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In recent decades India has undergone substantial land use/land cover change as a result of population
growth and economic development. Historical land use/land cover maps are necessary to quantify the
impact of change at global and regional scales, improve predictions about the quantity and location of
future change and support planning decisions. Here, a regional land use change model driven by district-
level inventory data is used to generate an annual time series of high-resolution gridded land use/land cover
maps for the Indian subcontinent between 1960–2010. The allocation procedure is based on statistical
analysis of the relationship between contemporary land use/land cover and various spatially explicit
covariates. A comparison of the simulated map for 1985 against remotely-sensed land use/land cover maps
for 1985 and 2005 reveals considerable discrepancy between the simulated and remote sensing maps,
much of which arises due to differences in the amount of land use/land cover change between the inventory
data and the remote sensing maps.
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Background & Summary
India’s population has risen dramatically in recent decades, from 361 million in 1951 to 1,221 million at
the last national census in 20111), driving substantial environmental change2. Increasing population
density and a changing economy have resulted in urban development and expansion3, while India’s green
revolution, initiated in the mid-1960s to achieve food security for its growing population, has resulted in
the transformation of natural vegetation and rainfed agriculture to intensively managed agricultural
systems4,5. Land use/land cover change (henceforth “land change”) has important consequences for
biodiversity and the sustainability of ecosystem services upon which individuals and communities
depend6. Cumulatively, it is a major driver of global and regional environmental change7, influencing the
surface energy and water balance8,9 as well as global biogeochemical cycles10. Since the rate and
magnitude of land change varies over space and time2, spatially explicit, historical datasets are necessary
to accurately quantify the various environmental and societal impacts of change11–13, support planning
decisions and inform predictions about the quantity and location of future change.

Remote sensing provides one data source for mapping land change14. Recently Roy et al.15 developed
land use/land cover maps of India for 1985, 1995 and 2005 using multitemporal satellite data from
various instruments. Developing such a dataset is resource intensive and severely constrained by the
quality and availability of satellite data and ground truth points that are valid for the time period
considered15. Moreover, the launch of the first Landsat instrument in 1972 represents the earliest time at
which remote sensing could be used for land use/land cover mapping. As a result of these factors, existing
work to document historical land use/land cover at global and regional scales have used various
algorithms to combine contemporary land use/land cover maps from remote sensing with national and
sub-national inventory data13. Global datasets include the HYDE database16 and the Earthstat global
cropland and pasture dataset17. These products have a 5 arcminutes × 5 arcminutes resolution
(approximately 10 km at the Equator) and cover the period 10,000BC-2005AD and 1700-2007,
respectively. In India, global datasets such as these rely on land use/land cover inventory data aggregated
to state and national levels because of the difficulties in obtaining district-level data collected before 1998.
As a result, they do not adequately capture the variability in the rate of change between districts, which
can be considerable. For example, while the northern State of Uttar Pradesh shows a net increase in the
area of agricultural land between 1956 and 2010, the area in 20% of district units (n= 8) has decreased.

Addressing this deficiency,2 developed an historical dataset for India which combines a contemporary
land use/land cover map based on Resourcesat-1 satellite imagery with a commercially available dataset
of district-level inventory data. The dataset has a spatial resolution of 5 arcminutes × 5 arcminutes
and covers the period 1880–2010. Central to the approach adopted in this case as well as the global
datasets mentioned previously is the assumption that the spatial distribution of historical land use/land
cover is the same in relative terms as the present distribution2. However, this does not adequately
reproduce historical change because it fails to account for changes in the relative importance of
the various factors influencing land change over time13. Spatially explicit land change models, which
simulate future or historical land change based on statistical analysis of the quantitative relationship
between the contemporary land use/land cover distribution and various socioeconomic and biophysical
covariates18, have been suggested as an essential next step to improve historical land use/land cover
reconstructions2,13.

