol 2015; 23: 76–82.

    PubMed  Article  Google Scholar 

  21. 21

    Tanner A C, Kressirer C A, Faller L L . Understanding caries from the oral microbiome perspective. J Calif Dent Assoc 2016; 44: 437–446.

    PubMed  Google Scholar 

  22. 22

    Aas J A, Griffen A L, Dardis S R et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 2008; 46: 1407–1417.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Gross E L, Beall C J, Kutsch S R et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One 2012; 7: e47722.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    de Carvalho F G, Silva D S, Hebling J et al. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol 2006; 51: 1024–1028.

    PubMed  Article  Google Scholar 

  25. 25

    Raja M, Hannan A, Ali K . Association of oral candidal carriage with dental caries in children. Caries Res 2010; 44: 272–276.

    PubMed  Article  Google Scholar 

  26. 26

    Koo H, Bowen W H . Candida albicans and Streptococcus mutans: A potential synergistic alliance to cause virulent tooth decay in children. Future Microbiol 2014; 9: 1295–1297.

    PubMed  Article  Google Scholar 

  27. 27

    Falsetta M L, Klein M I, Colonne P M et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immunity 2014; 82: 1968–1981.

    Article  Google Scholar 

  28. 28

    Gregoire S, Xiao J, Silva B B et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol 2011; 77: 6357–6367.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Kim D, Sengupta A, Niepa TH R et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep 2017; 7: 41332.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Dewhirst F E . The oral microbiome: Critical for understanding oral health and disease. J Calif Dent Assoc 2016; 44: 409–410.

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Nascimento M M, Gordan V V, Garvan C W et al. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol 2009; 24: 89–95.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Filoche S, Wong L, Sissons C H . Oral biofilms: Emerging concepts in microbial ecology. J Dent Res 2010; 89: 8–18.

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Kanasi E, Dewhirst F E, Chalmers N I et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res 2010; 44: 485–497.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Caufield P W, Dasanayake A P, Li Y . The antimicrobial approach to caries management. J Dent Educ 2001; 65: 1091–1095.

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Turnbaugh P J, Ley R E, Hamady M et al. The human microbiome project. Nature 2007; 449: 804–810.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Böök J, Grahnén H . Clinical and genetical studies of dental caries. II. Parents and sibs of adult highly resistant (caries-free) propositi. Odontol Revy 1953; 4: 1–53.

    Google Scholar 

  37. 37

    Gustafsson B E, Quensel C E, Lanke L S et al. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand 1954; 11: 232–264.

    PubMed  Article  Google Scholar 

  38. 38

    Bretz W A, Corby P M, Schork N J et al. Longitudinal analysis of heritability for dental caries traits. J Dent Res 2005; 84: 1047–1051.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Opal S, Garg S, Jain J et al. Genetic factors affecting dental caries risk. Aust Dent J 2015; 60: 2–11.

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Wang Q, Jia P, Cuenco K T et al. Multi-dimensional prioritization of dental caries candidate genes and its enriched dense network modules. PLoS ONE 2013; 8: e76666.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Ruby J, Goldner M . Nature of symbiosis in oral disease. J Dent Res 2007; 86: 8–11.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Marsh P D, Head D A, Devine D A . Ecological approaches to oral biofilms: control without killing. Caries Res 2015; 49: 46–54.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Duggal M S, van Loveren C . Dental considerations for dietary counselling. Int Dent J 2001; 51: 408–412.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Diagnosis and management of dental caries throughout life. National Institutes of Health consensus development conference statement. J Dent Educ 2001; 65: 1162–1168.

  45. 45

    Slomka V, Hernandez-Sanabria E, Herrero E R et al. Nutritional stimulation of commensal oral bacteria suppresses pathogens: the prebiotic concept. J Clin Periodontol 2017; 44: 344–352.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Liu Y L, Nascimento M, Burne R A . Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci 2012; 4: 135–140.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Cantore R, Petrou I, Lavender S et al. In situ clinical effects of new dentifrices containing 1.5% arginine and fluoride on enamel de-and remineralization and plaque metabolism. J Clin Dent 2013; 24: 32–44.

