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Where do people live, and how has this changed over timescales of centuries? High-resolution spatial
information on historical human population distribution is of great significance to understand human-
environment interactions and their temporal dynamics. However, the complex relationship between
population distribution and various influencing factors coupled with limited data availability make it a
challenge to reconstruct human population distribution over timescales of centuries. This study generated
1-km decadal population maps for the conterminous US from 1790 to 2010 using parsimonious models
based on natural suitability, socioeconomic desirability, and inhabitability. Five models of increasing
complexity were evaluated. The models were validated with census tract and county subdivision population
data in 2000 and were applied to generate five sets of 22 historical population maps from 1790–2010.
Separating urban and rural areas and excluding non-inhabitable areas were the most important factors for
improving the overall accuracy. The generated gridded population datasets and the production and
validation methods are described here.
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Background & Summary
Human actions have caused substantial alterations to the Earth, transforming the landscape, affecting
ecosystem patterns and processes, driving biodiversity loss, altering global hydrological and
biogeochemical cycles, amplifying resource exploitation and environmental deterioration, and
contributing to climate change1–3. Such ecological and societal consequences vary across space. Human
population density is considered to be a useful indicator of the type and intensity of the human
environment interaction, with higher population density leading to higher levels of impacts4–7. Therefore,
it is vital to create reliable spatially explicit, high-resolution estimates of the human population
distribution to advance our understanding of coupled human and natural systems, to provide support to
policy decision-making, and to achieve ecological and socioeconomic sustainability8.

Census data have been routinely collected and applied, however, such data are ascribed to defined
administrative units, leading to abrupt changes in population at the administrative boundary, and
masking of spatial heterogeneity within administrative units9,10. For the conterminous US, census data
are available at the county level from 1790 to 2010 (ref. 11). These data could provide strong support for
improved understanding of human-environment interactions, if more refinement was possible within the
administrative units. Dasymetric mapping is an areal interpolation to disaggregate data from a set of areal
units into finer units using ancillary data12. The modern revolution in geospatial data availability greatly
facilitates dasymetric mapping and the creation of more accurate data on population distribution13,
including the Gridded Population of the World (GPW)14, the Global Rural Urban Mapping Project
(GRUMP)15, LandScan16, and WorldPop17.

A recent challenge has been to map the human population distribution in low income nations, where
detailed updated census data or high resolution geospatial data are lacking18–21. Similar challenges from
insufficient data availability occur in estimating historical population distributions. The high resolution
mapping efforts described above were all developed based on modern census data since 1990, and are of
limited utility for long-term (e.g., multi-decadal) dynamic analyses22,23. A notable exception is the
History Database of the Global Environment (HYDE)24. While the temporal range from HYDE is vast
(from 1000 BC to 2005 AD), the 10-km spatial resolution is relatively low, constrained by input
census data.

Major influencing factors that have been considered in human population mapping include land
cover, night lights, topography, urban areas, and roads25–27. Land use/land cover data, derived from
remote sensing images, best reflect population density and have been suggested as an important source
for human population mapping19,28. However, such imagery data only became available beginning with
the launch of the first land satellite, Landsat-1, in 1972. Several global land cover datasets29–33 have used
census data as an input or a proxy for human activities to simulate the spatial map of anthropogenically
managed land (e.g. cropland, pasture). However, it would be circular and infeasible to use such derived
land cover data to model population distribution.

The goal of this study is to generate spatially explicit human population distribution maps for the
conterminous US that could be used to advance studies of anthropogenic effects on the environment, and
to provide support for policy decision-making. Recognizing that the spatial resolution of census
administrative boundaries is the principal factor affecting map accuracy21, we use county-level census
data, as this is the highest resolution data consistently available from 1790 to 2010. Despite the scarcity of
reliable historical land cover maps, the separation of urban and rural settlement areas could significantly
improve the accuracy of population distribution mapping19, since 80.7% of the US population lived in
urban areas, which covered only about 3.1% of the total land area, according to the 2010 US census34.
Power-law scaling relationships35 between urban area and population were applied to estimate historical
urban areas. Additional data including elevation, water bodies, and protected areas were used to allocate
population to urban and rural areas within counties. Five models of increasing complexity, from one
(M1) to eight variables (M5), were developed to model population distribution. The models were
validated with measured data from 2000 based on comparison with census data at the tract and county
subdivision levels, and applied to generate five sets of 22 historical decadal population maps from
1790–2010 (Historical population dataset for the conterminous US, Data Citation 1). The model-
generated urban extents were also assessed in two fast-growing regions in which historical data were
available36,37: San Francisco/Sacramento and Baltimore/Washington DC.

Methods
Data collection
Census data at four levels of spatial resolution, mainly obtained from the National Historical Geographic
Information System (NHGIS) (https://www.nhgis.org/)38, were used: total and urban population at
county level (1790–2010), county subdivision population (1980–2010), census tract population
(1990–2010), and population for urban areas (2000 and 2010). Note that American Indians were not
fully included in the census prior to 1900 (ref. 39). Our results thus underestimated populations where
American Indians settled. County, county subdivision, census tract, and urban area boundary shapefiles
were also obtained from NHGIS. Census division boundaries and population for selected urban areas in
earlier decades were obtained from the US Census Bureau (Fig. 1).

Waterbody data (medium resolution, at 1:100 000-scale), including lake/pond features, swamps/
marshes, reservoirs, playas, estuaries, and ice mass, were completed in 2001 and derived from the
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National Hydrography Dataset (http://nhd.usgs.gov/). Protected areas data (version 1.3), designated to
preserve biological diversity and other natural, recreation and cultural uses, were released in 2012 and
obtained from National Gap Analysis Program (http://gapanalysis.usgs.gov/padus/). Digital elevation
model data (Fig. 2) were released in 2013 and derived from NASA Shuttle Radar Topography Mission
Version 3.0 (http://www2.jpl.nasa.gov/srtm/), with a resolution of 90 m. Historical data on urban spatial
extents for San Francisco/Sacramento and Baltimore/Washington DC region36,37 were from the USGS
Land Cover Institute (LCI).