This paper presents a new dataset showing historical land change in India between 1960–2010. It uses the
HIstoric Land Dynamics Assessment (HILDA) land change model19,20 to combine district-level inventory
data with a state of the art high-resolution land use/land cover product for the year 200515. The resulting
dataset, which has a spatial resolution of 100m 100m and provides a land use/land cover map for each year
of the study period, shows the evolution of cropland, forest, grassland, shrubland, wasteland, barren land
and urban areas. It is the first publicly available, spatially explicit dataset derived from district-level
inventory data showing land change in India during the second half the twentieth century.

Methods
The HILDA land change model
The HIstoric Land Dynamics Assessment (HILDA) land change model19,20 simulates land change over a
spatial grid in which individual pixels belong to a single land use/land cover type. HILDA was originally
developed for reconstructing historical land change in Europe19. While the model is relatively simple
compared to more sophisticated approaches21,22, it is well suited to modelling land change over large
study regions because it is computationally efficient and guaranteed to produce a solution which satisfies
the regional land change requirement. The allocation procedure is based on statistical analysis of the
quantitative relationship between the contemporary distribution of land use/land cover and various
socioeconomic and biophysical covariates. The resulting regression models are used to estimate the
probability of pixels belonging to the respective land use/land cover type given the underlying biophysical
and socioeconomic conditions. At each time point in the simulation period the model spatially allocates a
given quantity of change amongst the various land use/land cover types. Allocation proceeds in a
hierarchical way according to the perceived relative socioeconomic value of the various land use/land
cover types under consideration. Land uses with increasing area at the regional level are only allowed to
expand to areas currently occupied by land uses with lower socioeconomic value. In this case, n pixels
with the highest probability of belonging to the land use, but which do not currently belong to to it, are
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selected to change. In the case of land uses with decreasing area, n pixels with the lowest probability of
belonging to the land use are nominated for conversion to an alternative land use.

Input data
Administrative boundaries. Contemporary district and state boundaries for India were obtained from
version 2.7 of the Global Administrative Areas Database (GADM; http://www.gadm.org/). In order to
account for boundary changes that occurred during the study period, contemporary GADM boundaries
were manually adjusted until they corresponded with boundaries that were consistent over the course of
the study period. Locations of boundary changes were identified from a scanned, historical geological
map from the European digital archive on soil maps (EuDASM)23 showing district boundaries in 1971.

Land use and land cover inventory data. The amount of land change in each district and at each time
point during the study period was derived from district-level land use/land cover inventory data. In India,
data about land use/land cover are collected at the village level on an annual basis and aggregated to
district and state administrative levels. The compilation of the village level data is coordinated by the
Directorate of Economics and Statistics of India’s Ministry of Agriculture. Data for the entire study
period, except the period 1993–1997 which for unknown reasons was not available, was purchased from
Indiastat (https://www.indiastat.com/), a commercial organisation which distributes socio-economic data
about India. An additional source of district-level survey data for 19 States and Union Territories for the

Variable Source Spatial resolution Time

Topography HydroSHEDS 3 arcseconds N/A

Population density WorldPop25 30 arcseconds 2005

Road network gROADS27 N/A Various

Travel time [26] 30 arcseconds 2000

Annual mean temperature Bioclim 30 arcseconds 1970–2000

Mean diurnal range Bioclim 30 arcseconds 1970–2000

Isothermality Bioclim 30 arcseconds 1970–2000

Temperature seasonality Bioclim 30 arcseconds 1970–2000

Maximum temperature of warmest
month

Bioclim 30 arcseconds 1970–2000

Minimum temperature of coldest
month

Bioclim 30 arcseconds 1970–2000

Temperature annual range Bioclim 30 arcseconds 1970–2000

Mean temperature of wettest quarter Bioclim 30 arcseconds 1970–2000

Mean temperature of driest quarter Bioclim 30 arcseconds 1970–2000

Mean temperature of warmest quarter Bioclim 30 arcseconds 1970–2000

Mean temperature of coldest quarter Bioclim 30 arcseconds 1970–2000

Annual precipitation Bioclim 30 arcseconds 1970–2000

Table 1. Biophysical and socioeconomic covariates.

