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Understanding the human inner ear anatomy and its internal structures is paramount to advance hearing
implant technology. While the emergence of imaging devices allowed researchers to improve
understanding of intracochlear structures, the difficulties to collect appropriate data has resulted in studies
conducted with few samples. To assist the cochlear research community, a large collection of human
temporal bone images is being made available. This data descriptor, therefore, describes a rich set of image
volumes acquired using cone beam computed tomography and micro-CT modalities, accompanied by
manual delineations of the cochlea and sub-compartments, a statistical shape model encoding its
anatomical variability, and data for electrode insertion and electrical simulations. This data makes an
important asset for future studies in need of high-resolution data and related statistical data objects of the
cochlea used to leverage scientific hypotheses. It is of relevance to anatomists, audiologists, computer
scientists in the different domains of image analysis, computer simulations, imaging formation, and for
biomedical engineers designing new strategies for cochlear implantations, electrode design, and others.

Design Type(s) observation design

Measurement Type(s) inner ear morphology trait

Technology Type(s)
micro-computed tomography • Cone-Beam Computed Tomography
• Computer Modeling

Factor Type(s) Biologic Sample Preservation Procedure

Sample Characteristic(s) Homo sapiens • petrous part of temporal bone
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Background & Summary
The anatomy of the human cochlea is subject to research in many areas of scientific and technological
development including audiological studies, the development of less invasive surgical procedures and the
design of more effective artificial hearing implants. Since the emergence of imaging technologies, it has
become evident that imaging of the human cochlea has played a central role in these and other areas of
research1–4. In audiology, the intrinsic relation between cochlear function and shape has been
exhaustively studied, and has enabled the use of imaging information to develop functional models5–7.
Similarly, in image-guided surgery of cochlear interventions, imaging has allowed researchers to study
safety margins and how the anatomical variability is to be taken into account for safer and less invasive
surgical procedures8–12. In electrophysiological modelling of the human cochlea, initial works have used
synthetic and simplistic models, and despite the awareness on the importance of using realistic models
generated from patient data, the difficulties to collect appropriate data has resulted in studies conducted
with few samples13–15. In relation to the anatomical size of the human cochlea and its internal structures,
the geometric resolution of current clinical computed tomography (CT) scans is considerably low. As a
result, images acquired from patients typically lack information on the intracochlear anatomy and are
therefore of limited usage for precise and accurate patient treatment or for the improvement and
development of artificial hearing implants. To counter the limited resolution of clinical CT imaging,
several attempts have been proposed to estimate the information of interest (e.g., complete cochlear duct
length, position of the basilar membrane) from surrogate data measured or derived from CT images16–19.
However, the complexity of the cochlear anatomy lowers the effectiveness of these approaches, as the
observable surrogate measures are not capable of fully characterizing the internal cochlear anatomy.

With the advent of modern imaging techniques, such as micro computed tomography (μCT), the
possibility to obtain detailed imaging information has allowed researchers to capture details of the
cochlear anatomy that were not possible before. The current limitations of this technology for clinical
integration are the reduced size of the scanning field of view, and the high amount of radiation dose
required to obtain high level of image quality. However, ex-vivo studies using μCT imaging information
have enabled researchers to validate important scientific hypotheses and computational models of the
human cochlear physiology1,20–23.

Solutions to make connections between the relatively ‘low-resolution’ clinical scenario and the ex-vivo
μCT imaging have emerged in recent years through the development of advanced computational models
that use μCT information to build high resolution models of the cochlear anatomy, which can be used to
infer the patient-specific anatomy from the low-resolution clinical CT image24. These computational
models are able to better capture the three-dimensional correlations between shape information derived
from CT and μCT imaging.

Construction of these high-resolution models requires the application of image processing techniques
on high-resolution imaging. In addition to the high resource demands of μCT imaging, the release of this
data descriptor makes an important asset for future studies in need of high-resolution data and related
models and statistical data objects of the cochlea used to leverage scientific hypotheses.

