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of the oral disease paradigm.3 Lifestyles and 
diets including smoking, alcohol drinking 
and consuming spicy food, and antibiotic 
treatments can persistently alter commensal 
microbial communities.4 The resultant 
microbial disturbances may increase pathogen 
susceptibility.5

The disturbance of the oral microbiota–
ecology balance in the host usually causes a 
series of oral infectious diseases including 
dental caries, apical periodontitis, periodontal 
diseases, pericoronitis, and craniofacial bone 
osteomyelitis. Oral microbiota is also associ-
ated with several systemic diseases, namely car-
diovascular disease, pneumonia, heart disease, 
rheumatoid arthritis, pancreatic cancer, colo-
rectal cancer, oesophageal cancer, stroke, and 
adverse pregnancy outcomes. Accordingly, oral 
microbiota has been considered as a potential 
biomarker for human diseases. Relationships 
between oral microbiota and systemic diseases 
are essential and need to be elucidated, in order 
to provide a reasonable diagnosis basis for 
disease prevention and treatments.

This article mainly discusses the mecha-
nisms for how endogenous and exogenous 
factors modulate oral microbiota, provides 
insights into their roles in the influence of 

Introduction

The oral cavity is a connection channel 
between outside environments and the res-
piratory tract and digestive tract. It provides 
an appropriate temperature, humidity, and 
nutrition for microorganism colonisation. The 
human oral microbiome has been extensively 
studied as part of the Human Microbiome 
Project. The oral microbiome has an essential 
role in maintaining a normal oral ecologi-
cal balance and in the development of oral 
diseases. There is abundant evidence support-
ing the theory that endogenous and exogenous 
factors are closely related to oral microbiota 
and systemic diseases.1,2 Studies on dietary 
behaviours demonstrate a fundamental aspect 

Human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in the 

oral cavity. Oral microbiota generally exists in the form of a biofilm and plays a crucial role in maintaining oral homeostasis, 

protecting the oral cavity and preventing disease development. Human oral microbiota has recently become a new 

focus research for promoting the progress of disease diagnosis, assisting disease treatment, and developing personalised 

medicines. In this review, the scientific evidence supporting the association that endogenous and exogenous factors (diet, 

smoking, drinking, socioeconomic status, antibiotics use and pregnancy) modulate oral microbiota. It provides insights into 

the mechanistic role in which oral microbiota may influence systemic diseases, and summarises the challenges of clinical 

diagnosis and treatment based on the microbial community information. It provides information for noninvasive diagnosis 

and helps develop a new paradigm of personalised medicine. All these benefit human health in the post-metagenomics era.

oral microbiota on systemic diseases, and sum-
marises the challenges for clinical diagnosis 
and treatment.

Basic composition and distribution of 
oral microbiota
The oral microbiome can be classified into core 
microbiome and variable microbiome. The 
core microbiome is similar for all individuals 
and comprised of the predominant species at 
different sites of the healthy body. The variable 
microbiome is different between individuals in 
response to unique lifestyles and phenotypic 
and genotypic determinants.

For newborns, within five minutes of birth, 
bacterial communities in the oral cavity and 
other body habitats are very similar to each 
other.6 Types of microorganisms are closely 
decided by the delivery mode.7 In addition, 
the mother’s oral microbiota is the most 
important source of infants’ and young chil-
dren’s oral microbiota by successful vertical 
transmission.7,8 As ageing continues, babies 
and children form a wide variety of oral 
microorganisms in response to different diets, 
lifestyles, environments and so on.9

The oral cavity contains over 700 
microbial species as well as commensal 
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composition and distribution of oral 
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Elucidates the underlying mechanisms 
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implications for systemic diseases.

Summarises the improvement of 
clinical diagnosis and treatment based 
on microbial community information.
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and opportunistic bacteria, archaea, fungi, 
protozoa, and viruses.10,11 Every species plays 
its particular role and strongly interacts with 
the other species and the host.7 Actinobacteria, 
Bacteroidetes, Firmicutes, and Proteobacteria 
are probably most significant for oral health.12 
The major genera with the largest represen-
tation in oral cavities include the following: 
Streptococcus, Prevotella, Haemophilus, Rothia, 
Veillonellaceae, Neisseria, Fusobacterium and 
Porphyrin.13 Recently, primer pairs have 
been developed to make phylum-selective 
16S rRNA clone libraries. In the libraries, 
species (Chloroflexi, Synergistetes, Chlorobi, 
Gracilibacteria, Saccharibacteria, and others) 
are identified from the lesser known oral phyla 
or candidate divisions.14,15