    Google Scholar 

  48. 48

    Kraivaphan P, Amornchat C, Triratana T et al. Two-year caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine, an insoluble calcium compound and 1450 ppm fluoride. Caries Res 2013; 47: 582–590.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Li J, Huang Z, Mei L et al. Anti-caries effect of arginine-containing formulations in vivo: A systematic review and meta-analysis. Caries Res 2015; 49: 606–617.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Petersen P E, Hunsrisakhun J, Thearmontree A et al. School-based intervention for improving the oral health of children in southern Thailand. Community Dent Health 2015; 32: 44–50.

    PubMed  Google Scholar 

  51. 51

    Srisilapanan P, Korwanich N, Yin W et al. Comparison of the efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride to a dentifrice containing 1450 ppm fluoride alone in the management of early coronal caries as assessed using Quantitative Light-induced Fluorescence. J Dent 2013; 41: 29–34.

    Article  Google Scholar 

  52. 52

    Astvaldsdottir A, Naimi-Akbar A, Davidson T et al. Arginine and caries prevention: A systematic review. Caries Res 2016; 50: 383–393.

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Shaw D, Naimi-Akbar A, Astvaldsdottir A . The tribulations of toothpaste trials: Unethical arginine dentifrice research. Br Dent J 2015; 219: 567–569.

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    ten Cate J M, Cummins D . Fluoride toothpaste containing 1.5% arginine and insoluble calcium as a new standard of care in caries prevention. J Clin Dent 2013; 24: 79–87.

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Adams S E, Arnold D, Murphy B et al. A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology. Sci Rep 2017; 7: 43, 344.

    Article  Google Scholar 

  56. 56

    Laleman I, Detailleur V, Slot D E et al. Probiotics reduce mutans streptococci counts in humans: a systematic review and meta-analysis. Clin Oral Investig 2014; 18: 1539–1552.

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Twetman S, Keller M K . Probiotics for caries prevention and control. Adv Dent Res 2012; 24: 98–102.

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Gruner D, Paris S, Schwendicke F . Probiotics for managing caries and periodontitis: Systematic review and meta-analysis. J Dent 2016; 48: 16–25.

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Huang X, Palmer S, Ahn S-J et al. Characterization of a highly arginolytic Streptococcus species that potently antagonizes Streptococcus mutans. Appl Environ Microbiol 2016; 82: 2187–2201.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Lopez-Lopez A, Camelo-Castillo A, Ferrer M D et al. Health-associated niche inhabitants as oral probiotics: The case of Streptococcus dentisani. Front Microbiol 2017; 8: 379.

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Duane B . Xylitol and caries prevention. Evid Based Dent 2015; 16: 37–38.

    PubMed  Article  Google Scholar 

  62. 62

    Lee W, Spiekerman C, Heima M et al. The effectiveness of xylitol in a school-based cluster-randomized clinical trial. Caries Res 2015; 49: 41–49.

    PubMed  Article  Google Scholar 

  63. 63

    Riley P, Moore D, Ahmed F et al. Xylitol-containing products for preventing dental caries in children and adults. Cochrane Database Syst Rev 2015; 26: CD010743.

    Google Scholar 

  64. 64

    de Cock P, Makinen K, Honkala E et al. Erythritol is more effective than xylitol and sorbitol in managing oral health endpoints. Int J Dent 2016; 2016: 9868421.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Falony G, Honkala S, Runnel R et al. Long-term effect of erythritol on dental caries development during childhood: A post-treatment survival analysis. Caries Res 2016; 50: 579–588.

    PubMed  Article  Google Scholar 

  66. 66

    Honkala S, Runnel R, Saag M et al. Effect of erythritol and xylitol on dental caries prevention in children. Caries Res 2014; 48: 482–490.