This data descriptor encompasses a rich set of imaging data sets of the human cochlea, accompanied
by manual delineations of the cochlea and sub-compartments, a statistical shape model encoding its
anatomical variability, and models for electrode insertion simulation and electrical stimulations. It is of
relevance to anatomists, audiologists, computer scientists in the different domains of image analysis,
computer simulations, and imaging formation, as well as for biomedical engineers designing new
strategies for cochlear implantations, electrode design, and others.

The provided data includes 52 temporal bones scanned with clinical cone beam CT (CBCT) and μCT
resulting in 30 and 50 image volumes respectively. Manual and semiautomatic segmentations of the
cochlea from μCT data are provided for 24 samples. A statistical shape model (SSM) that describes the
main patterns of shape variability has been built from a subset of the available data, and can be used to
generate statistically plausible sample shapes programmatically. Finally, we contribute with several data
objects for finite-element simulations of electrode insertion and electrical stimulation. An overview of the
data generation can be seen in Fig. 1.

Methods
In the following sections, detailed description of the samples preparation, image acquisition and mesh
modelling is presented. Since the database encompasses different modalities and protocols, the methods
are separated per dataset when appropriate, following the convention in Table 1.

All specimens in this data descriptor are coming from the University of Bern and the Technical
University of Munich (TUM). Approval from the local ethical body in Bern was received for the
specimens included herein (Ethics Commmission of Bern, Switzerland, KEK-BE Nr. 2016-00887).
Specimens from the Technical University of Munich were provided according to the World Medical
Association Declaration of Helsinki25.

In general, the workflow depicted in Fig. 2 was followed in order to provide CBCT and μCT image
datasets of the specimens. In addition, a subset of the specimens were implanted using cochlear implants
electrode array and imaged for further implantation analysis.
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Human cadaver specimens preparation
All imaging and mesh data provided in this data descriptor originate from sets of cadaveric human
temporal bone specimens containing the cochlea. The specimens are organized and summarized in
Table 1 and described below in terms of preservation of the biological tissue, extraction and preparation,
imaging methodology, image processing approaches, statistical shape modeling, and finite element model
creation.

Specimen collection A. In total, 20 petrous temporal bones were extracted from 10 whole human
cadaver head specimens preserved in Thiel solution26,27. The Thiel fixation method is known to preserve
the mechanical properties of the tissue without the hardening and shrinkage of soft tissue, while
conserving the specimen for long periods of time, similarly to formaldehyde. The specimens were
prepared to fit in a sample holder with a diameter of 34 mm prior to image acquisition. While 19 petrous
bones contained the complete external auditory canal, middle and inner ear, one case was damaged
during the extraction process (the anterior semicircular canal was slightly cut) and was thus excluded
from this descriptor.

Specimen collection B. Seven human cadaveric specimens were obtained from a previous study
investigating a minimally invasive robotic approach for cochlear implantation8. A small tunnel (1.8 mm
in diameter), originating on the mastoid surface and targeting the center of the round window, was
drilled in each specimen and free-fitting CI electrode arrays were manually inserted. In order to allow
imaging using a μCT scanner, the petrous part of the temporal bone was extracted from the whole head
specimens (including the external auditory canal, the middle ear and the inner ear). A detailed
description of the materials and methods is given in Bell et al.8 and Wimmer et al.12.

Specimen collection C. A total of 20 dry temporal bone specimens were provided by the anatomical
collection of the Institute of Anatomy, University of Bern, Switzerland. No intracochlear structures such
as the basilar membrane or the round/oval window membranes were preserved. Thus, only the calcified
tissues are visible in the images. The sample holder size of the μCT was chosen individually per sample in
order to fit the specimen size containing the complete inner ear. All specimens were fixed in the sample
holders with polystyrene foam to avoid relative motion of the specimens during the scans.

Figure 1. Spiral of cochlear data generation: From harvested cochlea specimens, μCT and Cone-beam CT

scans, image segmentations, 3D models of the human cochlea, statistical shape model, geometrical models of

surrounding cochlear structures, finite-element data objects for electrode insertion and electrical simulation.

The resulting data are summarized in Tables 2 and 3.
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Specimen collection D. Five petrous temporal bones were frozen and preserved at −20 °C, without
additional fixation, and defrosted 3 h before scanning. Four samples were implanted with MED-EL
FlexEAS dummy electrode arrays excluding wires (in order to avoid metal artifacts) using a transmastoid
approach and a posterior tympanotomy. The semicircular canals could not be retained in order to be able
to fit the specimens to the 17 mm μCT holder of a μCT 50 scanner (Scanco Medical AG, Brüttisellen,
Switzerland). A detailed description is available in1,28.