HILDA modeling Inventory data Remote sensing data15

Cropland Net area sown Miscellaneous tree crops Current fallows Fallow land other than current fallows Cropland Plantations Fallow land

Forest Forest Deciduous broadleaf forest Deciduous needleleaf forest
Evergreen broadleaf forest Evergreen needleleaf forest Mixed forest Mangrove forest

Grassland Permanent pasture Grassland

Shrubland Culturable wasteland Shrubland

Wasteland Wasteland

Barren land Barren and unculturable land Barren land Salt pan

Urban Area under non-agricultural uses Artificial surfaces

Water bodies Area under non-agricultural uses Water bodies Wetlands Aquaculture

Snow and ice Barren and unculturable land Snow and ice

Table 2. Translation of land use/land cover classification schemes of inventory data and remote
sensing product to the classes used in the land change modelling procedure.
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period 1966 to 2009 was obtained from the Icrisat Village Dynamics in South Asia (VDSA) project
(http://vdsa.icrisat.ac.in/). This data originates from the same ultimate source as the Indiastat data but, as
part of the VDSA project, has already undergone some data quality assurance and, moreover, includes
data for the period 1993–1997.

Observed land use/land cover data. Observed land use/land cover information was obtained from
Roy et al.15; a dataset providing maps at 100 m× 100 m resolution for 1985, 1995 and 2005 derived from
multi-temporal satellite data from Landsat, IRS 1C-LISS III and Resourcesat1 instruments. According to
the accuracy assessment conducted by Roy et al.15, which utilised 12,606 ground truth points, the 2005
map had an overall mapping accuracy of 94.46% and a Kappa coefficient of 0.9445. While the accuracy of
the 1985 and 1995 map was not quantified due to the lack of ground truth data for these time points15,
argue that the accuracy is likely to be similar to that of the 2005 map.

Biophysical and socio-economic predictor variables. The HILDA model is based on statistical
relationships between land use/land cover and spatially-explicit biophysical and socio-economic predictor
variables. In total, 16 covariables were used (Table 1). Data on topography (elevation, slope, aspect),
which is known as an important determinant of land use/land cover, was derived from the HydroSHEDS
database, which itself is derived from the NASA Shuttle Radar Topographic Mission digital elevation
model. Bioclimatic variables assumed to influence the spatial configuration of the landscape were
obtained from the Bioclim dataset24.

A map of population density for 2010 at 100 m resolution was obtained from the WorldPop database25.
Accessibility was primarily represented by a map showing the estimated travel time to the nearest city
with a population of 50,000 or more for the year 200026. Additionally, distance to roads was estimated
using a map of major roads from the Global Roads Open Access Dataset27. These predictor variables were
treated as static in time due to a lack of corresponding datasets for historical time points.

Data preparation
The geological map showing district boundaries for 1971 was geolocated and used together with historical
records to identify changes in administrative boundaries over the course of the study period.

Cropland Forest Grassland

Shrubland Wasteland Urban

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

Figure 1. Probability surfaces for cropland, forest, grassland, shrubland, wasteland and urban, calculated

with random forest models. Barren land does not require a probability surface because it is allocated last, while

water and snow and ice are considered constant during the simulation.
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Contemporary district polygons from GADM were manually dissolved until the resulting area
corresponded with boundaries shown by the historical map. As a result of the changes the mean district
unit area increased from 5307 km2 (n= 594, σ= 4673 km2) in the original GADM map to 10650 km2

(n= 296, σ= 8777 km2) in the modified version.
Land use/land cover maps for India (1985, 1995, 2005) were reprojected from Universal Transverse

Mercator to Lambert Conformal Conic projection using nearest neighbour interpolation. The resulting
images were reclassified to nine land use/land cover types (Table 2). Biophysical and socioeconomic
covariates were resampled to the same projection and spatial resolution as the fractional land use/land
cover maps using bilinear interpolation. Lastly, the modified administrative area map was reprojected to
Lambert Conformal Conic projection and each polygon was converted to a raster image with the same
spatial resolution as the other spatial data.