Level of spatial units
The above data were used to compute population for each inhabited pixel (k) in each decade (t) from
1790 to 2010 (excluding 1960). The data were variously applied over the following spatial units: urban
area (φ), census tract (c1), county subdivision (c2), county (i), census division (δ), and Region (μ). There
were 9 census divisions (δ: D1 – D9) and 7 Regions (μ: R1 – R7) with constant boundaries over time,
while the number of other spatial units varied with the expansion of human settlements and the
modification of administrative boundaries. For example, the number of counties increased from 292 in
1790 to 3109 in 2010. Also, in 2010, there were 7,754 146 pixels (1 km2), 72,271 census tracts, 35,532
county subdivisions, and 3,535 urban areas in the conterminous US.

Population count determination
Decennial census data on total population (PT) and aggregated urban population (PU) for each urban area
(φ) determined the remaining rural population (PR) by difference, for each county (i) from 1790 to 2010
(excluding 1960, for which digital urban population data are missing):

PR ¼ PT -
P

PU ;φ ð1Þ
The number of counties containing urban population increased from 19 in 1790 to 2424 in 2010. For
counties with more than one urban area, we obtained the population for individual urban areas from the
US Census Bureau. Note a population threshold of 2500 was used for identifying urban areas (https://
www.census.gov/geo/reference/ua/urban-rural-2010.html).

Areal extent delineation
The 2000 census includes full coverage of areal extent (AU) for all of the 3610 urban areas. However, areal
extents are incomplete for 1990 and largely unknown in prior decades. The 1990 NHGIS data cover only
396 large urban areas with population larger than 50,000. Thus, the 2000 data were used as a baseline for

Figure 1. The major spatial input data for the population downscaling models, and associated

administrative unit boundaries (census divisions D1 to D9, state, county, and urban areas). Un-inhabitable

areas include designated protected areas, waterbodies, and highlands with eleviation, z, larger than 3500 m.
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historical backward projections of urban areal extents. The areal extent of each urban area (φ) in a census
division (δ) prior to 2000 was estimated on the basis of a power law scaling relationship with its
population PU,φ

35 :

AU ;φ ¼ αδP
βδ
U ;φ; f or φAδ ð2Þ

where αδ and βδ are the proportionality coefficient and scaling factor for census division δ estimated by
fitting log(AU) and log(PU) in 2000 according to equation (2). Strong linear relationships between log(AU)
and log(PU) have been identified based on modern satellite imagery and census data40–43, and also
observed in ancient settlements, for example, the Pre-Hispanic settlements in the Basin of Mexico44. Our
hypothesis was that this scaling was stable and could be used to reconstruct historical settlement patterns.
Empirical studies45 have revealed spatial variation of β values: 0.375 for England and Wales, 0.914 for
Japan, 1.38 for China, and larger than 2/3 for US urbanized areas (population larger than 50,000). Spatial
variation of β was incorporated here by developing such relationships for each census division, δ.
However, the lack of corresponding AU and PU data for urban areas before 2000 precluded further

Figure 2. Topo-demography relationships. Topography and boundaries for regions R0 to R7 for the

conterminous US (a), and relationships between log population density and county mean elevation in 2000 for

the seven regions (b). Region 4 is divided into three sub-regions by elevation. Solid lines are linear regressions

with slope m.
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evaluation of the temporal stationarity of β. Thus, the scaling relationships were considered stable for
simplicity, with constant parameter values over time. The extent of rural areas (AR) within each county (i)
was determined as the difference between the county total area (AT) and the aggregated extents of all
urban areas in the county:

AR ¼ AT -
P

AU ;φ ð3Þ
Two simplifying assumptions were further made to delineate the extent of each urban area over time: 1)
urbanization was monotonic, with historically established urban areas still extant in 2000; 2) urban areas
developed outward from their center, so regions farthest from the center would urbanize last. The urban
extents for each urban area in each decade were delineated by concentrically shrinking inward towards
their center moving backward with time from 2000, with the remainder considered as rural areas.

Influence coefficient calculation
Inhabitability, topographic suitability, and socio-economic desirability were the three major factors
considered to influence human population distribution. The calculation method for the influence
coefficient (w) of each factor for each pixel (k) is explained below. Note the influence coefficients for
inhabitability (w0k) and topographic suitability (w1k) were steady over time, while the influence coefficient
for socio-economic desirability (w2k) changed with the urbanization process.

Inhabitability. Inhabitable zones were defined here to exclude protected areas, waterbodies larger than
1 km2, and areas with elevation higher than 3500 m (Fig. 1). Protected areas were regarded as non-
inhabitable if their status was defined as “Designated”, indicating legal or administrative decree, and if
their public access was classified as “Restricted” or “Closed”. Note that protected areas are not constant
during the time period of the study, and some populations were displaced in the creation of protected
areas in the US. But the total number of such displaced persons is relatively low such that we expect the
impact on our final results to be minor. Low-population census tracts were also treated as non-
inhabitable areas. Preliminary analyses revealed that areal weighting resulted in overestimates for low
population tracts. This simplification was found to reduce the overall model errors (see Table 1 for the
specific cutoff tract population for each division). Inhabitable areas were assumed to be steady over time.
The influence coefficient of inhabitability, w0k, for pixel k was set as zero for non-inhabitable areas and
one for inhabitable areas.

Natural suitability. Elevation has a relatively larger variation and better resolution within counties
compared to other natural factors, including temperature and precipitation, and plays an important role
in influencing population distribution46. We aggregated this detailed elevation data to county level
instead of census tract and county subdivision because the latter data are only recently available and are
thus used here only for validation purposes. Although such aggregation masks variation within counties,
especially for the western mountainous regions, we found that a valid relationship developed from a
perspective of regionalization could generally reflect the topographic influence. We tested the relationship
between county mean elevation and population density using linear, log, and logistic functions using the
R statistical software. We chose elevation over slope to represent topographic suitability because we found
that the former had a better linear relationship (larger R2) with population density

lnðPDiÞ ¼ mμzi þ bμ; f or iAμ ð4Þ
where i and μ denote county and Region illustrated in Fig. 2, PDi and zi are population density and mean
elevation for county i, and bμ and mμ are fitting parameters for Region μ.