Image acquisition
Images from the prepared specimens were acquired using μCT and CBCT modalities. An overview of the
resulting image datasets are depicted in Fig. 3. The diagram is organized as follows: specimen affiliation,
preservation method, collections, followed by CBCT and μCT imaging for intact and implanted
specimens.

μCT imaging. All prepared specimens from collections A and C were imaged using a μCT 100 scanner
(Scanco Medical AG, Brüttisellen, Switzerland). Additionally, the prepared specimens from collection D
were scanned using a μCT 50 scanner (Scanco Medical AG, Brüttisellen, Switzerland). Table 2
summarizes the μCT measurement parameters for the different specimen collections. All specimens were
fixed in the sample holders with polystyrene foam to avoid relative motion of the specimen during the
scans. No medium such as ethanol or phosphate-buffered saline (PBS) was added and the specimens were
scanned in air to obtain the best image contrast.

The data was reconstructed using a filtered back-projection algorithm. From an initial reconstruction, a
region of interest was selected and subsequently reconstructed to 4,608 × 4,608 pixels per slice. The
resulting voxel size is 7.6 μm for the Thiel fixed specimens, 16.3 μm for the specimens measured in the 73
mm sample holder and 19.5 μm for the specimens measured in the 88 mm sample holder, respectively.
Finally, the reconstructed data was converted and stored as sequences of DICOM images.

CBCT imaging. While μCT may provide sufficient spatial resolution to display intracochlear
membranous structures, it is limited to in-vitro examinations with samples restricted in size. This data
descriptor is therefore augmented with clinically applicable modalities such as the cone beam CT
(CBCT). 15 specimens from collection A and 7 specimens from collection B were scanned with a ProMax
3D Max CBCT scanner (Planmeca, Finland). The specimens were placed in a plastic container at the
approximate center of the revolving scanning arm. A lower skull scan protocol with the following
parameters was used: 90 kVp, 8 mA, 100 mm FOV, 108mAs and a slice thickness of 0.15 mm. The focal
spot was 0.6 mm×0.6 mm according to the manufacturer’s documentation. The resulting reconstructed
stack of images has an isotropic voxel size of 150 μm and are saved in a sequence of DICOM files.

In addition, 8 specimens from collection A were imaged using the xCAT® mobile CBCT scanner
(Xoran Technologies, United States). The specimens were placed in a plastic container at the approximate
center of the rotating gantry. A high resolution scanning protocol was used using the following
parameters: 120 kVp, 6 mA, 245mm FOV. The resulting reconstructed stack of images has an isotropic
voxel size of 300 μm and are saved in a sequence of DICOM files.

ID Source Specimen Preservation Method Number of Samples

A University of Bern Petrous bone Thiel 19

B University of Bern Petrous bone Thiel 7

C University of Bern Petrous bone Dry 20

D Technical University of Munich (TUM) Cochlea Frozen 5

Table 1. Summary of human cadaver specimen collections.

Figure 2. Imaging workflow overview.
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Summary of acquired image datasets. The following table summarizes the different image datasets
obtained from imaging the specimen collections.

Micro computed tomography segmentation
Specimen collection A. The contrast in the images enables the distinction between cochlear fluid-filled
regions, soft-tissue and bone. The following inner ear structures were manually segmented on 5 μCT
image datasets using a commercially available software (Amira, FEI Visualization Sciences Group):

● The scala tympani and scala vestibuli. Because the image resolution was not sufficient to visualize the
Reissner’s membrane, the scala media could not be identified and was included in the scala vestibuli
segmentation.

● The vestibule and the semicircular canals
● The modiolus (including the interscalar septum)
● The lamina spiralis
● The spiral ligament
● The basilar membrane
● The round and oval window membranes

The data resulting from segmentation is a volumetric label image, where each voxel in the original
volume has been assigned a label. A label is an integer value indicating the nature of the underlying tissue.
Surface models of the different anatomies can be generated from the label volumes using standard iso-
surface extraction techniques29.