The salivary microbial groups are stable for 
a short term, although there are significant dif-
ferences in the oral microbial groups affected 
by a variety of factors.16,17 There are 11 human 
microbial habitats in the oral cavity, including 
hard palate, tongue dorsum, saliva, palatine 
tonsils, throat, buccal mucosa, keratinised 
gingiva, supra-gingival plaque, subgingival 
plaque, dentures, and lips. The 11 habitats 
have been shown to contain different core 
microorganisms when sampled from more 
than 200 healthy people with high throughput 
sequencing methods as listed in Table 1.7,13,18,19 
Microbiomes from the same location on the 
body are more similar among different individ-
uals than those from different locations on the 
same individual.12,20 Within these oral habitats, 
13 (tongue dorsum) to 19 (hard palate) bacteria 
phyla were described, including 185 (tongue 
dorsum) to 322 (throat) genera.7 After many 
years of research, there are still new discoveries 
due to the microbial diversity.

Endogenous and exogenous factors 
affecting oral microbiota
In healthy individuals, oral microbiome balance 
is regarded as dynamic because it changes 
in response to endogenous and exogenous 
factors. Human lifestyle and experiences can 
quickly and profoundly change the stability 
of microbial communities associated with the 
host.5 In other words, host lifestyle, physiology, 
genotype, pathobiology, environment, immune 
system, transient community members, and 
socioeconomic status are generally consid-
ered as important factors in the multifacto-
rial background of oral diseases and systemic 
diseases.1,21–24 However, the underlying mecha-
nisms of these factors on oral microbiota and 
oral health are not yet fully elucidated.

Diets

The change of dietary macronutrients and diet 
type can lead to a shift of the oral microbiome 
and diseases. Nutrients, such as sugars, fats 
and vitamins, play important roles in the oral 
microbiome. In severe early childhood caries, 
sugar-rich diets and frequent snacks show the 
highest associations with Streptococcus mutans 
(S.  mutans) and Fusobacterium  nucleatum 
(F. nucleatum).25,26 Saturated fatty acids (SFA) 
and vitamin C intakes are consistently cor-
related with alpha (within-subjects) diversity 
indexes in both richness and diversity.27 The 
higher the SFA intake, the higher the relative 
abundance of fusobacteria (Leptotrichiaceae) 
and betaproteobacteria. Vitamin C and the 
other intake-related vitamins, for example, B 
vitamins and vitamin E, exhibited positive cor-
relations with the population of fusobacteria.27 
Adler and his co-workers also found that cats 
on dry-food diets showed very high diversity 
in oral microbiome, especially with a higher 
abundance of Porphyromonas spp.

28

Dietary modification with increased fibrous 
foods and dairy products and decreased fatty 
and sugary foods has been advised to maintain 
a normal oral ecological balance.29–31

Smoking

Cigarettes are rich in bacterial diversity, har-
bouring a variety of microorganisms from 
environmental bacteria and commensals to 
potential oral pathogens. Bacteria presenting 
in the cigarette could be transferred to the 

mouths of smokers even before the cigarette is 
lit.32 Some of these bacteria including Bacillus 
spp. and Clostridium spp. could survive the 
burning/smoking process, be inhaled by 
smokers and other exposed individuals, and 
colonise the oral cavity.33

Additionally, several other potential mecha-
nisms also reveal how smoking alters oral 
microbial ecology, including increasing the 
acidity of saliva, depleting oxygen, antibiotic 
effects, influencing oral bacterial adherence 
to mucosal surfaces, and impairing host 
immunity.34,35 For example, the oxygen depri-
vation hypothesis proves that smoking creates 
an environment favouring strict or facultative 
anaerobes over strict aerobes.36 The genus 
Streptococcus, Veillonella and Actinomyces are 
facultative or obligate anaerobes. Conversely, 
aerobes such as Neisseria subflava and 
Corynebacterium are depleted in smokers,1,36 
consistent with previous studies.37,38

Drinking
The influence of red liquor and wine on the 
oral microbiota is different. Liquor could lead 
to an increase in the concentration and number 
of gram-positive bacteria, such as S. mutans.39 
Oral bacteria converts ethanol to acetalde-
hyde, which is a toxin and recognised human 
carcinogen.40 The production of acetaldehyde 
might also directly result in inhibition of fuso-
bacteria.41 Specific impurities, contaminants, 
N-nitrosodiethylamine, and polycyclic aromatic 
hydrocarbons generated in the fermenta-
tion, distillation or maturation processes also 
change the oral environment and affect certain 