Division MARE, when cutoff population= cutoff population (persons)

1000 persons 1500 persons 2000 persons 2500 persons 3000 persons

Conterminous US 1.19 1.10 1.07 1.15 1.30

D1 0.59 0.60 0.61 0.64 0.70 1000

D2 4.21 3.97 3.71 3.97 4.55 2000

D3 0.94 0.64 0.53 0.58 0.67 2000

D4 0.44 0.44 0.46 0.54 0.66 1500

D5 0.95 0.72 0.76 0.85 0.99 1500

D6 0.41 0.41 0.45 0.49 0.57 1000

D7 0.54 0.53 0.55 0.60 0.66 1500

D8 0.43 0.44 0.44 0.45 0.49 1500

D9 1.16 1.51 1.51 1.55 1.63 1000

Table 1. Determination of cutoff population below which low-population census tracts were treated
as non-inhabitable areas for each division.
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We calculated the influence coefficient of elevation, w1k, for pixel k from the following relation

w1k ¼ emμzk ; f or kAμ ð5Þ
where zk is elevation for pixel k. Only inhabitable areas were considered when calculating population
density. To minimize the number of model parameters, geographically adjacent census divisions and
states with similar mμ values from equation (4) were combined into seven regions (μ: R1 – R7, shown in
Fig. 2), that upon integration still retained significant relationships between zi and In (PDi). Two regions
correspond to census divisions (R1 and R2), one includes only one state (R5, Florida), two comprise
multiple contiguous states (R3 and R4), and two are composed of one census division plus multiple
neighboring states (R6 and R7). No significant relationship was found for Colorado (R0, in Fig. 2), and
thus population was not weighted by topographic suitability there. Significant negative linear
relationships between zi and In (PDi) were found for all regions except 100 mozo300m in R4
(Fig. 2). The presence of the city of Atlanta at approximately 300 m disrupted the general pattern that was
found in the rest of the hot southeastern coastal plain. The slope, m, varied among regions, but all
relationships were significant with p-valueo0.001.

Socioeconomic desirability. We considered socioeconomic desirability for urban (U) and rural (R)
areas separately. Urban population density decreases with increasing distance from the urban center. This
trend has been described simply with an exponential decay model47, but with growing attention on fractal
cities, an inverse power function has been used more recently48–50. Here, we used the inverse power
function to describe how the influence coefficient of socioeconomic desirability w2k for urban pixels
(k∈U) changes across space.

w2k ¼ rkφ - λδ ; f or kAU∧ kAδ ð6Þ
where rkφ is radial distance from the center of urban area φ to the pixel k, and λδ is density gradient for
division δ. We applied the following relation suggested by recent studies51,52 to link parameter λδ from
socioeconomic desirability with the urban area-population scaling factor βδ from equation (2)

λδ ¼ 2 - 2βδ ð7Þ
Like βδ, λδ values were calculated for divisions and regarded as constant over time.

For rural areas, proximity to an urban center is advantageous for economic development. The
influence coefficient of socioeconomic desirability w2k for rural pixels (k∈R) was determined using a
gravity model of market potential53

w2k ¼
PNφ

φ¼1

PU ;φ

r2
kφPNφ

φ¼1
1

r2
kφ

; f or kAR ð8Þ

where Nφ is the number of urban areas that are within the maximum urban influence distance in decade
t, Dt (rkj≤Dt), corresponding to daily per capita travel range which exponentially increased due to
transport technology evolution from 30m in 1790 to 100 km in 2000 (ref. 54). The gravity model was
adopted here, based on its wide application in reflecting the accessibility of urban markets55–57.

Population mapping models
Five population distribution models of increasing complexity were developed, using the influence
coefficients described above (normalized to range between 0 and 1). M1 simply allocated census county
population homogeneously within counties. M2 separated urban and rural areas, and then
homogeneously allocated urban and rural population within urban and rural areas, respectively. M3
excluded non-inhabitable areas, including waterbodies, protected areas, highlands, and low population
census tracts. M4 extended Model 3 with the addition of topographic suitability. M5 added socio-
economic desirability. From M3 to M5, the population distribution maps were obtained by multiplying
the population raster by the normalized weighting grid, with each subsequent model contributing an
additional influence coefficient to the previous model. The most complete model (M5) included all
coefficients as shown in the following equation

Pk ¼ w0kw1k
sw2k

d

P
w0kw1k

sw2k
d

PZ ; f or kAZ ¼ U ;Rð Þ ð9Þ

where Z indicates urban (U) or rural (R) pixel, and the exponents s and d weight the relative importance
of topographic suitability and socioeconomic desirability on population mapping. The latter two
parameters were calibrated to obtain the highest mapping accuracy with values evaluated between 0.2 and
3 for each division (Tables 2 and 3). Equation 9 was implemented through Model Builder in ArcGIS to
produce our historical population datasets. The models we used are publicly available and can be freely
downloaded from figshare (Historical Population Models, Data Citation 1).

Accuracy assessment
All five models, M1 - M5, were applied to map historical population from 1790 to 2010 (excluding 1960)
(Data Citation 1). The best way to assess the accuracy of population distribution maps is to compare
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them with census data at a finer level than was used for the model input. While the county level input
data were already the finest resolution that was available consistently throughout the temporal range of
interest, higher resolution census tract data with full coverage of the conterminous US were available
from 1990 to 2010, and these were used as a primary reference here. Note that the spatial resolution of
our population products precluded validation for census tracts with area less than 1 km2, which
represented 12.6% of the tracts and 9.7% of the total population for the conterminous US in 2010. We
supplemented the tract analysis with reference data at a coarser level, county subdivision, from 1980 to
2010, to achieve a more comprehensive validation and also to assess the accuracy based on reference data
at different geographic scales. We again used only county subdivisions with areas larger than 1 km2

(98.8% of the county subdivisions, and greater than 99% of the conterminous US population).
We generated gridded population data based on county level data and then aggregated population

grids by census tracts and county subdivisions to compare them to census data at the corresponding level.
We applied mean absolute relative error (MARE) to assess the overall performance of the 2000
population products for the conterminous US and each census division

MARE ¼ 1
Nc

XNc

c¼1

Mc -Oc

Oc

����

���� ð10Þ

where subscript c is reference data geographic unit (census tract or county subdivision), Nc is the number
of evaluated units in the conterminous US or census division, Mc is modeled population aggregated for
unit c, and Oc is observed population from census data.