Figure 3. Overview and origin of acquired image datasets with number of specimens (s) and number of

image volumes (n). Each image set was given an ID composed of the specimen provenance (letter A–D), low,

high resolution or segmentation mask (L, H or S) and a set identification number.
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Specimen collection C. The contrast in the set of images from collection C enables bone and non-bone
structures to be distinguished. The labyrinth was segmented by using a single object/label representing
the cochlear scalae (i.e., scala tympani, vestibuli and media), vestibule and semicircular canals. The lamina
spiralis was excluded from the object, and the openings to the oval and round window had no obvious
boundaries to demarcate the segmentation. Consequently, a consistent smooth manual closing was
performed in these regions. The manual closing of the oval and round window and segmentation of the
cochlea, vestibule and semicircular canals was performed using the software tool ITK-SNAP30, while the
manual corrections of the segmentations were made using the software tool Seg3D (www.seg3d.org). It
resulted in 19 labelled image datasets.

Specimen collection D. Two image datasets were manually segmented with a commercially available
software (Amira, FEI Visualization Sciences Group). In the case of the non-implanted temporal bones,
the segmented structures were the scala vestibuli, scala tympani, osseous spiral lamina, round window,
cochlear partition and stapes. Since the Reissner’s membrane was missing, the scala media could not be
individually identified and was included in the scala vestibuli segmentation. In the case of the implanted
temporal bones, the structures segmented were the electrode array, scala tympani and scala vestibuli.

Statistical shape analysis
Statistical shape modeling (SSM). is a powerful technique used to represent the anatomical variability
of a given structure or organ as a compact and parametric mathematical model. The first step of the
process is to establish correspondences between the samples. The principle described in Frangi et al.31 is
followed, where the correspondences are found through a volumetric image registration between a chosen
reference and each of the remaining available samples. Following, the image registration a mesh structure
was propagated to all samples using the deformation fields computed using the volumetric registration.

Labyrinth PDM ( Data Citation 113): From the specimen collection C, 17 samples could be used to
build a classic Point Distribution Model (PDM)32 of the inner ear labyrinth, with the registration model
detailed in ref. 33. In short, the datasets were downsampled to 24 μm voxel-sizes and then rigidly aligned
to take out variability in translation and rotation between the samples. In order to ensure a good quality
of the following non-rigid registration, especially for the cochlear turns and apical region, a simple model
of the cochlea skeleton was introduced, which provides a more suited way of describing the similarity
between two cochlea samples. The non-rigid multi-level cubic B-spline registrations were made following
the framework and formulation of the elastix software library34.

Cochlea PDM ( Data Citation 114): The reference 3D surface model is projected to each of the
individual samples through the image registration transformations. A classic linear principal component
analysis (PCA) is made using Statismo35. The result is a point distribution model (PDM) that models the
variation in the surface point coordinates.

Virtual electrode array insertion and finite element mesh generation
In order to generate a complete computational model of the cochlear implantation, the electrode array
needs to be virtually implanted into the specific cochlear anatomy, previously created. Thus, a virtual
insertion is first performed followed by the generation of a volumetric finite element mesh of the whole
model allowing further assessment of the electrical activation using Finite Element Methods (FEM).

During the virtual insertion step, first, the vestibular and semicircular canals are removed from the
virtual cochlea and an insertion point is estimated at the center of the round window membrane. A
specific electrode array is subsequently generated from a parametric model that describes the possible
shape, size, number and type of electrode contacts using template files written in the open-source CAD
language OpenSCAD (http://www.openscad.org). Once both the processed cochlea and specific selected
electrode are defined, the insertion of the electrode inside the virtual ear is performed. A set of issues need
to be considered to compute a virtual insertion. There exist many possible surgical trajectories and the
final position of the implant during a real intervention will depend on several factors such as the stiffness

Sample Holder Diameter TUM (n= 4) 17mm TUM (n= 2) 32mm Thiel (n= 16) 34mm Dry (n= 15) 73mm Dry (n= 5) 88mm