Table 1  Distribution of dominant microorganisms in oral cavity

Section Dominant microorganism

Hard palate Streptococcus, Uncl.Pasteurellaceae, Veillonella, Prevotella, Uncl.Lactobacillales

Tongue dorsum Streptococcus, Veillonella, Prevotella, Uncl. Pasteurellaceae, Actinomyces

Saliva Prevotella, Streptococcus, Veillonella, Uncl. Pasteurellaceae

Palatine tonsils Streptococcus, Veillonella, Prevotella, Uncl. Pasteurellaceae, Fusobacterium

Throat Streptococcus, Veillonella, Prevotella, Uncl. Pasteurellaceae, Actinomyces, 
Fusobacterium, Uncl. Lactobacillales

Buccal mucosa Streptococcus, Uncl. Pasteurellaceae, Gemella

Keratinised ginguva Streptococcus, Uncl. Pasteurellaceae

Supragingvial plaque Streptococcus, Capnocytophaga, Corynebacterium, Uncl. Pasteurellaceae,  
Uncl. Neisseriaceae

Subgingival plaque Streptococcus, Fusobacterium, Capnocytophaga, Prevotella, Corynebacterium 

Dentures Staphylococcus epidermidis, Streptococcus

Lips Streptococcus, Candida albicans
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species.42 However, the regular and moderate 
consumption of red wine does not change the 
overall diversity and stability of representa-
tive bacterial groups of the human saliva.43 
Furthermore, the synthetic mixtures of the 
organic acids (succinic, malic, lactic, tartaric, 
citric, and acetic acid) in red and white wines are 
active against oral streptococci responsible for 
caries development and Streptococcus pyogenes 
responsible for pharyngitis.44 These suggest that 
moderate drinking of red and white wines can 
enhance oral health.

Antibiotics use

Antibiotics are a mainstay of treatment for 
bacterial infections worldwide. Antibiotics 
influence bacterial growth curves and this is 
why they are used to kill pathogens. Bactericidal 
antibiotics directly kill the bacteria, while 
bacteriostatic antibiotics inhibit their growth. 
Many studies report that antibiotics such as 
azithromycin, amoxicillin clindamycin and 
ciprofloxacin affect the amount and diversity 
of oral microbes.45,46 Some general changes can 
be observed such as an immediate decrease in 
actinobacteria count in throat.31 The reported 
data also demonstrate that the oral microbiome 
functions (microbe metabolic activity, microbial 
gene expression and protein synthesis) were also 
drastically changed as a direct consequence of 
antibiotic treatments. For example, antibiotics 
might damage and/or destruct the bacterial 
cells and consequently decrease their enzymatic 
activity.47 The extent to which our oral micro-
biota changes after an antibiotic intervention 
depends not only on the chemical nature of the 
antibiotic used to treat specific infections, but 
also on the type of administration, duration and 
dose, as well as the level of resistance that each 
microbiota develops.48 Therefore, the establish-
ment of new drug-based therapeutic strategies 
would require multi-variable analysis.

Socioeconomic status

Among the factors affecting oral health, socio-
economic status (SES) is the important factor 
that should not be neglected. At present, little 
is known about the influence of differences in 
SES on the composition of the oral microbi-
ome. Studies report that these differences are 
reflected by the bacterial profiles of saliva. 
Megasphaera micronuciformis, Veillonella 
atypical, Veillonella parvula, Rothia muci-
laginosa, Prevotella histicola, Fusobacterium 
periodontium, Granulicatella adiacens and 

Tannerella forsythia were abundant in the 
high socioeconomic status group, while 
Aggregatibacter segnis, Achromobacter xylosox-
idans and Neisseria cluster ii were abundant in 
the low socioeconomic group.21

The SES of each family determines the 
choices of family members’ educational attain-
ment, health concepts, hygiene habits, dietary 
patterns and medical services. Therefore, Chu 
et al. believed that the oral microbiome might 
vary considerably over time because of SES and 
the phenomenon of reducing oral microbial 
diversity was disproportionately prevalent in 
low-SES neighbourhoods.49

Pregnancy

Variations in oral microbiota in pregnancy have 
been observed. In the early stages of pregnancy, 
the total number of cultivated microbes in 
pregnant women increase significantly. For 
example, the abundance of P. gingivalis and 
Aggregatibacter actinomycetemcomitans 
(A.  actinomycetemcomitans) in the gingival 
sulcus were significantly higher than that in the 
non-pregnant group, whereas Prevotella inter-
media (P. intermedia) and F. nucleatum did not 
change.50 From weeks 12 to 28 of pregnancy, no 
changes occur. During late pregnancy, Candida 
species were more frequently detected.