Inventory data from Icrisat and Indiastat were homogenized by checking for inconsistencies,
identifying different spellings of administrative unit names, and applying consistent formatting. Although
the inventory data for several districts was incomplete, either because of boundary changes or missing
data, all district inventory data were mapped to a common annual time series between 1960–2010. The
resulting data files were aggregated to correspond with the district units of the modified GADM
administrative area map. This resulted in two new data files in which district units were associated with a
unique time series of land use/land cover data from Indiastat and Icrisat respectively.

The inventory data contains information about nine land use/land cover classes: (a) forests, (b) area
under non-agricultural uses, (c) barren and unculturable land, (d) permanent pastures and other grazing
land, (e) miscellaneous tree crops, (f) culturable waste land, (g) fallow land other than current fallows, (h)
current fallows, and (i) net area sown. This classification scheme was simplified to provide the demand
scenario input to the land change model (Table 2). The change in urban area was estimated by
multiplying the time series of area under non-agricultural uses, which includes artificial surfaces, by a
scale factor equal to the urban area from the 2005 observed map divided by the area under non-
agricultural uses for 2005 (ref. 2). The area of water and snow and ice are also obtained from the 2005
observed map and, assuming they remain constant during the study period, subtracted from the area
under non-agricultural uses. Any remaining area under non-agricultural uses was assigned to
barren land.

Data quality control was performed at the district level by plotting the time series of each land use/
land cover class, identifying quality issues and infilling or correcting problems as appropriate. Various

1960 1970 1980

1990 2000 2010

Cropland
Forest
Grassland

Shrubland
Wasteland
Barren

Urban
Water bodies
Snow and ice

Figure 2. Simulated land use/land cover maps at decadal time steps over the study period.
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types of error were identified, including: (1) data points labelled as one category but in fact belonging to
another; (2) data points labelled with the wrong area units; (3) missing data points and outliers.
Misclassified data points were reclassified to the correct category while data points labelled with the
wrong units were multiplied by an appropriate conversion factor. Missing data points and outliers were
infilled using linear interpolation or, if the problem occurred in the first or last data points, last
observation carried forwards.

The final processing step was to calibrate the district-level time series data with land use/land cover
quantities from the 2005 land use/land cover map, following the approach of Tian et al.2. This was
necessary because the spatial allocation procedure requires the total area of each land cover type at the
initial time point to be the same in the initial condition map (i.e. the 2005 map from Roy et al.15) and the
non-spatial demand scenario (i.e. the time series dataset derived from the inventory data). Discrepancies
between the respective values may arise for a number of reasons, including inaccurate reporting of certain
land cover types in the inventory data or misclassification of pixels in the remote sensing dataset. In each
district unit a calibration factor was determined for each land use category by dividing the quantity from
the 2005 land use/land cover map with the corresponding quantity from the inventory data. The time
series of each category was then multiplied by the calibration factor to ensure the area of each land cover
type between the 2005 land cover map and the inventory data in each district corresponded. Differences
between the district area and the sum of the various land use/land cover types at each time point were
resolved by visually identifying the land uses responsible for the discrepancy and adjusting the respective
areas accordingly.

Land change modelling procedure
Random forest, a non-parametric ensemble learning method that is robust against overfitting and
efficiently handles datasets with a large number of input variables28,29, was used to fit models of the
spatial distribution of land use/land cover in 2005 with the biophysical and socio-economic predictor
variables. The random forest algorithm constructs multiple classification trees using different bootstrap
samples of the data28, splitting tree nodes using the best split among a random selection of variables28,30.
For regression tasks the results from individual trees are combined by taking the mean prediction. The
statistical analysis was performed on a stratified random subset containing 1000 pixels from each land
use/land cover class. This subset was further divided into training and test sets according to a 70:30 ratio.
All models (cropland, forest, grassland, shrubland, wasteland, urban) were trained and tested on the same
data partitions. A statistical model was not required for barren land because, as the land use/land cover
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random forest models of cropland, forest, grassland, shrubland, wasteland and urban land.
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class with the lowest socioeconomic value, it is automatically assigned to unallocated pixels once the other
classes have been modelled. Fig. 1 shows the suitability surfaces for each land use/land cover class.

