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Three-dimensional motion capture analysis is considered the gold standard for any movement research.
Motion capture data were recorded for 7 healthy female participants with no prior throwing experience to
investigate the learning process for overarm throwing during a selected period. Participants were
monitored 3 times a week for 5 weeks. Each session consisted of 15 dominant and 15 nondominant hand
side overarm throws. A total of 3,150 trials were recorded and preprocessed (labeling reflective markers) for
further analysis. The presented dataset can provide valuable information about upper extremity kinematics
of the learning process of overarm throwing without any kind of feedback. Furthermore, this dataset may
be used for more advanced analysis techniques, which could lead to more insightful information.
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Background & Summary
Three-dimensional motion analysis systems, which use markers to track motion, are expensive, and they
require long amounts of time. Therefore, due to the nature of the biomechanics research, most studies
have had a highly limited number of trials, which makes it hard to use advanced data analysis methods,
such as machine and deep learning. Most biomechanics studies with large numbers of data and
researchers use educated guesses for data reduction before starting data acquisition, and they are limited
to investigation of only several variables at specific events (e.g., shoulder flexion angle at ball release).
With the advances of computers and computing methods, researchers have started to use more advanced
analysis methods, such as principal component analysis, support vector machines, and regressions on
larger datasets1–8. Studies that use more advanced analysis methods are mostly focused on cyclic
movements such as gait and running. It has been shown that these methods may detect age-2 and fatigue-
related5 changes, overall variability3,4,7, and the effects of different equipment6. However, limitations such
as the sheer amount of rigorous work time and the financial support it takes to collect and process the
data for the further calculations make it difficult for researchers to use more advanced analysis
techniques.

Even though the use of reflective markers in 3D motion capture is very accurate (error o 1 mm), it is
difficult to accurately track the shoulder and scapular joint movement. As the shoulder joint is connected
to the scapular girdle, it has the ability to move in several planes simultaneously. This makes defining the
shoulder joint biomechanics difficult and limited. Even with the work of the International Society of
Biomechanics, a standard definition for shoulder biomechanics is not universally accepted9. Therefore,
each research group uses its own model and marker set to define shoulder biomechanics according to the
specific purpose of its study10–12. It was reported that rotation sequences have an effect on shoulder
kinematics13,14. Some rotational sequences for the shoulder joint can result in gimbal lock occurrences
more often than other combinations13,14. A modified marker set from other studies was used during data
acquisition10,11. The aim of the modified marker set was for future studies to investigate differences of the
upper extremity biomechanics’ definitions.

Another aspect of this study was to investigate the movement variability during the early skill
acquisition for overarm throwing. In literature, extensive studies of upper extremity biomechanics during
throwing activities15–18 and variability related to overarm throwing19–21 have been conducted. However,
there has been no definitive conclusion about the role of variability, especially in sports biomechanics and
performance22. Differences between the models and quantifications of variability are a source of
discrepancy between results. It was reported that different variability quantifications showed different
patterns, such as standard deviation increases while the coefficient in variation decreased23. In the
traditional approach, less variability was concluded to be better because of the invariance of the
performance, and the variability was regarded as the noise of the system24. However, recent studies
showed that variability is not a noise of the system but can actually be useful24,25. Dynamical system
theories applied to biomechanical datasets showed that variability is actually important for the human
body as a system. It was reported that experts decrease their space-joint variability while increasing their
trajectory variability19. Furthermore, the authors suggested that heavier balls can actually be used to
achieve optimal variability for performance improvement of basketball free throws. Additionally, other
studies showed that variability can be used to differentiate skill levels, injuries, and different
populations12,26,27.

Therefore, healthy women participants with no prior overarm throwing experience or practice were
recruited, and they performed several sessions for 5 weeks in a laboratory setting. They performed the
throws with no feedback about their performance to make sure that they used only their sensory system
for throwing the ball “as fast as possible”.