Total bacterial counts decreased postpartum. 
The most dramatic microbial changes were the 
decrease of species including Capnocytophaga 
ochracea, Capnocytophaga sputigena, 
Eubacterium saburreum, Fusobacterium 
nucleatum naviforme, Fusobacterium nucleatum 
polymorphum, Leptotrichia buccalis, Parvimonas 
micra, P. intermedia, Prevotella melaninogenica, 
Staphylococcus aureus (S. aureus), Streptococcus 
anginosus, Streptococcus intermedius, S. mutans, 
Streptococcus oralis, Streptococcus sanguinis, 
Selenomonas noxia, and Veillonella parvula, while 
the abundance of Neisseria mucosa was found 
to increase significantly over time.51 Changes in 
pregnancy (especially physiological condition 
and female hormones) have a significant impact 
on the oral microbiota, and may promote the 
colonisation of various microorganisms, espe-
cially periodontal pathogens, that may be a risk 
factor for the health of pregnant women.52

Oral bacteria and systemic diseases

Increasingly, evidence suggests that specific 
bacterial infections promote development 
of certain diseases. Accordingly, this section 
mainly summarises the relationships between 

oral bacteria and systemic diseases. It also 
provides a deep insight into the mechanistic 
role in the influence of oral microbiota on 
cancers and inflammatory diseases.

Oral bacteria and cancers

Oesophageal cancer
Oesophageal cancer is the eighth most frequent 
tumour and sixth leading cause of cancer 
death worldwide.55 The latest study showed 
that oral bacteria might increase the risk of 
oesophageal cancer. Immunohistochemically, 
Porphyromonas gingivalis (P.  gingivalis) has 
been detected in 61% of cancerous tissues, 
12% of adjacent tissues, and 0% of normal 
oesophageal mucosa. In addition, lysine-
specific gingipain distribution and P. gingivalis 
16S rDNA were also researched. These findings 
were pioneering in proving that P.  gingi-
valis infected the oesophageal epithelium of 
oesophageal cancer patients. The infection was 
observed in association with the progression of 
oesophageal cancer, and could be an important 
biomarker for this disease. Furthermore, eradi-
cation of a common oral pathogen might help 
to reduce the burden of oesophageal cancer.56

Colorectal cancer
Fusobacteria, which are from the mouth, cause 
excessive immune responses and turn on cancer 
growth genes. The microbes have been linked 
with colorectal cancer.57 Fusobacteria gather 
massively in adenomas – a benign bowel growth 
that will become cancerous as time goes on. The 
polymicrobial nature of oral biofilms and the 
asaccharolytic metabolism of many of these 
species helps them live well in the microen-
vironment of colonic lesions.58 By attracting 
special immune cells, fusobacteria invade the 
bowel and set off an inflammatory response 
that could accelerate the formation of colorec-
tal tumours. Fusobacteria have specific surface 
molecules assisting them to attach and invade 
human colorectal cancer cells. In colorectal 
cancer, F. nucleatum has been demonstrated to 
expand myeloid-derived immune cells, strongly 
inhibit T-cell proliferation or activation, and 
induce T-cell apoptosis.59 Periodontal diseases 
including tooth loss might increase systemic 
inflammation, lead to immune dysregula-
tion, and alter gut microbiota, and therefore 
possibly influence colorectal carcinogenesis.60 
However, oral bacteria F. nucleatum could 
protect all sorts  of tumour cells from being 
killed by immune cells.61 The Fap2 protein of F. 
nucleatum directly interacts with TIGIT(T-cell 
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immunoglobulin and ITIM domain), leading to 
the inhibition on NK cell cytotoxicity and T-cell 
activities.61 This was a tumour-based immune 
evasion mechanism that was bacteria-depend-
ent, wherein F.  nucleatum bound tumours 
were protected from NK-mediated killing 
and immune cell attack due to an interaction 
between the Fusobacterial protein Fap2 with 
the immune cells inhibitory receptor TIGIT. 
F. nucleatum adhered to various tumour cells. 
NK cells clustered around F. nucleatum coated 
tumour cells. F. nucleatum exerted its inhibitory 
effect on TIGIT through the immunoreceptor 
tail tyrosine (ITT)-like and the immunodomi-
nant tyrosine-based inhibitory (ITIM) motifs 
located in TIGIT cytoplasmic tail. TIGIT was 
expressed in tumour infiltrating lymphocytes 
(TILs) found within colon adenocarcinoma and 
F. nucleatum inhibited the activity of these TILs 
in a Fap2-dependent manner. Furthermore, the 
Fap2 protein of F. nucleatum could inhibit the 
activity of T-cells presenting in the peripheral 
blood, such as interferon-γ secretion. These 
discoveries can lead to a better early diagnosis 
technique and new strategy for the treatment 
of cancer patients. Furthermore, the correlation 
of Fusobacterium with T-cells and microRNA 
expressions still needs to be clarified in 
colorectal cancer.