The HILDA model was applied to each district using demand scenarios constructed from the
inventory data. This approach means that variability in the rate of land change between districts is
implicitly taken into account, while the annual temporal resolution of the inventory data ensures that the
temporal dynamics of land change in each district is properly represented. Seven land use/land cover
types were modelled in the following order: urban land, cropland, grassland, shrubland, wasteland and
barren land. Water and snow and ice classes were included in the simulation but assumed to be constant
over the study period. The resulting district-level land use/land cover maps were combined to generate an
historical land change dataset for the entire Indian subcontinent. Fig. 2 shows the land use/land cover
maps at decadal time steps between 1960 and 2010.

Code availability
All code used in the present study is provided under the GNU General Public Licence alongside the
resulting datasets (see Data Records section). Spatial input data was processed in GRASS GIS. The R
package randomForest, which provides an interface to the original Fortran code28, was used for statistical
analysis. Land change modelling was carried out using the lulcc software package31. The implementation
of HILDA is adapted from the original model description19. The version of lulcc used in the present study
is provided in the data repository; in addition, a development version resides on the first author’s GitHub
account (https://github.com/simonmoulds/r_lulcc2).
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Figure 4. Comparison of the area of cropland, forest, grassland (including shrubland and wasteland)

and barren land at the national level considering the raw inventory data and the inventory

data after quality control and calibration, as well as the corresponding areas from the remote sensing

product.
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Data Records
The dataset provides annual maps of each land use/land cover type for the period 1960-2010 in Lambert
Conformal Conic projection (Data Citation 1). Land use/land cover inventory data from Indiastat and
ICRISAT have been converted to a consistent format and placed in an R data package which is included
alongside the spatial data. The archive also contains the scripts and input data (or instructions about how
to obtain the data) together with instructions for reproducing the dataset.

Technical Validation
Statistical analysis
The statistical models were evaluated using the receiver operator characteristic (ROC) curve; a graphical
technique which is commonly used to measure the performance of presence-absence models32. The curve
is constructed by plotting the true positive rate (sensitivity) against the false positive rate (1− specificity)
for various cut-off points. It is summarised by estimating the area under the curve (AUC) value, where an
area of 1 indicates a perfect model and a value of 0.5 indicates a random model. The ROC curves for the
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six random forest models are shown in Fig. 3, demonstrating that the models simulate the occurrence of
the respective land uses with an acceptable degree of accuracy.

Land use change modelling
Figures 4 and 5 compare the aggregated demand scenarios of the various land use/land cover types with
the raw inventory data and the corresponding areas from the 1985, 1995 and 2005 remote sensing maps.
These plots demonstrate the discrepancy between land use/land cover areas according to remote sensing
on the one hand and inventory data on the other. In addition, they show that while the trajectory of
cropland, grassland and barren land observable in the raw data is maintained in the calibrated demand
scenarios, the direction of change of forest is different in the two time series. The rate of change of
grassland (which in this plot includes shrubland and wasteland) between 1985 and 2005 is more gradual
in the remote sensing data compared to the inventory data, which may arise because of uncertainty about
the transition between shrubland and forest.

The spatial distribution of land change was validated for 1985; the earliest time point for which a
reference land cover map was available. The validation was performed using the method developed by
Pontius et al.33, in which a simulated land cover map for time 2 is compared with reference maps for time
2 and time 1. In the present study, the simulated map for 1985 was compared with reference maps for
1985 and 2005, which were taken from the remote sensing dataset described previously15. The
comparison was performed at multiple resolutions in order to distinguish between minor allocation
disagreement (disagreement at native resolution which is counted as agreement at a coarser resolution)
with major allocation disagreement (disagreement at the native and coarse resolution). Figure 6 shows the
components of agreement and disagreement between the three maps at multiple resolutions, while
Table 3 shows the value of each component of agreement and disagreement at the various spatial
resolutions. The comparison was not carried out on resolutions finer than 16 times the native resolution
because of difficulties performing the analysis on very large raster maps. At 16 times the native resolution
there is 91% agreement between the observed and simulated maps for 1985, with the vast majority of
agreement arising from correctly simulated persistence (i.e. pixels which have not changed between 1985
and 1995). At this resolution the largest source of disagreement between the observed and simulated
maps is change simulated as persistence. Of all pixels that were observed to change between 1985 and
2005, the simulated map for 1985 is in agreement with the reference map in around 6% of cases at 16
times the native resolution, rising to 19% at 1,024 times the native resolution (i.e. around 100 km× 100
km resolution) and 35% at the coarsest resolution. Overall disagreement is 9% at the finest resolution
considered, 3.8% at 1,024 times the native resolution and 1.1% at the coarsest resolution. At 65,536 times
the native resolution the entire study area is represented as one pixel, which necessarily means that
disagreement is entirely due to quantity disagreement; in other words, disagreement between the
inventory data and the remote sensing data about the total quantity of change when it is aggregated
nationally. Since quantity disagreement is consistent across all resolutions, around 10% of the
disagreement at 16 times the native resolution is the result of quantity, rather than allocation,
disagreement.