The five models were assessed in terms of both accuracy and effectiveness. We used MARE to compare
model accuracy, with lower MARE values indicating better model performance. Model effectiveness was
determined from the importance of the added influence factors based on the magnitude of MARE
reduction compared to the previous model. We made full use of the available fine-resolution census
population data and assessed the accuracy of the model-generated historical population maps for the
conterminous US based on census tract data from 1990 to 2010 and county subdivision data from 1980 to
2010. Furthermore, we assessed the accuracy of our generated historical urban extents for selected
regions. There is currently no historical (urban) land use database for the USA from 1790 to present.
However, the USGS LCI36,37 developed historical urban extents for two fast-growing regions: San
Francisco/Sacramento and Baltimore/Washington DC. Those investigators mapped urban land use
change and produced maps from 1900 to 1996 for San Francisco/Sacramento and from 1792 to 1992 for
Baltimore/Washington DC. Therefore, the historical urban extents for these regions reconstructed in this
study for the closest corresponding years were compared to the USGS LCI results to test the validity of
the scaling relationships and the urban area delineation method. We used the relative overlap of urban
pixels between our results and those from USGS LCI as an accuracy indicator. Note that the minimum
population threshold used to define urban areas in the USGS LCI studies was 500 people, but we
constrained our comparison to include only the areas with more than 2500 people, to be consistent with
our threshold for urban areas.

Finally, we note that accuracy assessments for population products are commonly conducted using
partial datasets due to the availability of higher resolution reference data. For example, Gaughan et al.58

used only four urban areas to validate population products for the entire mainland of China, and
Sorichetta et al.18 used six countries for accuracy assessment of population products for 28 countries in
Latin America and the Caribbean.

Division MARE, when s= s

0.2 0.4 0.6 0.8 1.0 1.4 1.5 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Conterminous US 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.03 1.03 1.04 1.05 1.05

D1 0.58 0.56 0.55 0.55 0.55 0.55 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 1.00

D2 3.74 3.69 3.64 3.60 3.57 3.52 3.49 3.45 3.43 3.41 3.39 3.37 3.36 3.35 3.00

D3 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 1.00

D4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.46 1.00

D5 0.73 0.74 0.75 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.89 0.91 0.93 0.95 0.20

D6 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0.42 0.42 1.00

D7 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 1.00

D8 0.68 0.68 0.68 0.68 0.68 0.68 0.69 0.69 0.70 0.70 0.71 0.71 0.72 0.72 1.00

D9 1.17 1.19 1.20 1.22 1.24 1.27 1.29 1.32 1.35 1.37 1.39 1.41 1.44 1.46 0.20

Table 2. Determination of the topographical suitability factor, s, for each division.
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Data Records
The reconstructed high-resolution historical human population dataset for the conterminous US from
1790 to 2010 (excluding 1960) are available on figshare, including five sets of population products derived
from M1 to M5 (Historical population dataset for the conterminous US, Data Citation 1). The data can
be downloaded in Esri grid format for each decade at a resolution of 1 km, with the values representing
the human population per pixel cell.

Technical Validation
Population mapping illustration
The spatial details generated by M1 to M5 are illustrated in Fig. 3, with a focus on the northern part of the
South Atlantic division (D5), which exhibits significant topographical variation from the coastal plain to
the Appalachian Plateau, and includes many cities of different sizes. The census tract (Fig. 3b) and county
subdivision data (Fig. 3c) are compared to all five model outputs (Fig. 3d). M1 and M2 produced
homogeneous populations within counties, and urban and rural areas, respectively. M3 also produced
homogeneous populations within urban and rural areas, but had more low population pixels due to the
exclusion of non-inhabitable areas. M4 and M5 generated more spatial details within urban and rural
areas for each county. With input from both topographic suitability and socio-economic desirability, M5
produced more detailed information consistent with the census tract population distribution, not only for
the less densely populated zone in the northeast but also the high population regions in the southwest.

Population mapping model accuracy
Census tract population data was considered as the primary reference for validation due to its higher
resolution, with mean area and population of 120 km2 and 4310 persons in 2000. Based on our validation
using census tract population for year 2000 (Fig. 4a) for the conterminous US, accuracy increased with
model complexity from M1 to M5, with MARE decreasing from 6.96 (M1) to 1.54 (M5), indicating M5 as
the most accurate model. By census division (δ: D1 - D9), model accuracy showed similar improving
trends from M1 to M5, except M2 for D4 and D9. The model performed worst for D2, however, this
division also showed improved performance with increased model complexity.

Validation using county subdivision population data (mean area and population of 221 km2 and 7932
persons) resulted in similar overall results, but with higher accuracy, indicated by smaller MARE values
for Models 1 to 5 (Fig. 4b). The MARE decreased from M1 (3.11) to M4 (1.22), then increased marginally
(1.23) for M5, showing M4 as the most accurate model. Similar trends were found for most divisions,
except D2 and D5, with M3 as the most accurate model, and also D3, where model accuracy decreased
from M2 (1.14) to M5 (1.22). Note that small or no differences in MARE were found between the most
accurate models and M5 for these divisions. D1 and D8 presented worse model performance than the
other divisions.

Population mapping model effectiveness
The improved accuracy found above was achieved by the increased complexity from M1 to M5. Models 1
to 5 increased in complexity by adding additional input data. M1 required only one data set (county total
population, PT), M2 required the addition of urban population (PU) and extent of urban areas (AU) for a
total of 3 variables, M3 added inhabitable area for 4 variables, M4 also included topography and its
relative importance (s) for 6 variables, and M5 added socioeconomic desirability and its relative
importance (d), culminating in 8 variables.

Census-tract-based validation for the conterminous US (Table 4) showed that M3 and 2 resulted in the
largest reduction in MARE compared to their next lower-complexity models: 3.58 and 1.53, respectively,
revealing the importance of separating urban and rural areas as well as excluding non-inhabitable areas.