Pancreatic cancer
Pancreatic cancer is the fourth leading cause 
of cancer-related death and a serious threat 
to human health. Oral pathogens, especially 
P.  gingivalis and Aggregatibacter actinomy-
cetemcomitans (A.  actinomycetemcomitans) 
were associated with a high risk of pancreatic 
cancer.62 Microbial cells released from the 
biofilm through the epithelium and spread 
systemically via the blood circulation. Some 
of the bacteria isolated from pancreatic tissues 
were members of the oral microbiome.63 
P. gingivalis, one of the aetiological factors in 
pancreatic cancer, had the ability to escape host 
response and impair innate immunity, subse-
quently strengthening the favourable inherent 
environment  for bacterial overgrowth, 
which in turn might mediate the microbial 
community and promote the conversion from 
a symbiotic state to a dysbiotic state. All above 
changes might cause high levels of inflam-
mation in pancreatic cancer.64 Nitrosamines 
in the oral cavity that raised levels of major 
oral bacteria (P. gingivalis), could induce and 
promote a rapid development of pancreatic 
cancer. Therefore, the oral bacteria (P. gingi-
valis and A. actinomycetemcomitans) can be 
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Fig. 1  An association between oral bacteria and cardiovascular diseases. (PGE2: 
prostaglandin E2; TNF-α: tumour necrosis factor-α; IL-1β: interleukin-1β; IL-6: 
interleukin-6)

GENERAL

450 BRITISH DENTAL JOURNAL  |  VOLUME 224  NO. 6  |  MARCH 23 2018

Official
 
journal

 
of

 
the

 
British

 
Dental

 
Association.



a good candidate as an effective biosensor for 
early diagnosis of pancreatic cancer.

Oral bacteria and inflammatory 
diseases

Atherosclerosis
Accurate and early diagnosis of cardiovascular 
diseases will greatly improve the survival rate 
of patients. Oral microbiota such as S. mutans, 
P.  gingivalis, and Gemella haemolysans 
(G. haemolysans) may play a role in cardio-
vascular disease.65–67

S.  mutans could contribute directly to 
atherosclerosis by disrupting endothelial cell 
function, one of the earliest indicators of car-
diovascular diseases.65 S.  mutans is a major 
pathogen for dental caries. Oral S.  mutans 
induced intracerebral haemorrhage experi-
mentally and affected cerebral microbleeds.65 
A significant correlation of cnm-positive 
S.  mutans was observed with hypertensive 
intracerebral haemorrhage and deep cerebral 
microbleeds.68 G. haemolysans was simultane-
ously found in atherosclerotic and oral plaques 
of the elderly without periodontitis.66 As shown 
in Figure 1, there are three theories about bac-
teriology, inflammation, and immunology to 
explain the relationships between periodontal 
diseases and cardiovascular diseases.

In the early stage of infection, epithelial 
cells responded strongly to P.  gingivalis by 
producing IL-6, INF-γ, or  TNF-α, causing 
local tissue destruction. Subsequently, bacteria 
and virulence factors (for example, gingipains, 
lipopolysaccharide or fimbriae) entered into 
the bloodstream through degraded gingival 
tissues and activated endothelial cells, and 
produced inflammatory  reaction under the 
action of pro-inflammatory mediators (for 
example, IL-8, MCP-1), growth factors, dif-
ferentiation factors, cell-adhesion molecules 
and toll-like receptors. Eventually, P. gingivalis 
stimulation could shift endothelial cells toward 
a pro-thrombotic state (Fig. 1a).69

