Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The oral microbiota – a mechanistic role for systemic diseases

Key Points

  • Provides an overview on basic composition and distribution of oral microbiota.

  • Elucidates the underlying mechanisms of endogenous and exogenous factors on oral microbiota and oral health.

  • Reviews oral microbiota and its implications for systemic diseases.

  • Summarises the improvement of clinical diagnosis and treatment based on microbial community information.


Human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in the oral cavity. Oral microbiota generally exists in the form of a biofilm and plays a crucial role in maintaining oral homeostasis, protecting the oral cavity and preventing disease development. Human oral microbiota has recently become a new focus research for promoting the progress of disease diagnosis, assisting disease treatment, and developing personalised medicines. In this review, the scientific evidence supporting the association that endogenous and exogenous factors (diet, smoking, drinking, socioeconomic status, antibiotics use and pregnancy) modulate oral microbiota. It provides insights into the mechanistic role in which oral microbiota may influence systemic diseases, and summarises the challenges of clinical diagnosis and treatment based on the microbial community information. It provides information for noninvasive diagnosis and helps develop a new paradigm of personalised medicine. All these benefit human health in the post-metagenomics era.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: An association between oral bacteria and cardiovascular diseases.
Figure 2


  1. 1

    Wu J, Peters B A, Dominianni C et al. Cigarette smoking and the oral microbiome in a large study of American adults. Isme J 2016; 10: 2435–2446.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Lodi C S, Oliveira L V, Brighenti F L, Delbem A C, Martinhon C C . Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel. Braz Oral Res 2015; 29: 01–07.

    Article  Google Scholar 

  3. 3

    Lin S . Can the dental team shape dietary behaviour? BDJ Team 2016; 3: 19–20.

    Article  Google Scholar 

  4. 4

    Buffie C G, Jarchum I, Equinda M et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2012; 80: 62–73.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    David L A, Materna A C, Friedman J et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol 2014; 15: 1–15.

    Article  Google Scholar 

  6. 6

    Dominguez-Bello M, Costello E, Contreras M et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats. P Natl Acad Sci 2010; 107: 11971–11975.

    Article  Google Scholar 

  7. 7

    Sampaio-Maia B, Caldas I M, Pereira M L, Pérez-Mongiovi D, Araujo R . The oral microbiome in health and its implication in oral and systemic diseases. Adv Appl Microbiol 2016; 97: 171–210.

    PubMed  Article  Google Scholar 

  8. 8

    Zaura E, Nicu E A, Krom B P, Keijser B J . Acquiring and maintaining a normal oral microbiome: current perspective. Front Cell Infect Microbiol 2014; 4: 85.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Alshehri S S, Sweeney E L, Cowley D M et al. Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: a comparison of breast-fed and formula-fed infants. Sci Rep 2016; 6: 38309.

    Article  Google Scholar 

  10. 10

    Dewhirst F E, Chen T, Izard J et al. The human oral microbiome. J Bacteriol 2010; 192: 5002–5017.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil H S . Role of oral microbiome on oral cancers, a review. Biomed Pharmacother 2016; 84: 552–558.

    PubMed  Article  Google Scholar 

  12. 12

    Zarco M F, Vess T J, Ginsburg G S . The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis 2012; 18: 109–120.

    PubMed  Article  Google Scholar 

  13. 13

    Zaura E, Keijser B J, Huse S M, Crielaard W . Defining the healthy 'core microbiome' of oral microbial communities. BMC Microbiol 2009; 9: 259–261.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Olsen I . The oral microbiome in health and disease. In Olsen I (ed). Oral infections and general health. pp 97–114. Springer International Publishing, 2016.

    Chapter  Google Scholar 

  15. 15

    Camanocha A, Dewhirst F . Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol 2014; 10.3402/jom.v6.25468.

  16. 16

    Lazarevic V, Whiteson K, Hernandez D, François P, Schrenzel J . Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 2010; 11: 523–534.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Crielaard W, Zaura E, Schuller A A, Huse S M, Montijn R C, Keijser B J . Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics 2011; 4: 1–13.

    Article  Google Scholar 

  18. 18

    Papaioannou W, Gizani S, Haffajee A D, Quirynen M, Mamaihomata E, Papagiannoulis L . The microbiota on different oral surfaces in healthy children. Oral Microbiol Immunol 2009; 24: 183–189.