Division MARE, when d= d

0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Conterminous US 0.966 0.966 0.966 0.967 0.967 0.968 0.972 0.979 0.987 0.998 1.010 1.025 1.042 1.061 1.081

D1 0.546 0.546 0.545 0.545 0.545 0.545 0.547 0.551 0.556 0.563 0.572 0.581 0.592 0.603 0.616 0.20

D2 3.353 3.359 3.365 3.371 3.378 3.410 3.479 3.552 3.632 3.717 3.809 3.907 4.011 4.123 4.241 0.02

D3 0.518 0.517 0.517 0.517 0.516 0.515 0.513 0.513 0.515 0.519 0.525 0.532 0.540 0.549 0.560 0.40

D4 0.452 0.451 0.451 0.451 0.451 0.449 0.448 0.448 0.449 0.452 0.456 0.462 0.468 0.476 0.485 0.60

D5 0.729 0.728 0.727 0.726 0.725 0.720 0.713 0.707 0.702 0.700 0.699 0.700 0.702 0.706 0.710 1.00

D6 0.408 0.408 0.407 0.407 0.407 0.407 0.407 0.409 0.413 0.418 0.425 0.433 0.443 0.454 0.466 0.20

D7 0.522 0.521 0.521 0.520 0.520 0.518 0.515 0.513 0.514 0.517 0.521 0.527 0.534 0.542 0.551 0.60

D8 0.681 0.680 0.680 0.680 0.680 0.679 0.678 0.679 0.682 0.687 0.692 0.700 0.709 0.719 0.729 0.40

D9 1.169 1.168 1.166 1.165 1.164 1.158 1.147 1.137 1.129 1.122 1.117 1.113 1.111 1.110 1.110 1.80

Table 3. Determination of the socio-economic desirability factor, d, for each division.
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In contrast, M4 and M5 resulted in only small reductions in MARE. Also, the additional factors in each
model showed varied effects among the nine divisions. From M1 to M2, the largest MARE reduction
(15.67) was found for the Mountain Division (D8), demonstrating the importance of differentiating
urban and rural areas where tract areas have both high mean and high variance. From M2 to M3, the
Middle Atlantic Division (D2) showed the largest MARE reduction (16.12), indicating the significant
effect of excluding un-inhabitable areas where population density is high. The MARE reductions from
M3 to M4 and M4 to M5 were small in all regions. Overall, the magnitude of MARE reduction decreased
as the model complexity increased from M1 to M5 (Table 4). Although the most complex model M5 had
the lowest MARE, the model effectiveness59 considering both model accuracy and model complexity
decreased from M3 to M5. We thus considered M3 as the most efficient model.

Urban extent dynamics
The historical urban areas were reconstructed based on the oldest available urban area boundaries (2000)
using the scaling relationship between urban area and population. We illustrated the urban extents for
Baltimore/Washington DC and San Francisco/Sacramento regions from our reconstructed results for the

Figure 3. Comparison of measured and modeled population maps for year 2000. Population map generated

by M5 for the conterminous US (a), census tract population (b), county subdivision population (c), and the five

model outputs (M1 - M5) (d) in the South Atlantic region.
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closest corresponding years and the USGS LCI results in Fig. 5. Generally, our reconstructed urban areas
matched well with the USGS products especially since the 1950s, albeit with some deviation in the
location centers from which the urban areas developed outward in the early decades. For Baltimore/
Washington DC, the fraction of USGS LCI urban pixels that were overlapped by our model were 0.88,
0.84, 0.73, 0.70, and 0.92 for 1990, 1970, 1950, 1900, and 1850. For San Francisco/Sacramento region, the
fractions were 0.78, 0.82, 0.73, 0.65, 0.50, and 0.62 for 1990 to 1900 (Fig. 5). Our simplified reconstruction
tended to overestimate urban extents in both regions, and the lower population thresholds used to define
urban areas for the USGS LCI studies resulted in more scattered small urban areas than in our results.
The assessment of the historical urban areas in two fast-growing regions showed that our reconstructed
urban extents reflect the general dynamic pattern of urban areas compared to the USGS LCI
reference data.

Validation of generated historical population
Historical population distribution was reconstructed for the conterminous US from 1790 to 2010
(excluding 1960). Validation is only possible beginning with the available data. For census-tract-based
validation (1990-2010), since Models 3 to 5 were calibrated based on 2000 population data, their accuracy
for 1990 was unsurprisingly lower than the 2000 output. For example, for M5 MARE values were 2.1 and
1.5 for the conterminous US in 1990 and 2000, respectively (Table 5). Using the five models to project
forward from 2000 to 2010 for the conterminous US also had higher MARE values except M2. However,
based on county subdivision validation (1980–2010), our population products showed high accuracy for
both backward projection from 2000 (1990 and 1980) and forward projection (2010), with similar
accuracy as the 2000 products. Our population products prior to 1980 could be validated if census tract,
county subdivision, or other more detailed population data become available.

Usage Notes
The dataset generated here provided ready-to-use historical population maps in the conterminous US
from 1790 to 2010 at the resolution of 1 km. Our study showed the validity of applying scaling
relationships between urban area and urban population to reconstruct historical urban areas, and the
effectiveness of modeling spatio-temporal population distributions using existing data. Our backward
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Figure 4. Population mapping model performance comparison. (a) comparison based on census tract

population data; (b) comparison based on county subdivision population data. Mean absolute relative error

(MARE), on a log scale, for most census divisions (grey lines) showed similar trends in improved model

performance with increasing model complexity. The orange, red, and blue lines indicate census divisions D1,

D2, and D8 for comparison. The dashed line indicates model performance for the entire conterminous US.
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projection was not just based on current population information but historical population data obtained
from NHGIS, which provided accurate information about human settlement and population density at
county level and served as a foundation to further disaggregation of population within administrative
units. The high resolution of the input census population data, the separation of urban and rural extents,
and use of inhabitability, elevation, and socioeconomic desirability influencing factors all contributed to
the good accuracy of the final products.

Our final output included five sets of historical population products from 1790 to 2010 reconstructed
based on models M1 to M5. Generally, model accuracy improved with increasing complexity. According
to the census-tract-based validation, we proposed M5 as the most accurate and M3 as the most efficient,
while the county-subdivision-based validation suggested M4 as the most accurate and M2 as the most
efficient, largely because the larger size of county subdivisions masked the effect of additional factors
included in more complex models. Therefore, we suggest that users consider their study units when
selecting the model products. Also, we suggest applying the efficient models when transferring our
approach to other regions, and adopting the most accurate models when directly applying our model-
generated population products. Additionally, considering the varied model performance among the
divisions, we caution users to choose the most appropriate products based on their specific study regions.