Energy 70 kVp 70 kVp 90 kVp 90 kVp 90 kVp

Intensity 200 μA 200 μA 88 μA 155 μA 155 μA

Filtering Al 0.5 mm Al 0.5 mm Al 0.5 mm Al 0.5 mm Al 0.5 mm

Integration time 800/1,000 ms 800/1,000 ms 600 ms 350ms 350 ms

Frame averaging 4 x 4 x 2 x 4 x 4 x

Samples 3,400 3,400 3,072 3,072 3,072

No. projections/180° 1,500 1,500 2,000 2,000 2,000

HR reconstruction voxel size 5.9 μm 10.8 μm 7.6 μm 16.3 μm 19.5 μm

Average measurement time 36 h 36 h 25.5 h 23.4 h 21.0 h

Table 2. μCT measurement settings used for the different collections of specimens.
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of the electrode itself, the dexterity of the surgeon and the interaction between the insertion tools and the
patient’s anatomy.

Additionally, to reduce computational complexity, the virtual insertion step is optimized for potential
repeated use. A two-step solution is proposed. First computing a possible surgical trajectory using the
SOFA framework, using simplified geometrical models and greedy collision detection algorithms, and
second deforming the shape of the original electrode design in the new position using the parallel
transport frame36,37. The collision model for the electrode array is generated using a set of points and
lines along the centerline of the object for reducing computation time38,39. Several trajectories are pre-
computed to speed up the process accommodating the most common scenarios, but can be traced again
for special cases. Overall, this results in a very flexible and lightweight approach to control the insertion of
the electrode into the cochlea.

Once the virtual insertion is completed, the generation of the volumetric mesh is performed. This
mesh is used to carry out the stimulation of the electrical activation of the nerve fibers due to the implant
activation. Starting from the surface models of the virtually implanted cochlea, the nerve fibers are
automatically generated considering the position of the spiral ganglion and a surrounding temporal bone,
which is crucial for a realistic propagation of the stimulating currents. Spheres of 0.75 mm of diameter are
created on the electrode's contact to ease the definition of boundary conditions for the electrical
stimulation. Afterwards, all the structures described so far are merged and a single tetrahedral mesh is
generated (see Fig. 4) and proper FEM definitions are applied. Further details of the framework can be
found in Mangado et al.40 and a full application to the case of patients with healthy and degenerated
nerve auditory fibers in Ceresa et al.41. The aspect ratio of all elements contained in the final mesh is
computed to quantify the mesh quality of the model, in order to avoid convergence problems during the
finite element simulation. Finally, the tetrahedral mesh is exported into a GMESH2 file format (MSH)
which details the list of tetrahedral elements and their connections42.

Code availability
Statismo framework. Statismo is an open source C++ framework for statistical shape modeling43. It
supports all shape modeling tasks, from model building to shape analysis. Although the focus of Statismo
lies on shape modeling, it is designed such that it supports a variety of statistical models, including
statistical deformation models and intensity models. One of the main goals of Statismo is to make the
exchange of statistical shape models easy. This is achieved by using a well-documented file format based
on HDF5. https://github.com/statismo/statismo.

The following software tools were used for manual segmentation and manual correction of the
segmentation masks:

ITKSnap. The manual brushing tool was used to alter the manual segmentations30.
http://www.itksnap.org/
Used Version: 2.4

Seg3D. The manual brushing tool was used to alter the manual segmentations31.
http://www.sci.utah.edu/cibc-software/seg3d.html
Used Version: 2.14

For general-purpose tasks, such as cropping and reformatting recommended open source software
include Slicer3D (www.slicer.org)44 and MevisLab (www.mevislab.de)45.

Figure 4. Finite element mesh obtained for a single patient. Faces are cut for visualization purpose.
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Data Records
All data records described in this manuscript are available on the SICAS Medical Image Repository
(www.smir.ch)46 (Data Citation 1 to Data Citation 112) organized in virtual folders, each describing the
data provenance and modality. Computed tomography three-dimensional files are stored using the
Digital Imaging and Communications in Medicine image file format (DICOM, ISO 12052). A three-
dimensional volume is physically stored as a stack of single sliced images. Data Citation 113 and Data
Citation 114 correspond to the statistical shape models of the cochlear labyrinth (C-PDM) and the
cochlear structure only (C-SDM), respectively.