    PubMed  Article  Google Scholar 

  19. 19

    Kelvin L, Bihan M, Methé B A . Analyses of the stability and core taxonomic memberships of the human microbiome. Plos One 2013; 8: e63139–e63164.

    Article  Google Scholar 

  20. 20

    Sonnenburg J L, Fischbach M A . Community health care: therapeutic opportunities in the human microbiome. Sci Transl Med 2011; 3: 78ps12–78ps21.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Belstrøm D, Holmstrup P, Nielsen C H et al. Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J Oral Microbiol 2014; 6: 1–9.

    Article  Google Scholar 

  22. 22

    Illuzzi N, Galli R, Kushugulova A, Zhumadilov Z, Licciardello O, Marotta F . Expanding the Metchnikoff postulate: oral health is crucial in a successful global aging management strategy. Rejuvenation Res 2014; 17: 172–175.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Agbaje H O, Kolawole K A, Folayan M O et al. Digit sucking, age, gender and socioeconomic status as determinants of oral hygiene status and gingival health of children in suburban Nigeria. J Periodontol 2016; 87: 1047–1056.

    PubMed  Article  Google Scholar 

  24. 24

    Bhargava S, Motwani M B, Patni V M . Effect of handheld mobile phone use on parotid gland salivary flow rate and volume. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114: 200–206.

    PubMed  Article  Google Scholar 

  25. 25

    Murshid E Z . Diet, oral hygiene practices and dental health in autistic children in Riyadh, Saudi Arabia. Oral Health Dent Manag 2014; 13: 91–96.

    PubMed  Google Scholar 

  26. 26

    Tanner A C R, Mathney J M J, Kent R L et al. Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol 2011; 49: 1464–1474.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Kato I, Vasquez A, Moyerbrailean G et al. Nutritional correlates of human oral microbiome. J Am Coll Nutr 2016: 1–11.

  28. 28

    Adler C J, Malik R, Browne G V, Norris J M . Diet may influence the oral microbiome composition in cats. Microbiome 2016; 4: 23–32.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Jaiswal G R, Jain V K, Dhodapkar S V et al. Impact of bariatric surgery and diet modification on periodontal status: a six month cohort study. J Clin Diagn Res 2015; 9: ZC43–45.

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Schutt C A, Neubauer P, Paskhover B, Fang-Yong L, Sasaki C T . The impact of dairy consumption on salivary inoculum. Dysphagia 2014; 29: 277–287.

    PubMed  Article  Google Scholar 

  31. 31

    Dagli N, Dagli R, Darwish S, Baroudi K . Oral microbial shift: factors affecting the microbiome and prevention of oral disease. J Contemp Dent Prac 2016; 17: 90–96.

    Article  Google Scholar 

  32. 32

    Sapkota A R, Berger S, Vogel T M . Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect 2010; 118: 351–356.

    PubMed  Article  Google Scholar 

  33. 33

    Eaton T, Rd F J, von Reyn C F . Recovery of Mycobacterium avium from cigarettes. J Clin Microbiol 1995; 33: 2757–2758.

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Kanwar A, Sah K, Grover N, Chandra S, Singh R R . Long term effect of tobacco on resting whole mouth salivary flow rate and pH: An institutional based comparative study. Eur J Gen Dent 2013; 2: 296–299.

    Article  Google Scholar 

  35. 35

    Brook I . The impact of smoking on oral and nasopharyngeal bacterial flora. J Dent Res 2011; 90: 704–710.

    PubMed  Article  Google Scholar 

  36. 36

    Mason M R, Preshaw P M, Nagaraja H N, Dabdoub S M, Rahman A, Kumar P S . The subgingival microbiome of clinically healthy current and never smokers. Isme J 2015; 9: 268–272.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Moon J H, Lee J H, Lee J Y . Subgingival microbiome in smokers and non-smokers in Korean chronic periodontitis patients. Mol Oral Microbiol 2015; 30: 227–241.

    PubMed  Article  Google Scholar 

  38. 38

    Bizzarro S, Loos B G, Laine M L, Crielaard W, Zaura E . Subgingival microbiome in smokers and non-smokers in periodontitis: an exploratory study using traditional targeted techniques and a next-generation sequencing. J Clin Periodontol 2013; 40: 483–492.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Jabbour Z, Nascimento C . Assessing the oral microbiota of healthy and alcohol-treated rats using whole-genome DNA probes from human bacteria. Arch Oral Biol 2013; 58: 317–323.