When compared to the large task of modeling human population at a continental scale over a time
period of hundreds of years, our models include only a small number of parameters, and we thus consider
all five models M1 to M5 as parsimonious. Our models used no more than three weighting coefficients,
partly determined by the availability of historical geospatial data, while, for comparison, 10 weighting
coefficients were used in LandScan16. Similar to our method, Landscan16 and population modeling for
Asia19 and Africa20,21 also applied multiple ancillary variables and allocated population using associated
weights. However, land cover data, which were not available over the long time scales of interest in this
study, were the major input for their modeling. Landscan did not provide details on their modeling
methods19. The population mapping influence coefficients previously developed19–21 were based on fixed
values of population density for specific land covers, while those we developed as continuous functions of
elevation, urban proximity, and market potential (equations (5),(6) and (8)) supported more variation.
Further, our reconstruction was based on the same model structure with consideration of the dynamic
trends of the model input parameters over time, including the number of urban areas and urban
population, increasing urban influence distance over time, and changes of density gradients within
urban areas.

Natural factors other than altitude, including temperature and precipitation, were excluded because of
their relatively small variation within most counties. However, altitude was found to be an important
factor to account for intra-county natural suitability variability. We further emphasize that our validated
population products used the same method for the entire conterminous US, with no significant accuracy
differences in the East and West. Another important factor that could be considered more explicitly in
extensions to this work is transport networks, given their significant role in influencing human
population distribution. Transport networks have evolved over time, shifting from rivers and canals, to
roads and railroads, and then to air transport54, but there are no currently available comprehensive
historical databases of transportation networks (rail lines, roads), precluding their direct inclusion in our
models. However, the effect of the transport technology evolution was indirectly reflected in our models
through the growth of the daily travel range in the gravity model of market potential. The availability of
temporally dynamic data limited the selection of influencing factors. We aimed to apply consistent
techniques over time to make the final products appropriate for dynamic analysis.

Our historical population products were generated and validated based on census population data.
This data-based approach was therefore subject to the limitation of the currently available census data.
First, we did not consider American Indians in our population distribution reconstruction since census

Division census tract MARE reduction county subdivision MARE reduction

M1-M2 M2-M3 M3-M4 M4-M5 M1-M2 M2-M3 M3-M4 M4-M5

conterminous US 1.83 3.58 0.00 0.01 1.71 0.12 0.07 -0.02

D1 0.33 0.00 0.05 0.00 2.10 0.25 1.76 -0.04

D2 2.40 16.12 0.03 -0.01 0.95 0.07 − 0.17 0.00

D3 0.22 0.81 − 0.01 0.00 1.20 − 0.01 − 0.01 − 0.06

D4 − 0.19 2.03 0.00 0.00 1.72 0.02 0.00 0.01

D5 0.41 1.00 0.01 0.05 1.47 0.05 − 0.01 − 0.05

D6 0.12 0.38 0.02 − 0.10 0.48 0.34 0.01 − 0.01

D7 4.91 1.44 − 0.01 0.05 1.20 0.06 0.05 − 0.02

D8 15.67 1.70 0.00 0.01 8.50 1.92 0.19 0.09

D9 − 2.36 6.89 − 0.02 0.00 6.06 0.42 0.04 − 0.01

Table 4. Model effectiveness assessment results by Division for 2000 population products.
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data did not include American Indians prior to 1900. It is still a challenge to collect and confirm
population numbers for American Indians due to the sparse and inconsistent record. Second, urban areas
are defined based on a population threshold of 2500, however, areas with less than 2500 people in the past
could have held a role similar to modern urban areas. Our reconstruction thus might underestimate the
attractiveness of smaller urban areas. Third, lack of high resolution historical data constrained a
comprehensive validation dating back to 1790. Our historical population products prior to 1980 can be
validated when more detailed census data become available. Despite these limitations, the population data
from US Census Bureau are the best currently available source for data-driven analyses.

We applied the following major assumptions in this study: Monotonic urbanization and
homogeneously outward expansion, constant β, and steady inhabitable areas. The first two assumptions
were used to reconstruct historical urban areas and the third was applied to determine the influence
coefficient of inhabitability. While individual urban development patterns may often deviate from the

Figure 5. Comparison of reconstructed historical urban extents. Urban area distribution in 2000 (a),

Baltimore-Washington DC from 1790 to 1790 from this study (top panel) and reference37 (bottom) (b), and

San Francisco/Sacramento from 1900 to 1990 from this study (top) and reference36 (bottom) (c).
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first assumption (such as linear expansions along rivers or roads), simplifications were necessary to
develop efficient models that could be feasibly applied to the large spatial and temporal scale of our study.
This assumption could lead to varied impacts on model accuracy for specific cities with different
development patterns. However, we found that the dynamic urban extents we generated reflect the
general pattern of urban areas based on comparison with measured data available for two fast-growing
regions, Baltimore-Washington DC dating back to 1792 and San Francisco/Sacramento dating to 1900
(Fig. 5). For the second assumption of constant β, currently there is no consistent opinion on how β may
change over time. Theoretical considerations from a geometric perspective suggested β= 2/3, with
dimensions of 3 for population and 2 for area35, although there is some controversy on the dimension of
population. Temporal analyses based on a model of settlement structure and social networks44 provided
support for the dynamic nature of β: between 2/3 for unstructured settlements and 5/6 for larger and
denser settlements with infrastructure networks. However, empirical analysis discovered little variation in
exponents for Taiwan at different development phases41. Here, we found β= 0.95 for all divisions except
Pacific (D9) with β= 0.86 (Fig. 6) based on current urban data, however, a lack of historical urban areas
data could not support a dynamic analysis on this exponent and we assumed it to be constant. A smaller
β for unstructured settlements44 would suggest smaller sizes of urban areas and thus a higher population
density in earlier times, which might also explain our overestimation of historical urban extents.
Regarding our third assumption, the total inhabitable area may have expanded with increasing human
settlement pressure and advancing technological development. For example, widespread drainage
converted wetlands to croplands and settlements60. Thus, our model may overestimate historical
inhabitable areas and thus underestimate population density in previous decades. However, data
availability limitations necessitated simplifying assumptions, which result in inevitable modelling
limitations. Future work could improve these models as more data become available.