Multiple of native
resolution

(1) (2) (3) (4) (5)

16 0.042 0.006 0.011 0.037 0.904

32 0.037 0.006 0.013 0.034 0.910

64 0.031 0.007 0.016 0.030 0.917

128 0.026 0.008 0.017 0.025 0.925

256 0.021 0.008 0.018 0.020 0.934

512 0.016 0.009 0.017 0.014 0.944

1024 0.013 0.009 0.015 0.010 0.954

2048 0.009 0.008 0.013 0.007 0.963

4096 0.006 0.008 0.011 0.005 0.971

8192 0.004 0.007 0.010 0.004 0.975

16384 0.003 0.008 0.008 0.003 0.977

32768 0.001 0.007 0.008 0.002 0.982

65536 0.001 0.006 0.008 0.002 0.983

Table 3. Components of agreement and disagreement at multiple resolutions (fraction of study area).
(1) Change simulated as persistence (misses) (2) Change simulated correctly (hits) (3) Change simulated as
change to wrong category (wrong hits) (4) Persistence simulated as change (false alarms) (5) Persistence
simulated correctly (correct rejections).
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Usage Notes
It is envisaged that the dataset will be used in a variety of contexts across disciplines. For example, it may
be used in combination with impact assessment models to quantify the environmental impacts of land
use change. Such analyses may inform policies designed to support sustainable agricultural development,
urban expansion and the protection of ecosystem services. Historical land cover maps are an essential
input to assessments of global and regional change because land cover influences the water and energy
fluxes. Moreover, land use/land cover maps are a necessary first step towards developing datasets of land
management and land use intensity10. Thus, a valuable extension to the present dataset would be the
inclusion of more information about specific land management practices such as irrigation and multiple
cropping.

The dataset is associated with a large amount of uncertainty from various sources. In particular, the
raw district-level inventory data contains a large amount of noise which had to be manually removed
before supplying it to the land change model. To ensure decisions made during quality control are open,
reproducible and amendable the data processing scripts are included alongside the land use/land cover
maps. The HILDA land change model is strongly influenced by the statistical analysis of the spatial
distribution of contemporary land use/land cover. The random forest models employed in the present
study use several publicly available datasets (Table 1). Recognising that other members of the community
may have access to alternative, or additional, datasets outside the public domain, the source code includes
clear instructions about incorporating additional data into the statistical analysis. Users of the dataset
should be aware that in the present analysis the explanatory factors of population density, accessibility
and distance to roads have been treated as static in time due to the lack of historical, spatially explicit data
showing the evolution of these variables during the study period.

Individual land use/land cover maps are provided as GeoTIFF files which can be processed in standard
Geographical Information System (GIS) software as well as data processing languages such as R and
Python. To assist users who may require maps at relatively coarse resolutions (e.g. for supplying to Earth
system models), the data repository includes maps in unprojected format at 5 arcminutes × 5 arcminutes
spatial resolution, showing the fraction of each pixel belonging to the various land use/land cover types.
Users should be aware that reprojecting the maps from the original Lambert Conformal Conic projection
will change the aggregate area of each land use/land cover type.
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