Methods
Participants
Eight female participants were recruited for this study. One participant was excluded because she injured
herself during another activity during the experimental period, which left a total of seven participants for
data acquisition. The study protocol was approved by the institutional review board of Kookmin
University and was conducted according to the Helsinki declaration. The subjects gave their informed
consent to participate in the study. All subjects were injury-free for both lower and upper extremities in
the most recent six months, and they had no lower or upper extremity surgery in the last two years.

Procedures
Participants visited the laboratory three times a week for five weeks. All participants’ demographic and
anthropometric measurements needed for modeling were carried out during the first session (Table 1).
Each participant performed 15 dominant and 15 nondominant hand throws with a baseball. Participants
were asked to throw the ball “as fast as possible” into a foam cushion (approx. 3 m x 3m), which was
approximately 4 m away from the participant. The first 3 throws for each side have been classified as a
warm-up. Ball speeds were measured with a speed gun for each trial. The experimental procedure is
shown in Fig. 1.
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Motion capture
Each session was performed in a laboratory fitted with 10 Vicon infrared cameras (T-10, T-40, Oxford
Metrics Ltd., UK) and 2 force plates (BP-600900, AMTI, USA). Each camera connected to the Vicon MX
Giganet and force plates were connected to the Giganet through a Vicon Datastation ADC patch panel.
The giganet unit was connected to the main computer of the laboratory. Each of these cameras was
equipped with an infrared strobe, which makes the reflective optical markers emit infrared light.

Subject Age
(Years)

Weight
(kg)

Height
(cm)

Wrist
Width
(mm)

Elbow
Width
(mm)

Knee
Width
(mm)

Ankle
Width
(mm)

Leg
Length
(cm)

Right
Shoulder
Offset
(mm)

Left
Shoulder
Offset
(mm)

Hand
Thickness
(mm)

Right Shoulder
Circumference
(cm)

Left Shoulder
Circumference
(cm)

Dominant
Hand

S1 23 54.6 165 44 55 86 62 85 80 84 22 36.5 36.5 Right

S2 26 54.8 160 43 50 85 54 82.5 83 83 16 35.3 35.3 Left

S3 24 56.6 162 46 54 88 59 83.5 86 87 13 36.5 36.5 Right

S4 30 57.1 159 47 53 87 59 82.5 73 73 18 37.5 37.5 Right

S5 26 73.1 165 42 55 97 55 87.3 92 95 17 40.5 40.5 Right

S6 23 51.1 160 40 50 85 55 82.2 61 63 27 34.3 34.3 Right

S7 24 48.7 155 45 50 87 56 80.6 81 81 14 35.3 35.3 Right

Mean± SD 25.1± 2.4 56.5± 7.8 160.8± 3.5 43.8± 2.4 52.4± 2.3 87.8± 4.1 57.1± 2.9 83.3± 2.1 79.4± 9.9 80.8± 10.2 18.1± 4.8 36.5± 2.0 36.5± 2.0

Table 1. Demographic information of subjects.
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Figure 1. Experimental protocol.
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Therefore, cameras recorded the trajectories of the markers via the emitted light from the markers.
Marker trajectories were recorded through Vicon Nexus software (version 1.8.5, Oxford Metrics Ltd.,
UK). The marker trajectories and the force plate data were recorded synchronously at 200 and 1000 Hz
sampling rates, respectively. A total of 450 trials were recorded for each participant.

At each session, participants wore tight clothes before the reflective marker placement. Participants
performed warm-up throws until they became comfortable with the markers and ready to start. Markers
and cluster markers (Fig. 2) affixed to the anatomical landmarks and extremities are listed in Table 2
(available online only). Static trials needed for modeling purposes in the further analysis were captured in
two different positions. Dynamic trials were captured with only the tracking markers, as listed in Table 2
(available online only). All throws were made while participants had each foot placed on one force plate.
The marker trajectories were saved automatically by the system without any names attached to them. For
further calculations, each marker had to be labeled with a specific name. Each trials’ marker trajectories
were labeled (the naming process of the markers according to Table 2 (available online only)) using
Vicon Nexus software (version 1.8.5, Oxford Metrics Ltd., UK).