The spatially explicit historical population data generated here could facilitate advancing our
understanding of coupled human and natural systems. With the arrival of the Anthropocene, the scope,
intensity, and rate of changes in human-nature interactions have increased dramatically3. It is thus
becoming increasingly important to understand the dynamics of human-nature interactions at time scales
of decades to centuries8. For example, from the perspective of water resources, several studies have
quantified the geographic relationship between human settlements and rivers61,62, however, it remains
elusive how such relationships have changed over time. Our population products could help evaluate
dynamic human-nature relationships.

Model census tract MARE county subdivision MARE

1990 2000 2010 1980 1990 2000 2010

M1 4.29 6.96 8.02 2.96 3.03 3.11 5.20

M2 2.94 5.13 4.94 1.46 1.45 1.40 1.42

M3 2.11 1.55 3.56 1.34 1.32 1.29 1.29

M4 2.19 1.55 3.56 1.26 1.20 1.22 1.21

M5 2.13 1.54 3.55 1.27 1.18 1.23 1.24

Table 5. Model accuracy assessment results by model based on census tract population (1990–2010)
and county subdivision population (1980–2010).

Division 9:
y = 0.0047x0.86

R² = 0.85

Division 1-8:
y = 0.0028x0.95

R² = 0.91

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+4 1E+6 1E+8

U
rb

an
 A

re
as

 (k
m

2 )

Population (persons)

Figure 6. Scaling relationship between urban population and urban area, 2000.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180067 | DOI: 10.1038/sdata.2018.67 13



References
1. Ellis, E. C. et al. Used planet: A global history. Proc. Natl Acad Sci. USA 110, 7978–7985 (2013).
2. Foley, J. A. et al. Global Consequences of Land Use. Science 309, 570–574 (2005).
3. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth's ecosystems. Science 277,
494–499 (1997).

4. Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6,
439–447 (2007).

5. Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
6. Grimm, N. B. et al. The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal
gradients. Front Ecol Environ 6, 264–272 (2008).

7. Sanderson, E. W. et al. The Human Footprint and the Last of the Wild. Bioscience 52, 891–904 (2002).
8. Liu, J. et al. Coupled Human and Natural Systems. Ambio 36, 639–649 (2007).
9. Jia, P., Qiu, Y. L. & Gaughan, A. E. A fine-scale spatial population distribution on the High-resolution Gridded Population Surface
and application in Alachua County, Florida. Applied Geography 50, 99–107 (2014).

10. Lung, T., Lubker, T., Ngochoch, J. K. & Schaab, G. Human population distribution modelling at regional level using very high
resolution satellite imagery. Applied Geography 41, 36–45 (2013).

11. U.S. Census Bureau. Decennial Census https://www.census.gov/history/www/programs/demographic/decennial_census.html
(2016).

12. Mennis, J. Generating surface models of population using dasymetric mapping. Professional Geographer 55, 31–42 (2003).
13. Wu, S., Qiu, X. & Wang, L. Population Estimation Methods in GIS and Remote Sensing: A Review. GIScience & Remote Sensing

42, 80–96 (2005).
14. Deichmann, U., Balk, D. & Yetman, G. Transforming population data for interdisciplinary usages: from census to grid http://

sedac.ciesin.org/gpw-v2/GPWdocumentation.pdf (2016).
15. Balk, D. L. et al. Determining Global Population Distribution: Methods, Applications and Data. Adv Parasitol 62, 119–156 (2006).
16. Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C. & Worley, B. A. LandScan: a global population database for estimating

populations at risk. Photogramm Eng Remote Sensing 66, 849–857 (2000).
17. Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).
18. Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020.

Sci. Data 2, 150045 (2015).
19. Gaughan, A. E., Stevens, F. R., Linard, C., Jia, P. & Tatem, A. J. High resolution population distribution maps for Southeast Asia in

2010 and 2015. PLoS ONE 8, e55882 (2013).
20. Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population Distribution, Settlement Patterns and Accessibility

across Africa in 2010. PLoS ONE 7, e31743 (2012).
21. Tatem, A. J., Noor, A. M., von Hagen, C., Di Gregorio, A. & Hay, S. I. High Resolution Population Maps for Low Income Nations:

Combining Land Cover and Census in East Africa. PLoS ONE 2, e1298 (2007).
22. Gustafson, E. J., Hammer, R. B., Radeloff, V. C. & Potts, R. S. The relationship between environmental amenities and changing

human settlement patterns between 1980 and 2000 in the midwestern USA. Landscape Ecol 20, 773–789 (2005).
23. Linard, C., Gilbert, M. & Tatem, A. J. Assessing the use of global land cover data for guiding large area population distribution

modelling. GeoJournal 76, 525–538 (2011).
24. Goldewijk, K. K., Beusen, A. & Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially

explicit way: HYDE 3.1. Holocene 20, 565–573 (2010).
25. Fang, Y. et al. Natural forming causes of China population distribution. Chinese Journal of Applied Ecology 23, 3488–3495 (2012).
26. Song, G., Yu, M., Liu, S. & Zhang, S. A dynamic model for population mapping: a methodology integrating a Monte Carlo

simulation with vegetation-adjusted night-time light images. Int J Remote Sens 36, 4054–4068 (2015).
27. Voss, P. R. & Chi, G. Highways and Population Change. Rural Sociology 71, 33–58 (2006).
28. Stevens, F. R., Gaughan, A. E., Linard, C. & Tatem, A. J. Disaggregating Census Data for Population Mapping Using Random

Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 10, e0107042 (2015).
29. Goldewijk, K. K. Estimating global land use change over the past 300 years: The HYDE Database. Global Biogeochemical Cycles

15, 417–433 (2001).
30. Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quaternary

Science Reviews 28, 3016–3034 (2009).
31. Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last

millennium. Global Biogeochemical Cycles 22, GB3018 (2008).
32. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Bio-

geochemical Cycles 13, 997–1027 (1999).
33. Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: current patterns and

sensitivity to possible climate change. Global Ecol Biogeogr 11, 377–392 (2002).
34. U.S. Census Bureau. 2010 Census Urban Area Facts. https://www.census.gov/geo/reference/ua/uafacts.html (2016).
35. Nordbeck, S. Urban Allometric Growth. Geografiska Annaler Series B-Human Geography 53, 54–67 (1971).
36. Bell, C., Acevedo, W. & Buchanan, J. Dynamic mapping of urban regions: growth of the San Francisco Sacramento region https://

landcover.usgs.gov/urban/umap/pubs/urisa_cb.php (1995).
37. Crawford-Tilley, J. S., Acevedo, W., Foresman, T. & Prince, W. Developing a temporal database of urban development for the