Furthermore, virulence factors accelerate the 
development of atheromatous plaque. Infection of 
epithelial cells by periodontal bacteria stimulated 
the production of proinflammatory cytokines 
(TNF-α, IL-1β, IL-6, and PGE2). These cytokines 
entered the blood circulation and affected cells 
in atheromatous plaques, leading to the devel-
opment of atherosclerosis (Fig. 1c).67 Especially 
during developing periodontal diseases, both 
these monocytic hyper-inflammatory pheno-
types amplify the inflammatory process and 
cross-reactivity inducing destruction of host 

cells promotes the development of atheromatous 
plaques (Fig. 1b).70,71

Pneumonia
Aspiration of bacteria from the oral cavity into 
the lower airway was possible since the surfaces 
of oral cavity were contiguous with those of the 
trachea and lower airway.72 Oral bacteria con-
tinuously flowed into the lungs, and the lungs 
exhausted the bacteria through ciliary actions 
and coughing.73 The lungs are constantly exposed 
to diverse communities of microbes from the 
oropharynx, and novel culture-independent 
techniques of microbial identification have 
revealed that the lungs, previously considered 
sterile in health, harbor diverse communities of 
microbes.
. Streptococcus, Prevotella and Veillonella were 
the most common bacteria in healthy lungs. The 
microbial density in lungs was less than 1/1000 of 
that in the oral cavity, mainly because the lungs 
had no mucosa suitable for forming bacterial 
ecology.74,75 Control of oral biofilm formation 
could reduce the numbers of potential respira-
tory pathogens in the oral secretions, which in 
turn could reduce the risk for pneumonia.72 
Recently, the concept of lung specific microbial 
groups had been accepted, but oral bacteria 
were still derived as a risk factor for ventilator-
associated pneumonia. Under poor oral hygiene 
conditions, pathogens were easy to colonise in 
the oral cavity including methicillin resistant 
S.  aureus, Pseudomonas aeruginosa, and ten 

genera of gram-negative bacilli. Subsequent aspi-
ration would deposit these bacteria (especially 
anaerobic organisms derived from the gingival 
crevice) and inflammatory products (associated 
with periodontal disease) into the lower airway, 
thereby increasing the risk of lung infection.76, 77

Heart disease
To date, the accumulated epidemiological 
evidence supported an association between 
oral bacterial diseases (such as periodontal 
diseases) and coronary artery disease (CAD). 
The present studies confirmed that five oral 
commensal bacteria (Campylobacter rectus, 
P.  gingivalis, Porphyromonas endodontalis, 
P.  intermedia, Prevotella nigrescens) were 
unique to coronary artery disease when 
compared with several non-cardiac disorders.78 
And the presence of A. actinomycetemcomitans 
in the subgingival area was associated with 
an almost two fold risk of angiographically 
confirmed stable CAD.79 This suggested a 
special role for A. actinomycetemcomitans in 
CAD, other than only as a pathogen associated 
with periodontitis. Studies on the infection 
mechanisms between oral bacteria and CAD 
were essential for providing some clues for 
medicinal treatments in clinic. As depicted 
in Figure 2, many oral microbes that secreted 
proteins, peptides and proteases lived in the 
gingival crevice. These secretory peptides and 
proteases were likely responsible for altering 
the host actin cytoskeleton in the gingival 

Fig. 2  An association between oral bacteria and coronary artery disease
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epithelium leading to oral microbial entry into 
the bloodstream system. Upon gaining entry 
into the coronary vasculature, these migratory 
bacteria could form biofilm structures within 
atherosclerotic plaques and caused CAD. 
These secreted proteins could also activate 
the immune system causing inflammation. 
For example, cytokine-mediated (IL-6  and 
IL-8) inflammation was associated with 
CAD. Furthermore, certain proteases caused 
an inflammatory response by activating the 
complement system.

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a systemic, inflam-
matory autoimmune disease. Most clinical 
studies involving specific oral microorganisms 
as triggers for RA were only dependent on sero-
logical detection methods. Rheumatoid factors 
had been identified as autoantibodies that 
reacted to the IgG molecule in the Fc region, 
and these antibodies could be the IgM, A, G or 
E epitopes. P. gingivalis proteinase was respon-
sible for the epitope development in the RF Fc 
region. A previous study identified the lysine 
and arginine amino acid sequences for the Fc 
region of the IgG molecule; because P. gingivalis 
specifically decomposed lysine and arginine, 
the IgG3 CH2 and CH3 domains processed 
by P. gingivalis proteinase became powerful 
targets for the RF produced by rheumatoid 
cells.80 It was also found that the microbiome of 
patients with RA was similar to that of healthy 
subjects with similar periodontal status with 
the multiplexed-454-16S rRNA pyrosequenc-
ing method; however, specific Prevotella and 
Leptotrichia were only found in patients with 
new-onset RA, and anaeroglobus geminatus 
was correlated with the presence of peptidyl-
arginine deiminase and rheumatoid factors, and 
with periodontitis.23 Another large-scale study 
using metagenomic shotgun sequencing identi-
fied compositional and functional alterations in 
RA-associated oral microbiomes, which were 
partly resolved by disease-modifying antirheu-
matic drugs treatments.81 Thus, all these data 

approaches suggested that microbiome compo-
sition could be important in the prognosis and 
diagnosis of RA.

