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The Gene Expression Omnibus (GEO) database is an excellent public source of whole transcriptomic profiles
of multiple cancers. The main challenge is the limited accessibility of such large-scale genomic data to
people without a background in bioinformatics or computer science. This presents difficulties in data
analysis, sharing and visualization. Here, we present an integrated bioinformatics pipeline and a normalized
dataset that has been preprocessed using a robust statistical methodology; allowing others to perform
large-scale meta-analysis, without having to conduct time-consuming data mining and statistical
correction. Comprising 1,118 patient-derived samples, the normalized dataset includes primary non-small
cell lung cancer (NSCLC) tumors and paired normal lung tissues from ten independent GEO datasets,
facilitating differential expression analysis. The data has been merged, normalized, batch effect-corrected
and filtered for genes with low variance via multiple open source R packages integrated into our workflow.
Overall this dataset (with associated clinical metadata) better represents the diseased population and
serves as a powerful tool for early predictive biomarker discovery.

Design Type data integration objective • data normalization objective

Measurement Type(s) transcription profiling assay

Technology Type(s) digital curation

Factor Type(s) diagnosis of cancer

Sample Characteristic(s) Homo sapiens
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Background & Summary
The big data boom heralds a new era of precision medicine – access to large pools of ‘omics’ data has
driven breakthroughs in this emerging field. In particular, microarray technology is one of the most
extensively explored high-throughput methodologies for the quantitative assessment of gene expression1,2

. The Gene Expression Omnibus (GEO) database at the National Center for Biotechnology Information
(NCBI) was launched in 2000 to support public use of such genomic resources provided by the scientific
communities3,4. Since then, 94,577 series probed with 18,138 platforms, for over 2 million samples have
been submitted to the GEO database.

The challenge with these vast datasets, however, is that exploring a huge breadth of data is not
straightforward – from effectively querying the correct dataset to utilizing the right pipelines for
realizing true significance from such high-dimensional data. Successful differential expression analyses,
for example, are reliant on careful interrogation to minimize non-biological variations. Preprocessing
of microarray data is thus an essential step prior to downstream analysis. Several preprocessing pipelines
exist for background correction and normalization of array-dependent gene expression. The most
commonly used techniques are Robust Multiarray Average (RMA)5, frozen Robust Multiarray Analysis
(fRMA)6, Single Channel Array Normalization (SCAN)7, and Universal exPression Code (UPC)8.
The fRMA method was chosen in this study for its use in the InSilico DB package9 implemented in our
developed framework.

The merging of multiple genomic datasets into a single matrix for large-scale meta-analysis poses
another source of variation termed the batch effect. Such bias arises as a consequence of systematic
technical or non-biological differences between independent laboratories10. It is nonetheless possible to
adjust this inter-dataset variation with previously established models for such batch effect removal. These
include the Empirical Bayes method, also known as ComBat11, the Batch mean-centering (BMC)12, the
Gene standardization (GENENORM)13, and the distance-weighted discrimination (DWD)14. The
Combat method was applied to ten fRMA-preprocessed microarray datasets in this work for the
integration into a single dataset.

Here, we present an integrated R pipeline and a transcriptome dataset for non-small cell lung cancer
(NSCLC), together with its associated clinical metadata (Fig. 1). Using this strategy, we recently identified
an expression pattern of specific genes that could serve as an accurate clinical tool for its predictive value
in prognosis and adjuvant therapy response in NSCLC15. Our unique selection and integration of
multiple open source R packages greatly reduce computational complexity and processing time to
ultimately identify putative cancer-associated gene signatures. To facilitate gene differential expression
(DE) analyses, we processed a total of 1,118 patient-derived samples including primary tumors as well
as tumor-free control tissues. Additionally, we embedded two robust quality control metrics utilizing

Figure 1. Study design. Preprocessing of raw data from ten independent datasets was done for normalization,

background correction and probe-to-gene mapping. The fRMA-normalized data were corrected for batch effect

using ComBat method and filtered for genes with low variance across samples. Validation of our dataset was

done with PCA analyses and similarity measurement using RNA-Seq-profiled samples. Statistical R packages

used to develop this dataset are stated.
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RNA-Seq data from the Cancer Genome Atlas (TCGA) in the present pipeline for multi-platform
assessment and validation of differentially expressed genes. This normalized dataset serves as an excellent
large-scale ‘discovery cohort’ for identification of clinically relevant NSCLC biomarkers.

Methods
Detailed methods, including the study design and statistical analyses, for constructing NSCLC gene panel
and developing clinically applicable risk scoring metrics for patient stratification and prognostication can
be found in our recent publication15.