    PubMed  Article  Google Scholar 

  40. 40

    Ahn J, Chen C Y, Hayes R B . Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 2012; 23: 399–404.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Thomas A M, Gleber-Netto F O, Fernandes G R et al. Alcohol and tobacco consumption affects bacterial richness in oral cavity mucosa biofilms. BMC Microbiol 2014; 14: 1–12.

    Article  Google Scholar 

  42. 42

    Wight A J, Ogden G R . Possible mechanisms by which alcohol may influence the development of oral cancer - a review. Oral Oncol 1998; 34: 441–447.

    PubMed  Article  Google Scholar 

  43. 43

    Barroso E, Martín V, Martínezcuesta M C, Peláez C, Requena T . Stability of saliva microbiota during moderate consumption of red wine. Arch Oral Biol 2015; 60: 1763–1768.

    PubMed  Article  Google Scholar 

  44. 44

    Daglia M, Papetti A, Grisoli P, Aceti C, Dacarro C, Gazzani G . Antibacterial activity of red and white wine against oral streptococci. J Agr Food Chem 2007; 55: 5038–5042.

    Article  Google Scholar 

  45. 45

    Zaura E, Brandt B W, Mattos M J T D et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in faeces. Mbio 2015; 6: e01693–e01708.

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Abeles S R, Jones M B, Santiago-Rodriguez T M et al. Microbial diversity in individuals and their household contacts following typical antibiotic courses. Microbiome 2016; 4: 39–51.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Ling Z, Liu X, Jia X et al. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children. Sci Rep 2014; 4: 7485.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Ferrer M, Méndezgarcía C, Rojo D, Barbas C, Moya A . Antibiotic use and microbiome function. Biochem Pharmacol 2017; 134: 114–126.

    PubMed  Article  Google Scholar 

  49. 49

    Miller G E, Engen P A, Gillevet P M et al. Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. Plos One 2016; 11: e0148952–e0148969.

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Fujiwara N, Tsuruda K, Iwamoto Y et al. Significant increase of oral bacteria in the early pregnancy period in Japanese women. J Investig Clin Dent 2015; 8: e12189–e12197.

    Article  Google Scholar 

  51. 51

    Adriaens L M, Alessandri R, Spörri S, Lang N P, Persson G R . Does pregnancy have an impact on the subgingival microbiota? J Periodontol 2009; 80: 72–81.

    PubMed  Article  Google Scholar 

  52. 52

    Jensen J, Liljemark W, Bloomquist C . The effect of female sex hormones on subgingival plaque. J Periodontol 1981; 52: 599–602.

    PubMed  Article  Google Scholar 

  53. 53

    Elattar T M . Prostaglandin E2 in human gingiva in health and disease and its stimulation by female sex steroids. Prostaglandins 1976; 11: 331–341.

    PubMed  Article  Google Scholar 

  54. 54

    Fujiwara N, Tsuruda K, Iwamoto Y et al. Significant increase of oral bacteria in the early pregnancy period in Japanese women. J Investig Clini Dent 2017; 8: 10.1111/jicd.12189. Epub 2015 Sep 8.

    Article  Google Scholar 

  55. 55

    Gao S, Brown J, Wang H, Feng X . The role of glycogen synthase kinase 3-β in immunity and cell cycle: implications in esophageal cancer. Arch Immunol Ther Exp 2014; 62: 131–144.

    Article  Google Scholar 

  56. 56

    Gao S, Li S, Ma Z et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agent Cancer 2016; 11: 3–12.

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Janati A I, Durand R, Karp I, Voyer R, Latulippe J F, Emami E . Association between oral conditions and colorectal cancer: A literature review and synthesis. Rev Epidemiol Sante Publique 2016; 64: 113–119.

    Article  Google Scholar 

  58. 58

    Flynn K J, Baxter N T, Schloss P D . Metabolic and community synergy of oral bacteria in colorectal cancer. mSphere 2016; 1: e00102–e00116.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Nosho K, Sukawa Y, Adachi Y et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016; 22: 557–566.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Momenheravi F, Babic A, Tworoger S S et al. Periodontal disease, tooth loss, and colorectal cancer risk: Results from the Nurses' Health Study. Int J Cancer 2016; 140: 646–652.