The improvement of clinical diagnosis 
and treatment based on microbial 
community information
Databases of bacterial compositions generally 
identified by using high-throughput sequenc-
ing methods of the microbiome will facilitate 
advanced functional studies on genomics, 
transcriptomics, and the metabolomics of both 
host and pathogens. Such analysis can provide 
deep insights into the activity of the microbes, 
the relationship of the host and microbes, and 
potential causative mechanisms. The chal-
lenges of clinical diagnosis and treatment 
based on the microbial community informa-
tion are still waiting to be conquered.

The standardisation of clinical samples
Standardisation of sampling plans implies 
that (a) the design elements of the sampling 
plan must be considered in any standardisa-
tion process and (b) the elements are selected 
to maximise performance.82 Oral micro-
ecosystem is a complex system. Its microbial 
community species composition and genetic 
types are significantly different to the eco-
logical sites and are even within the same site. 
These differences are further governed by a 
variety of host factors, including gene, health 
state, age, gender, dentition status, life-style, 
socioeconomic status, mobile phone use, living 
area, and religion.

Previous studies using high-throughput 
analysis techniques had observed that the oral 
cavity was a highly heterogeneous ecologi-
cal system containing significantly different 
microbial communities. The Firmicutes was 
the dominant bacterium of salivary and dental 
mucosa, while Proteobacteria, Firmicutes, 
Bacteroidetes and Fusobacteria were the 
dominant bacteria of the dental plaque. More 
importantly, the oral microbial structure varied 
with age and dentition status.83 The results 

indicated that sampling process, sampling 
parts and the age of the sample objects were 
crucial to collect the accurate, systematic, and 
reproducible results.

Therefore, developing a uniform sampling 
plan to be used by all researchers is extremely 
important. The factors mentioned above should 
be taken into account in the standardisation of 
oral clinical samples so the errors can be effec-
tively reduced. Furthermore, the standardisa-
tion of clinical samples also should be that:
• The oral site needs to be delimited before 

sampling
• Objective sampling should represent the 

entire oral ecosystem or site
• Sampling should consist of the same small 

subsamples
• Sampling using large-size samples implies 

that the selection of the sample site is 
representative

• The sampling unit should be large enough 
for efficient statistical processing.

Analysis and processing of big data in 
an oral microbial community
Microbial big data are generated by high 
throughput sequencing, for functional predic-
tion, biological classification of species, and 
gene analysis. They have rapidly developed into 
a hot topic that attracts extensive attention from 
academia, industry, and governments around 
the world. Although enhanced by the contents 
of the Human Oral Microbiome Database, the 
explosive growth of data presents us with grand 
challenges (namely, data complexity, computa-
tional complexity, and system complexity). The 
single data analysis process (Table 2) has some 
limitations, and does not meet the need for deep 
mining of microbial big data.

The lack of corresponding bioinformatics 
tools for reducing sequencing cost, optimis-
ing the analysis process, increasing specificity 
and sensitivity of biological community infor-
mation and analysis method of sorting and 
digging large medical data are still the major 
bottleneck in the era of big data.

Table 2  Characteristics analysis of different microbiome platforms

Name Organisation Taxonomy Functional 
annotation

Comparison 
between samples

Comparison 
between projects

Advanced 
search

Connect to 
public database

MG-RAST Argonne National Laboratory Yes No Yes No No No

IMG DOE Joint Genome institute Yes Yes No No No No

iMicrobe University of Arizona Yes No No No No No

EMG European Bioinformatics institute Yes Yes Yes Yes No Yes
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The following work may improve this 
situation:
• Developing a set of interoperable data 

analysis tools that can run on different 
computing platforms. This will effectively 
improve the reliability and comparability 
of data analysis

• Combining the data of electronic health 
records and genome data can help effec-
tively explore the pathogenesis and thera-
peutic effect of diseases

• Functional studies including genomics, 
transcriptomics and metabolomics of both 
host and oral pathogens.

This specific microbial application and 
analysis is in an exciting phase of research. 
Such analysis could guide researchers to 
develop new therapies that target key mecha-
nisms. These are very crucial in advancing the 
personalised diseases early warning service 
for personalised diseases based on the oral 
microbiome.