Technical Validation
Image acquisition
μCT datasets were acquired using the two commercial μCT systems; μCT 50 and μCT 100, Scanco
Medical AG, Brüttisellen, Switzerland. These systems are delivered with phantoms to calibrate and verify
the geometry and the density response of the systems.

To verify the geometry, a thin wire is measured and its volume is quantified. If the geometry changes,
the volume gets out of a given range and the cross-section of the wire is no longer a circle. In this case, the
geometry has to be re-calibrated. This phantom has been measured monthly as recommended by the
manufacturer. In this study, no geometry re-calibration was required.

To verify the density response of the μCT systems, a phantom including five cylinders with known
densities in a range from 0 to 800 mgHA/ccm is measured. If the density response is altered, the values
are out of a given range and the system has to be re-calibrated. Furthermore, the density of the cylinders
can be used to calibrate the grey levels to bone density values in the given range. This phantom has been
measured weekly as recommended by the manufacturer. In this study, no density re-calibration was
required.

The actual validation of each μCT image was done visually by an experienced user. Image quality was
checked for consistency, artifacts and image quality. Every single measurement was visually checked and
if quality was considered not to be sufficient, the measurement has been repeated.

ID Data Citation Specimen Description Spatial Resolution (isotropic) Number of Scanned Volumes

CBCT Image Datasets

AL1 1–15 Petrous bone not implanted 150 μm 15

AL2 16–19 Petrous bone not implanted 300 μm 4

AL3 20–23 Petrous bone implanted 300 μm 4

BL1 24–30 Petrous bone implanted 150 μm 7

μCT Image Datasets

AH1 31–45 Petrous bone not implanted 7.6 μm 9

AH2 46–49 Petrous bone not implanted 7.6 μm 4

AH3 50–53 Petrous bone implanted 7.6 μm 4

BH1 54–60 Petrous bone implanted 18 μm 7

CH1 61–75 Petrous bone not implanted 16.3 μm 15

CH2 76–80 Petrous bone not implanted 19.5 μm 5

DH1 81 Cochlea not implanted 5.9 μm 1

DH2 82–83 Cochlea implanted 5.9 μm 2

DH3 84 Cochlea implanted 5.8 μm 1

DH4 85 Cochlea implanted 10.8 μm 2

AS1 86–90 Petrous bone Segmentation label 7.6 μm 5

CS1 91–103 Petrous bone Segmentation label 16.3 μm 13

CS2 104–107 Petrous bone Segmentation label 19.5 μm 4

DS1 108 Cochlea Segmentation label 5.9 μm 1

DS2 109 Cochlea Segmentation label 5.9 μm 1

DS3 110 Cochlea Segmentation label 5.8 μm 1

DS4 111–112 Cochlea Segmentation label 10.8 μm 2

Table 3. Summary of acquired image datasets The image dataset ID is composed of the provenance (letter
A-D), low, high resolution or segmentation mask (L, H or S) and a set identification number.
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Data segmentation
A neuroradiologist reviewed the segmentation datasets to account for anatomical malformations. The
following image artefacts or anatomical malformations were observed in the datasets hindering the
segmentation process:

● Drilling trajectories appear on the datasets from collection B. These drillings come from experiments
performed as part of a previous study on cochlear implantation8.

● Some areas show deviations from the normal anatomy, possibly caused by anatomical variations or
debris coming from the fixation process or subsequent robotic drilling.

● The round and oval window membranes are in most of the cases lost or partially lost in the images.
Missing window membranes hinder the segmentation process due to loss of connectivity.

Usage Notes
To process the provided images, it is highly recommended to use medical image tools which handle
consistently the physical space and orientation of the images. We verified that all the used formats
(DICOM, Nifti, Metaimage), the segmentations and the meshes can be loaded correctly with 3D Slicer
(www.slicer.org)44.

The statistical shape model is an HDF5 file which respects Statismo format. It is possible to view the
mean shape and extract samples with the Statismo viewer or the Statismo CLI47. The deformation fields
can be applied to the reference to obtain varying samples34. The later requires an integration between
elastix and Statismo as available at https://github.com/tom-albrecht/statismo-elastix.
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