    PubMed  Article  Google Scholar 

  67. 67

    ten Cate J M, Zaura E . The numerous microbial species in oral biofilms: How could antibacterial therapy be effective? Adv Dent Res 2012; 24: 108–111.

    PubMed  Article  Google Scholar 

  68. 68

    Kaplan C W, Sim J H, Shah K R et al. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother 2011; 55: 3446–3452.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Koo H, Duarte S, Murata R M et al. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res 2010; 44: 116–126.

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Koo H, Schobel B, Scott-Anne K et al. Apigenin and tt-Farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res 2005; 84: 1016–1020.

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Hillman J D, Mo J, McDonell E et al. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J Appl Microbiol 2007; 102: 1209–1219.

    PubMed  Article  Google Scholar 

  72. 72

    Pan W, Mao T, Xu Q-a et al. A new gcrR-deficient Streptococcus mutans mutant for replacement therapy of dental caries. Scientific World J 2013; 2013: 7.

    Google Scholar 

  73. 73

    Janus M M, Crielaard W, Zaura E et al. A novel compound to maintain a healthy oral plaque ecology in vitro. J Oral Microbiol 2016; 8: 32513.

    PubMed  Article  Google Scholar 

  74. 74

    Qi F, Kreth J, Levesque C M et al. Peptide pheromone induced cell death of Streptococcus mutans. FEMS Microbiol Lett 2005; 251: 321–326.

    PubMed  Article  Google Scholar 

  75. 75

    Powell L V . Caries prediction: a review of the literature. Community Dent Oral Epidemiol 1998; 26: 361–371.

    PubMed  Article  Google Scholar 

  76. 76

    Mejare I, Axelsson S, Dahlen G et al. Caries risk assessment. A systematic review. Acta Odontol Scand 2014; 72: 81–91.

    PubMed  Article  Google Scholar 

  77. 77

    Bowden G H . Does assessment of microbial composition of plaque/saliva allow for diagnosis of disease activity of individuals? J Dent Res 1997; 88: 703–707.

    Google Scholar 

  78. 78

    Nunn M E, Braunstein N S, Krall Kaye E A et al. Healthy eating index is a predictor of early childhood caries. J Dent Res 2009; 88: 361–366.

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Henne K, Rheinberg A, Melzer-Krick B et al. Aciduric microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects. Anaerobe 2015; 35: 60–65.

    PubMed  Article  Google Scholar 

  80. 80

    Hansel Petersson G, Twetman S, Bratthall D . Evaluation of a computer programme for caries risk assessment in schoolchildren. Caries Res 2002; 36: 327–340.

    PubMed  Article  Google Scholar 

  81. 81

    Featherstone J D, Domejean-Orliaguet S, Jenson L et al. Caries risk assessment in practice for age 6 through adult. J Calif Dent Assoc 2007; 35: 703–707, 710–713.

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Ramos-Gomez F J, Crall J, Gansky S A et al. Caries risk assessment appropriate for the age 1 visit (infants and toddlers). J Calif Dent Assoc 2007; 35: 687–702.

    PubMed  Google Scholar 

  83. 83

    American Academy of Paediatric Dentistry. Guideline on caries-risk assessment and management for infants, children, and adolescents. Paediatr Dent 2013; 35: 157–164.

  84. 84

    American Dental Association (ADA). Caries risk assessment form (age 0–6). Available at https://www.ada.org//media/ADA/Member%20Center/FIles/topics_caries_under6.ashx (accessed August 2017).

  85. 85

    American Dental Association (ADA). Caries risk assessment form (age>6). Available at http://www.ada.org//media/ADA/Science%20and%20Research/Files/topic_caries_over6.ashx (accessed August 2017).