Baltimore/Washington region https://landcover.usgs.gov/urban/umap/pubs/asprs_jt.php (1996).
38. Minnesota Population Center. National Historical Geographic Information System: Version 11.0 [Database]. University of Min-

nesota: Minneapolis, (2016).
39. U.S. Census Bureau. Censuses of American Indians. https://www.census.gov/history/www/genealogy/decennial_census_records/

censuses_of_american_indians.html (2017).
40. Lo, C. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm Eng Remote

Sensing 67, 1037–1047 (2001).
41. Lo, C. & Welch, R. Chinese urban population estimates. Annals of the Association of American Geographers 67, 246–253 (1977).
42. Sutton, P. Modeling population density with night-time satellite imagery and GIS. Computers, Environment and Urban Systems

21, 227–244 (1997).
43. Sutton, P., Roberts, D., Elvidge, C. & Baugh, K. Census from Heaven: An estimate of the global human population using night-

time satellite imagery. Int J Remote Sens 22, 3061–3076 (2001).
44. Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O. & Bettencourt, L. M. A. The Pre-History of Urban Scaling. PLoS ONE 9,

e87902 (2014).
45. Lee, Y. An allometric analysis of the US urban system: 1960-80. Environ Planning A 21, 463–476 (1989).
46. Cohen, J. E. & Small, C. Hypsographic demography: The distribution of human population by altitude. Proc Natl Acad Sci U S A

95, 14009–14014 (1998).

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180067 | DOI: 10.1038/sdata.2018.67 14

https://www.census.gov/history/www/programs/demographic/decennial_census.html
http://sedac.ciesin.org/gpw-v2/GPWdocumentation.pdf
http://sedac.ciesin.org/gpw-v2/GPWdocumentation.pdf
https://www.census.gov/geo/reference/ua/uafacts.html
https://landcover.usgs.gov/urban/umap/pubs/urisa_cb.php
https://landcover.usgs.gov/urban/umap/pubs/urisa_cb.php
https://landcover.usgs.gov/urban/umap/pubs/asprs_jt.php
https://www.census.gov/history/www/genealogy/decennial_census_records/censuses_of_american_indians.html
https://www.census.gov/history/www/genealogy/decennial_census_records/censuses_of_american_indians.html


47. Clark, C. Urban Population Densities. Journal of the Royal Statistical Society Series A (General) 114, 490–496 (1951).
48. Batty, M. The Size, Scale, and Shape of Cities. Science 319, 769–771 (2008).
49. Batty, M. & Kim, K. S. Form follows function: reformulating urban population density functions. Urban Stud 29,

1043–1069 (1992).
50. Chen, Y. The distance-decay function of geographical gravity model: Power law or exponential law? Chaos, Solitons & Fractals 77,

174–189 (2015).
51. Chen, Y. A new model of urban population density indicating latent fractal structure. International Journal of Urban Sustainable

Development 1, 89–110 (2010).
52. Chen, Y. Characterizing growth and form of fractal cities with allometric scaling exponents. Discrete Dynamics in Nature and

Society 2010, 194715 (2010).
53. Krugman, P. R. Development, geography, and economic theory, Vol. 6 (MIT press: Cambridge, Massachusetts, 1997).
54. Grübler, A. The rise and fall of infrastructures: dynamics of evolution and technological change in transport (Physica-Verlag:

Heidelberg, 1990).
55. Luo, W. & Wang, F. H. Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the

Chicago region. Environ. Plann B 30, 865–884 (2003).
56. Simini, F., Gonzalez, M. C., Maritan, A. & Barabasi, A. L. A universal model for mobility and migration patterns. Nature 484,

96–100 (2012).
57. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A Tale of Many Cities: Universal Patterns in Human Urban

Mobility. PLoS ONE 7, 37027 (2012).
58. Gaughan, A. E. et al. Spatiotemporal patterns of population in mainland China, 1990 to 2010. Sci. Data 3, 160005 (2016).
59. Paudel, R. & Jawitz, J. W. Does increased model complexity improve description of phosphorus dynamics in a large treatment

wetland? Ecol. Eng. 42, 283–294 (2012).
60. Dahl, T. E. Wetlands losses in the United States, 1780's to 1980's. Report to the Congress: National Wetlands Inventory, St:

Petersburg, FL (USA) (1990).
61. Ceola, S., Laio, F. & Montanari, A. Human-impacted waters: New perspectives from global high-resolution monitoring. Water

Resources Res 51, 7064–7079 (2015).
62. Kummu, M., de Moel, H., Ward, P. J & Varis, O How close do we live to water? A global analysis of population distance to

freshwater bodies. PLoS ONE 6, e20578 (2011).

Data Citation
1. Fang, Y. & Jawitz, J. Figshare http://doi.org/10.6084/m9.figshare.c.3890191 (2018).

Additional Information
Competing interests: The authors declare no competing interests.

How to cite this article: Fang, Y. & Jawitz, J. W. High-Resolution Reconstruction of the United States
Human Population Distribution, 1790-2010. Sci. Data 5:180067 doi: 10.1038/sdata.2018.67 (2018).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/
zero/1.0/ applies to the metadata files made available in this article.

© The Author(s) 2018

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180067 | DOI: 10.1038/sdata.2018.67 15

http://doi.org/10.6084/m9.figshare.c.3890191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

	High-resolution reconstruction of the United States human population distribution, 1790 to 2010
	Background & Summary
	Methods
	Data collection
	Level of spatial units
	Population count determination
	Areal extent delineation
	Influence coefficient calculation
	Inhabitability
	Natural suitability
	Socioeconomic desirability

	Population mapping models
	Accuracy assessment

	Data Records
	Technical Validation
	Population mapping illustration
	Population mapping model accuracy
	Population mapping model effectiveness
	Urban extent dynamics
	Validation of generated historical population

	Usage Notes
	Additional information
	References