Each trial has three events: the start of the movement, the ball release, and the end of the movement.
The start of the movement was defined as the moment when the distance between the trunk and the hand
marker increased 10% more than the start position. The ball release was defined as the moment when the
distance between the ball marker and the hand marker increased 10%. The end of the movement was
selected as the moment of the end of the follow through and the closest distance between hand and trunk.
Vicon Nexus software lets users label events with only three names: ‘Foot Strike’, ‘Foot Off’ and ‘General’.
For future usage and to prevent confusion, the start of the movement event was labeled ‘Foot Strike’; the
ball release, ‘General’; and the end of the movement, ‘Foot Off’.

Data Records
c3d files are the standard file format that can be acquired from many motion capture systems and
analyzed with different software. This file format is designed to include both three-dimensional point
information and analog data. Therefore, each throw has its own c3d file that includes information about
marker positions and all analog data. Additionally, comma-separated values (CSV) files, which include
event times, positions of each marker, and force plate data, are included in the data records. The data
records are available online from figshare (Data Citation 1), and they consist of c3d and CSV files and a
detailed description file for each trial’s information (Trial Information, Data Citation 1).

Each subject has her own folder, and each subject folder has 15 folders which represent each session.
Session folders were named ‘XwXd’, where X is the incremental integer for the week and day. For
example, 1w1d represents the 1st week-1st day session.

Each session folder consists of c3d and CSV files for dominant and nondominant throw trials. Each
trial was named systematically as ‘oS>_DP(or NDP)_oxx>_om>’, where ‘S’ represents the subject
and DP and NDP represent dominant and nondominant hand throws, respectively. ‘xx’ and ‘m’ are the
incremental integer and information about each trial, respectively. For information about each trial,
please refer to the Trial Information (Data Citation 1). Trial Information files (Data Citation 1) are
provided due to the non-systematic incremental numbers of trials, ball speed, and other situations such as
missing markers and errors. The key tab in a Trial Information file (Data Citation 1) consists of the

Figure 2. Marker set used in motion capture. Skeleton figures are taken from another source29,30.
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meaning of each letter in ‘m’. For example, ‘S1_DP_01_O’ would represent Subject 1’s dominant hand
first throw, and ‘O’ represents the trial having no problem.

Technical Validation
Markers were mostly affixed to the participants’ bodies by the first author. In some sessions, markers were
affixed by other researchers but always checked by the first author before the recordings. Camera
calibration was performed before each session, and the settings (such as strobe intensity and the threshold
for centroid fitting) were chosen for optimal marker visibility and noise reduction.

Gap filling is a process used when there is a missing marker during the trial. It is used from the start to
the end event for each trial. Gap filling via spline or pattern fill in Vicon Nexus software was used
depending on which one concludes with the appropriate trajectory for movement. Experienced
researchers execute gap filling during the labeling process. Some trials had missing markers from the start
of the recording. Therefore, gap filling could not be performed in these trials. All trials were checked after
labeling and the gap filling process by the first author. The Trial Information (Data Citation 1) includes
information about each trial, whether or not it had any issues during acquisition or processing. The
related description about the Trial Information (Data Citation 1) has been given in the Data Records.

Usage Notes
For more detailed information about c3d files and their possible uses with different software, refer to the
c3d website (https://www.c3d.org). The modified marker set can be described as the combination of two
previously published studies10,11. An upper extremity kinematics study based on this dataset has been
published28. Furthermore, the needed anthropometric measurements for this modeling can be found in
Table 1. There are two static trials for each session in case researchers want to use different definitions of
upper extremity biomechanics. Additionally, researchers should be mindful of the data because the gap
filling was made from the events of the start and end of the movement. Therefore, gap filling was not
performed in frames other than those of the duration of the throwing. Researchers should be mindful of
the trials with missing markers because they may affect the results, depending on the chosen model for
further analysis.
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