  86. 86

    Ngo H C, Gaffney S . Risk assessment in the diagnosis and management of caries. Pp. 61–82. In Mount G J, Hume W R (editors) Preservation and restoration of teeth. Brisbane: Knowledge Books and Software, 2005.

    Google Scholar 

  87. 87

    MacRitchie H M, Longbottom C, Robertson M et al. Development of the Dundee Caries Risk Assessment Model (DCRAM)-risk model development using a novel application of CHAID analysis. Community Dent Oral Epidemiol 2012; 40: 37–45.

    PubMed  Article  Google Scholar 

  88. 88

    Tellez M, Gomez J, Pretty I et al. Evidence on existing caries risk assessment systems: are they predictive of future caries? Community Dent Oral Epidemiol 2013; 41: 67–78.

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Holgerson P L, Twetman S, Stecksen-Blicks C . Validation of an age-modified caries risk assessment programme (Cariogram) in preschool children. Acta Odontol Scand 2009; 67: 106–112.

    PubMed  Article  Google Scholar 

  90. 90

    Tellez M, Bhoopathi V, Lim S . Baseline caries risk assessment using CAMBRA may predict caries only in high and extreme caries risk groups. J Evid Based Dent Pract 2015; 15: 197–199.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Divaris K . Predicting dental caries outcomes in children: A 'risky' concept. J Dent Res 2016; 95: 248–254.

    PubMed  Article  Google Scholar 

  92. 92

    Domejean S, Banerjee A, Featherstone J D B . Caries risk/susceptibility assessment: Its value in minimum intervention oral healthcare. Br Dent J 2017; 223: 191–197.

    PubMed  Article  Google Scholar 

  93. 93

    Pitts N B, Ekstrand K R . International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS) – methods for staging of the caries process and enabling dentists to manage caries. Community Dent Oral Epidemiol 2013; 41: 41–52.

    Article  Google Scholar 

  94. 94

    Walsh LJ . A system for total environmental management (STEM) of the oral cavity and its application to dental caries control. Int Dent 2008; 10: 26–41.

    Google Scholar 

  95. 95

    Pitts N B . Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Res 2004; 38: 294–304.

    PubMed  Article  Google Scholar 

  96. 96

    Elderton R J . Overtreatment with restorative dentistry: when to intervene? Int Dent J 1993; 43: 17–24.

    PubMed  Google Scholar 

  97. 97

    Mertz-Fairhurst E J, Curtis J W, Ergle J W et al. Ultra-conservative and cariostatic sealed restorations: results at year 10. J Am Dent Assoc 1998; 129: 55–66.

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Innes N P T, Schwendicke F . Restorative thresholds for carious lesions: Systematic review and meta-analysis. J Dent Res 2017; 96: 501–508.

    PubMed  Article  Google Scholar 

  99. 99

    Pitts N, Zero D . White paper on dental caries prevention and management: A summary of the current evidence and the key issues in controlling this preventable disease Available at https://www.fdiworlddental.org/sites/default/files/media/documents/2016-fdi_cpp-white_paper.pdf (accessed August 2017).

  100. 100

    Ismail A I, Tellez M, Pitts N B et al. Caries management pathways preserve dental tissues and promote oral health. Community Dent Oral Epidemiol 2013; 41: 12–40.

    Article  Google Scholar 

  101. 101

    Featherstone J D B . The science and practice of caries prevention. J Am Dent Assoc 2000; 131: 887–899.

    PubMed  Article  Google Scholar 

  102. 102

    Banerjee A, Frencken J E, Schwendicke F et al. Contemporary operative caries management: Consensus recommendations on minimally invasive caries removal. Br Dent J 2017; 223: 215–222.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Schwendicke F, Frencken J E, Bjorndal L et al. Managing carious lesions: Consensus recommendations on carious tissue removal. Adv Dent Res 2016; 28: 58–67.

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Bjorndal L, Larsen T, Thylstrup A . A clinical and microbiological study of deep carious lesions during stepwise excavation using long treatment intervals. Caries Res 1997; 31: 411–417.

