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White matter changes in corticospinal tract associated with
improvement in arm and hand functions in incomplete cervical
spinal cord injury: pilot case series
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and Gerard E Francisco1

INTRODUCTION: This is a prospective clinical pilot case series. Improvement of arm and hand functions after spinal cord injury (SCI)
is one of the major rehabilitation goals. Electrical stimulation of the primary motor cortex via transcranial direct current stimulation
(tDCS) coupled with high-intensity repetitive motor training may have potential to facilitate improvement in motor function in
chronic, incomplete cervical SCI. We investigated the relationship between motor recovery and changes in white matter integrity in
response to treatment intervention. This study was conducted in The Institute for Rehabilitation and Research Memorial Hermann,
Houston, USA.
CASE PRESENTATION: Four right-handed adults with chronic, incomplete cervical SCI (age, 36–63 years, American Spinal Injury
Association Impairment Scale grade C–D) were enrolled in 10 sessions of anodal tDCS at 2 mA versus sham tDCS followed by 1 h of
robotic-assisted arm training. Changes in arm and hand function were measured with Jebsen–Taylor Hand Function Test and Motor
Activity Log-Amount of Use. Diffusion tension imaging was used to measure changes in fractional anisotropy (FA) of corticospinal
tracts (CSTs).
DISCUSSION: After 10 sessions of treatment, we found greater improvement in hand function and hand usage in patients who
received active tDCS treatment versus sham treatment. There was an overall positive change in FA values across all patients.
We show changes in arm and hand function associated with changes in CST tractographic mapping to quantify the motor system
components in chronic incomplete cervical SCI.
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INTRODUCTION
Spinal cord injury (SCI) can cause substantial motor deficits in arm
and hand functions that can result in significant loss in
performance of daily activities for many years. The extent of
neurological impairment is the major contributing factor to
recovery from injury.1 Even small improvements in arm and hand
function may lead to improvements in self-care, transfers and
quality of life.2–4

There are a number of factors that explain recovery of
sensorimotor functions after injury. For example, preservation of
longitudinally oriented axonal tracts in white matter, as well as
proper conductance through spared white matter axons, has been
directly related to neurological recovery.5 In the chronic stage of
injury, a number of pathologic changes such as spinal cord
atrophy,6 reduced axonal integrity,7 demyelination8 and
remyelination9 have been documented. Although most of these
changes occur at the spinal cord level, both animal and human
studies have also demonstrated structural and functional reorga-
nization at remote cortical and subcortical structure.10–13 Some of
the structural changes in the white matter can be detectable by
diffusion tensor imaging (DTI). DTI is an advanced magnetic
resonance imaging (MRI) technique used to quantify fiber
orientation properties and integrity of white matter pathways

within neural networks. Fractional anisotropy (FA), an index of the
diffusion characteristics of water molecules directed along the axis
of axonal pathways, can detect microstructural changes. In chronic
SCI, FA values of the cervical spinal cord have been shown to be
correlated with motor scores in patients with chronic cervical
injury14–16 and suggested to be non-invasive imaging biomarkers
for SCI.17

Rehabilitation protocols that have been in use to improve
upper-limb sensorimotor functions are sparse and have provided
modest functional benefits. Traditional muscle strengthening,
range of motion, massed practice,18 electrical stimulation19,20 and
more recently robotic-assisted exercises21–23 are used alone or in
combination. Despite the fact that restoration of arm and hand
function is an important part of rehabilitation, there is still no
consensus in management of the tetraplegic upper limb. Most
aforementioned approaches focus on the extremity muscles,
and only a few studies have attempted to combine motor
cortex stimulation with peripheral training.24–26 In a recent
study, we demonstrated greater improvement in arm and hand
functions in the active anodal stimulation group compared with
the sham stimulation group in incomplete cervical SCI.27 Although
combination therapies have emerged as an alternative approach
to facilitate neurorecovery and improve motor skill performance,
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the accompanying neural changes for improved functions still
remain unknown in SCI. Moreover, understanding the mechanism
of recovery will force clinical researchers to develop rehabilitation
protocols that aim to facilitate recovery from paralysis with less
focus on compensatory techniques.
Therefore, in the current study, we report findings of a

case–control study to demonstrate structural white matter
changes in the corticospinal tract (CST), the primary structure for
motor control, especially for fine motor control of the hand.