    Article  Google Scholar 

  61. 61

    Gur C, Ibrahim Y, Isaacson B et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumours from immune cell attack. Immunity 2015; 42: 344–355.

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Fan X, Alekseyenko A V, Jing W et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2016; 0: 1–8.

    Google Scholar 

  63. 63

    Huang J, Roosaar A, Axéll T, Ye W . A prospective cohort study on poor oral hygiene and pancreatic cancer risk. Int J Cancer 2016; 138: 340–347.

    PubMed  Article  Google Scholar 

  64. 64

    Curtis M A . Periodontal microbiology - the lid's off the box again. J Dent Res 2014; 93: 840–842.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Miyatani F, Kuriyama N, Watanabe I et al. Relationship between Cnm-positive Streptococcus mutans and cerebral microbleeds in humans. Oral Dis 2015; 21: 886–893.

    PubMed  Article  Google Scholar 

  66. 66

    Eberhard J, Stumpp N, Winkel A et al. Streptococcus mitis and Gemella haemolysans were simultaneously found in atherosclerotic and oral plaques of elderly without periodontitis—a pilot study. Clin Oral Investig 2016; 21: 447–452.

    PubMed  Article  Google Scholar 

  67. 67

    Huck O, Saadi-Thiers K, Tenenbaum H, Davideau J L, Romagna C, Laurent Y . Evaluating periodontal risk for patients at risk of or suffering from atherosclerosis: recent biological hypotheses and therapeutic consequences. Arch Cardiovasc Dis 2011; 104: 352–358.

    PubMed  Article  Google Scholar 

  68. 68

    Tonomura S, Ihara M, Kawano T et al. Intracerebral haemorrhage and deep microbleeds associated with cnm-positive Streptococcus mutans; a hospital cohort study. Sci Rep 2016; 6: 20074–20083.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Kocgozlu L, Elkaim R, Tenenbaum H, Werner S . Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res 2009; 88: 741–745.

    PubMed  Article  Google Scholar 

  70. 70

    Beck J, Garcia R, Heiss G, Vokonas P S, Offenbacher S . Periodontal disease and cardiovascular disease. J Periodontol 1996; 67: 1123–1137.

    PubMed  Article  Google Scholar 

  71. 71

    Blasi C . The autoimmune origin of atherosclerosis. Atherosclerosis 2008, 201: 17–32.

    PubMed  Article  Google Scholar 

  72. 72

    Scannapieco F A, Shay K . Oral health disparities in older adults: oral bacteria, inflammation, and aspiration pneumonia. Dent Clin North Am 2014; 58: 771–782.

    PubMed  Article  Google Scholar 

  73. 73

    Scales B S, Erb-Downward J R, Huffnagle I M, Lipuma J J, Huffnagle G B . Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics 2015; 16: 1032–1049.

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Dickson R P, Erbdownward J R, Huffnagle G B . Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol 2015; 390: 1047–1055.

    Article  Google Scholar 

  75. 75

    Dickson R P, Erbdownward J R, Martinez F J, Huffnagle G B . The microbiome and the respiratory tract. Physiology 2016; 78: 381–386.

    Google Scholar 

  76. 76

    Scannapieco F A . Pneumonia in nonambulatory patients: The role of oral bacteria and oral hygiene. J Am Dent Assoc 2006; 137: S21–S25.

    Article  Google Scholar 

  77. 77

    Segal L N, Clemente J C, Tsay J C J et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 2016; 1: 16031.

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Chhibbergoel J, Singhal V, Bhowmik D et al. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. Npj Biofilms Microbiomes 2016; 2: 7–20.

    Article  Google Scholar 

  79. 79

    Mäntylä P, Buhlin K, Paju S et al. Subgingival Aggregatibacter actinomycetemcomitans associates with the risk of coronary artery disease. J Clin Periodontol 2013; 40: 583–590.

    PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Ogrendik M . Rheumatoid arthritis is linked to oral bacteria: etiological association. Mod Rheumatol 2009; 19: 453–456.

    PubMed  Article  Google Scholar 

  81. 81

    Zhang X, Zhang D, Jia H et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 2015; 21: 895–905.