Data collection and preprocessing
The raw data of gene expression profiles from ten independent GEO datasets comprising a total of 1,118
NSCLC samples including both primary tumors and normal lung tissues were downloaded from the
NCBI via the inSilicoDb package9. Samples processed using the same chip platform (Affymetrix Human
Genome U133 Plus 2.0 Array) were analyzed (Table 1). This minimizes batch effects that arise from
different microarray platforms and allows the analysis of the same set of genes with the same probesets.
The fRMA method was first applied to the raw data via the getDataset function for background
correction, normalization and probe-to-gene mapping. This embedded function allows fast data accession
and simultaneous preprocessing of expression profiles, regardless of the screening platform. All clinical
information annotated in ten initial datasets were further collected and curated for clinical model
development (Data Citation 1).

Batch effect removal
Using the inSilicoMerging package16, we next merged ten fRMA-preprocessed datasets and corrected for
batch effects that arise from technical variation between independent studies. The merge function
included in this package is simple and straightforward to use for batch effect correction, regardless of the
number of independent datasets being queried. Of existing batch effect removal techniques, the ComBat
method11 was applied to these preprocessed microarray datasets. Technical validation of any chosen
method can be done using embedded functions such as plotMDS, plotRLE, and plotGeneWiseBoxPlot.
These features allow visual demonstration of reduced variance via the Principal Component
Analysis (PCA) approach. Only the first two PCs are plotted as these variables capture the most
significant patterns of variation which arises as a consequence of non-biological difference across
independent batches10. In our recent study15, we used the prcomp function in the stats package and the
ggbiplot function in the ggbiplot package17 for generating PCA graphs and subsequent visualization,
respectively. In this work, we demonstrate the batch effect removal using the embedded plotMDS
function (Fig. 2).

Gene filtering
Genes with low variance across samples can be filtered prior to performing DE analysis. This step
prevents flat genes from affecting the downstream analysis and improves the computational processing
time by focusing on only statistically significant genes in a meta-analysis. Our integrated dataset stores a
huge amount of transcriptomic data, including expression values of 20,155 genes for 1,118 NSCLC
patients. Gene filtering was performed using the nsFilter function in the genefilter package18, removing
10,078 genes for subsequent identification of DE genes.

Dataset Lung tissue Microarray Platform

1 GSE10799 3 16 Affymetrix Human Genome U133 Plus 2.0 Array

2 GSE12667 0 75 Affymetrix Human Genome U133 Plus 2.0 Array

3 GSE50081 0 181 Affymetrix Human Genome U133 Plus 2.0 Array

4 GSE31210 20 226 Affymetrix Human Genome U133 Plus 2.0 Array

5 GSE18842 45 46 Affymetrix Human Genome U133 Plus 2.0 Array

6 GSE10445 0 72 Affymetrix Human Genome U133 Plus 2.0 Array

7 GSE33356 60 60 Affymetrix Human Genome U133 Plus 2.0 Array

8 GSE19188 65 91 Affymetrix Human Genome U133 Plus 2.0 Array

9 GSE28571 0 100 Affymetrix Human Genome U133 Plus 2.0 Array

10 GSE10245 0 58 Affymetrix Human Genome U133 Plus 2.0 Array

TOTAL 193 925 1118

Table 1. GSE accession number and number of samples for each phenotype.
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Code Availability
The R code used to generate our normalized dataset and all the plots described in this paper (and in our
recent work15) can be found in figshare (Data Citation 1).

Data Records
Our normalized microarray dataset with associated clinical metadata is available at ArrayExpress
(Data Citation 2). DE gene lists with full description are deposited as individual text files in figshare
(Data Citation 1). These include annotations of log 2 fold-change, average expressions, t, P-value and
adjusted P-value derived from both microarray and RNA-Seq platforms. All the GEO datasets processed
through our pipeline are available from the National Center for Biotechnology Information
Gene Expression Omnibus (GEO) databases (Data Citation 3, Data Citation 4, Data Citation 5, Data

Figure 2. Validity of our generated dataset. (a) The effect of batch effect removal is clearly demonstrated

using the plotMDS function. (b) The MDS plot of our merged microarray dataset shows a clear separation

between different disease phenotypes (925 primary NSCLC tumors: red; 193 non-tumors: green). (c) The

merging effect of the ComBat technique on the fRMA-normalized data is illustrated using the plotRLE

function. (d) The local effect of the ComBat method at the gene-level is demonstrated using the

plotGeneWiseBoxPlot function. A1BG gene was selected for the demonstration purpose.
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Citation 6, Data Citation 7, Data Citation 8, Data Citation 9, Data Citation 10, Data Citation 11, Data
Citation 12).

Technical Validation
Visual validation of batch effect removal
The following functions available in the inSilicoMerging package16 are used to check the validity of our
approach in correcting for batch effects. In this study, the ComBat adjustment is visualized at both
systemic and gene-specific levels.

A. The plotMDS function. The effect of ComBat technique is clearly demonstrated on ten preprocessed
datasets (Fig. 2a). The resulting MDS plot in Fig. 2b shows a clear separation of the samples according to
the disease phenotype (biological variation), and not the source of dataset (non-biological variation),
highlighting successful removal of the batch effect in this merged dataset.