Further verification of the cross-
sectional study
More and more data show that the oral microbi-
ome is related to dental diseases, cardiovascular 
disease and others. In these cross-sectional 
studies, various factors such as individual gene 
and bacterial variation influence the cross-sec-
tional data and reduce reliability and accuracy 

of flora mapping. More importantly, the pure 
cross-sectional studies only provide the cor-
relation of microbial community and diseases 
rather than clear their ‘causality’. Host and 
microbiota have significant heterogeneity in 
various stages of the disease development. If a 
large number of data of genome, transcriptome, 
proteome, and metabolome are associated with 
clinical data such as clinical manifestations, 
pathology, biochemical markers and immune 
indicators, it looks forward to making clear 
the ‘causality’ of the core microbial group and 
disease, and crediting an oral microbiota-based 
prediction model to develop a new paradigm of 
personalised medicine.

Trends of treatment without 
antibiotics
Due to antibiotic overuse, the emergence of 
drug-resistant strains and frequent recur-
rence of the disease in affected individuals are 
increasing challenges in antifungal therapy. 
Moreover, indiscriminate use of antibiotics 
affects the delicate balance between normal 
flora and host. Beneficial bacteria are also 
eliminated, depriving the host from their 
beneficial effects. This has prompted the need 
for an alternative therapeutic and prevention 
strategy. Antibodies, vaccine, antimicrobial 
peptides, probiotics, prebiotics, synbiotics, 
and arginine become alternative therapeutic 
options, as illustrated in Table 3.

Antimicrobial peptides, probiotics combined 
with prebiotics and the screening probiotics, 
and arginine may assist or replace antibiotic 
treatments for oral microbial problems and 
in turn prevent systemic diseases. In the near 
future, a rapidly increasing body of knowledge 
promises to indicate more targeted applica-
tions of probiotics. It still needs to clearly 
determine which organisms are beneficial and 
play a preventive or therapeutic role. For those 
that can duly be termed probiotics, a variety of 
applications have to be defined more precisely 
than before.

Summary

Oral microbiota is an important intermediate 
link, causing different oral and overall health 
in the body under the influence of changes in a 
variety of factors. Once the microbiota balance 
has been disturbed, it may result in oral and 
even systemic diseases. Although a number of 
causes including infectious pathogens or use of 
antibiotics can lead to a disruption of microbial 
equilibrium, the role of our diet, nutrition, 
lifestyle and socioeconomic status is crucial.

In addition, observation of oral micro-
biota is a major indicator for the occurrence, 
development, and prognosis of disease. It has 
been verified that the microbiome is related 
to human physiology and pathology. An 
oral microbiota-based prediction model can 

Table 3  An alternative therapeutic and prevention strategy of oral diseases

Kinds Mechanism Typical researches References

Vaccine and antibodies
1. Stimulates the production of a protective antibody. 1. Mucosal anti-caries DNA vaccine

84,85
2. Other immune mechanisms. 2. mouth rinse (containing egg yolk antibodies IgY)

Antimicrobial peptides

1. Inhibit biofilm accumulation via the down-regulation of genes. 1. Chewing gums

86-89
2. Kill cells by targeting both extracellular and intracellular components. 2. Histatin peptides

3. Fusion peptide

4. D-Enantiomeric Peptide

Probiotics, prebiotics, 
and synbiotics

1. Direct interaction – inhibition of pathogen adhesion, colonisation and 
biofilm formation. 1. Chewing gums

90-93
2. Competitive exclusion – competing and intervening with bacterial 

attachments and engaging in metabolism of substrate. 2. Probiotic mouthwash

3. Indirect actions – modulating systemic immune function. 3. Medicine(eg BLIS K12)

4. Functional foods

Arginine

1. Prevent shifts in biofilm flora to acid-producing bacteria. 1. Dentifrice

94-962. Neutralise plaque acids and stabilise the residual plaque biofilm on 
susceptible tooth surfaces. 2. Toothpaste

3. Office desensitising paste
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provide the basis for noninvasive diagnosis and 
facilitate the development of a new paradigm of 
personalised medicine. All these benefit human 
health in the post-metagenomics era.
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Correction
Research article Br Dent J 2018; 224: 113–115.
When this article was initially published a paragraph on page 115 was incorrect. The corrected paragraph reads as follows:

The culmination of the three-year programme is defined by the satisfactory completion of the Annual Review of Competence Progression 
(ARCP) process and attainment of the Membership in Restorative Dentistry (MRD) (soon to be replaced with Membership in Periodontology, 
Membership in Endodontics and Membership in Prosthodontics) within the speciality which enables the individual to register onto the General 
Dental Council’s specialist list relevant to their training.

The author apologises for this error and any inconvenience caused.
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