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Whitaker T B . Standardisation of mycotoxin sampling procedures: an urgent necessity. Food Control 2003; 14: 233–237.

    Article  Google Scholar 

  83. 83

    Xu X, He J, Xue J et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol 2015; 17: 699–710.

    PubMed  Article  Google Scholar 

  84. 84

    Luo W, Wen S, Yang L, Zheng G . Mucosal anti-caries DNA vaccine: a new approach to induce protective immunity against streptococcus mutans. Int J Exp Pathol 2017; 10: 853–857.

    Google Scholar 

  85. 85

    Hatta H, Tsuda K, Ozeki M et al. Passive Immunization against dental plaque formation in humans: effect of a mouth rinse containing egg yolk antibodies (IgY) specific to Streptococcus mutans. Caries Res 1997; 31: 268–274.

    PubMed  Article  Google Scholar 

  86. 86

    Al-Ghananeem A M, Leung K P, Faraj J, DeLuca P P . Development of a sustained antiplaque and antimicrobial chewing gum of a decapeptide. AAPS PharmSciTech 2017; 18: 2240–2247.

    PubMed  Article  Google Scholar 

  87. 87

    Khurshid Z, Najeeb S, Mali M et al. Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharm J 2016; 25: 25–31.

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Presa M, Ortiz A Z, Garabatos N et al. Cholera toxin subunit B peptide fusion proteins reveal impaired oral tolerance induction in diabetes-prone but not in diabetes-resistant mice. Eur J Immunol 2013; 43: 2969–2979.

    PubMed  Article  Google Scholar 

  89. 89

    Zhang T, Wang Z, Hancock R E, De l F C, Haapasalo M . Treatment of oral biofilms by a D-Enantiomeric Peptide. Plos One 2016; 11: e0166997–e0167013.

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Twetman S, Derawi B, Keller M, Ekstrand K, Yucellindberg T, Stecksenblicks C . Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand 2009; 67: 19–24.

    PubMed  Article  Google Scholar 

  91. 91

    Zahradnik R T, Magnusson I, Walker C, Mcdonell E, Hillman C H, Hillman J D . Preliminary assessment of safety and effectiveness in humans of ProBiora 3 ™, a probiotic mouthwash. J Appl Microbiol 2009; 107: 682–690.

    PubMed  Article  Google Scholar 

  92. 92

    Di Pierro F, Donato G, Fomia F et al. Preliminary paediatric clinical evaluation of the oral probiotic Streptococcus salivarius K12 in preventing recurrent pharyngitis and/or tonsillitis caused by Streptococcus pyogenes and recurrent acute otitis media. Int J Gen Med 2012; 5: 991–997.

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Ohshima T, Kojima Y, Seneviratne C J, Maeda N . Therapeutic application of synbiotics, a fusion of probiotics and prebiotics, and biogenics as a new concept for oral candida infections: a mini review. Front Microbiol 2016; 7: 10–18.

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Petrou I, Heu R, Stranick M et al. A breakthrough therapy for dentin hypersensitivity: how dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. J Clin Dent 2009; 20: 23–31.

    PubMed  Google Scholar 

  95. 95

    Que K, Fu Y, Lin L et al. Dentin hypersensitivity reduction of a new toothpaste containing 8.0% arginine and 1450 ppm fluoride: an 8-week clinical study on Chinese adults. Am J Dent 2010; 23 Spec No A: 28A–35A.

    PubMed  Google Scholar 

  96. 96

    Schiff T, Delgado E, Zhang Y P, Cummins D, Devizio W, Mateo L R . Clinical evaluation of the efficacy of an in-office desensitizing paste containing 8% arginine and calcium carbonate in providing instant and lasting relief of dentin hypersensitivity. Am J Dent 2009; 22 Spec No A: 8A–16A.

    PubMed  Google Scholar 

Download references


The authors thank the National Science Foundation, China for financial support. Jia was responsible for writing. Zhi, Lai and Wang were responsible for modification and revision. Xia, Xiong and Zhang were responsible for language assistance. Che gave us the technology support in this paper. Ai was responsible for designing. All authors have read and approved the final article.

Author information



Corresponding author

Correspondence to L. Ai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, G., Zhi, A., Lai, P. et al. The oral microbiota – a mechanistic role for systemic diseases. Br Dent J 224, 447–455 (2018).

Download citation

Further reading


Quick links