    PubMed  Article  Google Scholar 

  105. 105

    Paddick J S, Brailsford S R, Kidd E A et al. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl Environ Microbiol 2005; 71: 2467–2472.

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106

    Weerheijm K L, Kreulen CM, de Soet J J et al. Bacterial counts in carious dentine under restorations: 2-year in vivo effects. Caries Res 1999; 33: 130–134.

    PubMed  Article  Google Scholar 

  107. 107

    Ricketts D, Lamont T, Innes N P et al. Operative caries management in adults and children. Cochrane Database Syst Rev 2013: CD003808.

  108. 108

    Bjorndal L, Reit C, Bruun G et al. Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur J Oral Sci 2010; 118: 290–297.

    PubMed  Article  Google Scholar 

  109. 109

    Innes N P, Evans D J, Stirrups D R . The Hall Technique; a randomized controlled clinical trial of a novel method of managing carious primary molars in general dental practice: acceptability of the technique and outcomes at 23 months. BMC Oral Health 2007; 7: 18.

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110

    Innes N P, Evans D J, Stirrups D R . Sealing caries in primary molars: randomized control trial, 5-year results. J Dent Res 2011; 90: 1405–1410.

    Article  Google Scholar 

  111. 111

    Orhan A I, Oz F T, Orhan K . Pulp exposure occurrence and outcomes after 1- or 2-visit indirect pulp therapy vs complete caries removal in primary and permanent molars. Paediatr Dent 2010; 32: 347–355.

    Google Scholar 

  112. 112

    Hesse D, Bonifacio C C, Mendes F M et al. Sealing versus partial caries removal in primary molars: a randomized clinical trial. BMC Oral Health 2014; 14: 58.

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Kidd E A . NIH: Consensus development conference on diagnosis and management of dental caries throughout life: Background. Diagnosis of secondary caries. Updated November 2016. Available at http://guides.lib.umich.edu/nihcdc/abstractsip/kidd (accessed 29 August 2017).

  114. 114

    Croll T P, Killian C M, Simonsen R J . The Hall technique: Serious questions remain. A hard look at the evidence base raises critical concerns. Ins Dent 2015; 11.

  115. 115

    Nainar S M . Success of Hall technique questioned. Paediatr Dent 2012; 34: 103.

    Google Scholar 

  116. 116

    Innes N P T, Evans D J P, Bonifacio C C et al. The Hall Technique 10 years on: Questions and answers. Br Dent J 2017; 222: 478–483.

    Article  Google Scholar 

  117. 117

    Innes N P, Ricketts D, Chong L Y et al. Preformed crowns for decayed primary molar teeth. Cochrane Database Syst Rev 2015: CD005512.

  118. 118

    Santamaria R M, Innes N P, Machiulskiene V et al. Caries management strategies for primary molars: 1-yr randomized control trial results. J Dent Res 2014; 93: 1062–1069.

    PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Boyd D H, Page L F, Thomson W M . The Hall Technique and conventional restorative treatment in New Zealand children's primary oral health care – clinical outcomes at two years. Int J Paediatr Dent 2017.

  120. 120

    Innes N P, Manton D J . Minimum intervention children's dentistry – The starting point for a lifetime of oral health. Br Dent J 2017; 223: 205–213.

    PubMed  Article  Google Scholar 

  121. 121

    Walsh L J, Brostek A M . Minimum intervention dentistry principles and objectives. Aust Dent J 2013; 58: 3–16.

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Suga U S, Terada R S, Ubaldini A L et al. Factors that drive dentists towards or away from dental caries preventive measures: systematic review and metasummary. PLoS One 2014; 9: 107, 831.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Philip.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Philip, N., Suneja, B. & Walsh, L. Beyond Streptococcus mutans: clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome. Br Dent J 224, 219–225 (2018). https://doi.org/10.1038/sj.bdj.2018.81

Download citation

Further reading

Search