B. The plotRLE function. Similarly, other functions implemented in the present pipeline can be used to
visualize the statistical correction. Here, we randomly selected 50 samples using the RLE plots for
demonstration purposes (Fig. 2c). Samples are colored according to the study they are extracted from.
Although not as clearly visible as the plotMDS function due to large number of variables, the merging
effect of ComBat transformation can clearly be indicated using the plotRLE function.

C. The plotGeneWiseBoxPlot function. Unlike the two above-mentioned functions, the last
visualization technique included in our R framework shows the local effect of batch effect adjustment
at the individual gene level. For demonstration purposes, we selected A1BG gene to be illustrated in the
gene-wise boxplot (Fig. 2d). A notable change in expression of this gene resulting from the adjustment
again demonstrates the validity of the merging technique used in our integrative pipeline for the
identification of DE genes.

Multi-platform assessment of DE genes
The following steps implemented in our workflow aim to address continuing concerns raised in
previous works regarding reproducibility of DE genes using the microarray platform19,20. Briefly, we
first performed random sampling using our generated dataset and derived ranked list of DE genes
with each iteration. A significant overlap between ranked lists was indicated by a high overlap coefficient,
showing high intra-platform reproducibility in differential gene expression. We further compared
DE gene signatures generated from our normalized dataset with that from RNA-seq platform
using the TCGA database and observed high inter-platform concordance. Altogether, these additional
steps in our pipeline ensure the reproducibility of potential cancer biomarkers derived from our
dataset.

A. An iterative approach - random sampling. We first determined DE genes using our NSCLC
dataset via the limma package21 by applying the following statistical criteria: (1) log 2 fold change >1.5;
(2) adjusted P-valueo1.0E-10. Such stringent cutoff thresholds produce only a handful of significant
genes that distinguish tumors from tumor-free lung tissues. To dispel any possible bias against our feature
selection, we performed random sampling using our dataset – the overlap coefficient was computed using
all DE gene lists derived from 10,000 iterations. The mean overlap coefficient of 0.899 was obtained in our
previous work15, validating the robustness of our approach in identifying DE genes. Overall, we show a
simple, yet reliable meta-analysis pipeline for discovering reproducible DE genes and facilitating
development of clinically applicable models.

B. Different profiling platform – TCGA RNA-Seq data. As our dataset exclusively comprised of
datasets probed with the same platform (microarray), we further investigated the generalizability of our
merged data using RNA-Seq-assayed samples. Level-3 RNAseqV2 gene expression profiles of lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) from TCGA were preprocessed via
the TCGA-Assembler package22 for subsequent DE analyses. The raw sequencing data were first
normalized with RNA-Seq by expectancy maximization (RSEM) method using the DownloadRNA-
SeqData function. Prior to DE analysis, these RSEM-normalized data were preprocessed using the
DGEList function and only genes expressing at a counts-per-million (CPM) above zero in at least 20% of
the samples were retained using the cpm function via the edgeR package23. The resulting data were again
normalized by Trimmed Mean of M-values (TMM) using the calcNormFactors function via the edgeR
package23. The voom-transformed data were then used to derive final DE gene list via the limma
package21. As previously described, the PCA plot was generated for this preprocessed TCGA data to
visualize a clear separation according to the disease status.
To further demonstrate the utility of our generated dataset in identifying unique set of genes defining distinct

subtypes of NSCLC, we performed separate meta-analyses of adenocarcinoma and squamous cell carcinoma
(SCC). DE gene lists obtained from the two subtypes were then compared with that from TCGA LUAD and
LUSC cohorts, respectively (Fig. 3a). To dispel any bias that could be introduced from different number of
genes assayed within each platform, only common genes included in the final DE gene lists were ranked and
compared. Regardless of cancer subtypes, a high degree of overlap between DE genes derived from the two
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platforms was observed (Spearman’s correlation coefficient rs= 0.917 and 0.933 for ADC and SCC,
respectively). We further identified uniquely and commonly up-regulated DE genes in tumors compared to
control tissues (Fig. 3b) by applying our defined cutoff thresholds (logFC >1.5 and logFC >3 for the
microarray-based dataset and RNA-seq-based TCGA dataset, respectively).
The present normalized dataset of lung cancer together with its associated clinical metadata will allow

exploration of distinct patterns of DE genes in relation to clinical features, including histology, gender, age,
pathological and TNM stage, and survival outcomes, facilitating clinical predictive modeling for accurate
diagnosis and prognosis in oncology.

a

b

Figure 3. The interplatform concordance between microarray (normalized dataset) and RNA-Seq (TCGA)

platforms in discovering DE genes for distinct subtypes of NSCLC. (a) Linear regression lines (black line)

and marginal histograms (blue) are drawn; rs= Spearman’s correlation coefficient. (b) DEG lists generated for

adenocarcinoma and squamous cell carcinoma (SCC). logFC >1.5 and logFC >3 were used for statistical

criteria to define DE genes for our normalized dataset and TCGA cohorts, respectively.
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