METHODS
Participants
Four participants with chronic, incomplete cervical SCI were
randomly assigned into active and control groups. Main enroll-
ment criteria were as follows: (1) age between 18 and 65 years;
(2) diagnosis of chronic, incomplete cervical SCI as defined by the
American Spinal Injury Association Impairment scale classification
at least 6 months before the study; (3) no neuropsychiatric
comorbidities, including traumatic brain injury, evidenced by loss
of consciousness because of brain trauma, post-traumatic amnesia
or skull fracture, or objective neurological findings that can be
reasonably attributed to traumatic brain injury; (4) no contra-
indications to transcranial direct current stimulation (tDCS) and
MRI; (5) no prior history of seizure or family history of seizure
disorder in a first degree relative; and (6) no use of medications
containing a sodium-channel blocker such as carbamazepine.
This study was approved by the Committee for the Protection

of Human Subjects of the University of Texas Health Science
Center at Houston. All participants gave written consent before
participation.

Intervention
All participants completed 10 sessions of treatment over a 2-week
period. After randomization, they received either anodal tDCS or
sham tDCS over M1 at 2 mA for 20 min, which was immediately
followed by 1 h of robotic-assisted arm training (RAT). Participant
#1 and Participant #2 received anodal tDCS+RAT. Participant #3
and Participant #4 received sham tDCS+RAT.
tDCS is a form of non-invasive cortical stimulation and has

the potential to alter corticospinal excitability. Direct current
is transferred by two saline-soaked surface sponge electrodes
(7 × 5 cm=35 cm2 active areas) and delivered by a battery-driven
stimulator device (medical tDCS for clinical trials device, Soterix
Medical, New York, NY, USA). To stimulate the primary motor
cortex (M1), the anode electrode (increasing cortical excitability)
was placed over C3/C4 (according to the 10–20 international
electroencephalogram electrode system) contralateral to the
targeted arm. The cathode (reference) electrode was placed over
the contralateral supraorbital area.
Immediately after cortical stimulation, repetitive movement

training was provided using the MAHI Exo-II exoskeleton28

operated in active-constrained mode. In this mode, the robotic
device is commanded to display a force field proportional to the
movement velocity at the intended joint that serves to oppose
the subject’s movement toward a fixed target displayed on the
computer screen. Single degree of freedom movements for elbow,
forearm and wrist were repeated at high intensity, with a visual
display of the real-time cursor position and target position visible
to the participant. Treatment was progressed gradually by
increasing the number of repetitions and amount of resistance
applied to each movement. On a computer screen, graphical
feedback of the number of repetitions achieved was displayed
after each attempt to maintain motivation. Standardized rest
breaks were administered to avoid fatigue. The goal was to
achieve ~ 1000 repetitions in a given session. During the study
period, participants did not participate in any other occupational
therapy program involving arm and hand training.

MRI-DTI data acquisition
Data were acquired on a Philips (Houston, TX, USA) 3.0T Achieva
scanner using a SENSE receive neurovascular coil. The MRI
protocol included conventional MRI and three-dimensional T1-
weighted magnetization prepared rapid acquisition of gradient
echo. The T1-weighted sequence spatial resolution was
1 × 1× 1 mm and field of view was 256 × 256 mm. Diffusion-
weighted image data were acquired axially with the balanced
and alternating polarity Icosa21 tensor encoding scheme.29,30

The b-factor = 1000 s mm−2, repetition time (TR)/echo time
(TE) = 11 000/65 μs, field of view (FOV) = 320× 320 mm and slice
thickness/gap/#slices = 4 mm/0 mm/80. The echo planar imaging
(EPI) phase encoding used a SENSE k-space undersampling factor
of two, with an effective k-space matrix of 160 × 160 and an image
matrix after zero filling of 320 × 320. The constructed image
spatial resolution for the diffusion-weighted image data was
~ 1× 1× 4 mm. The values for FA range from 0 to 1, where higher
values suggest highly oriented water diffusion (that is, anisotropic
diffusion), and therefore highly organized white matter
structure.31

MRI data processing
The MRI data processing pipeline used in this work are described
in more detail elsewhere.32

Brain diffusion tensor fiber tractography analysis
We have used a brute force and multiple regions-of-interest (ROI)
tracking method, and fiber assignment with continuous
tractography algorithm33 b (DTI Studio, Johns Hopkins University,
Baltimore, MD, USA; http://cmrm.med.jhmi.edu) to reconstruct
CST. Reproducibility of fiber construction in both hemispheres was
tested on all participants by two experienced raters (ZK, KH). Once
a fiber tract was reconstructed, its entire trajectory was verified on
a slice-by-slice basis to compare with established anatomical
landmarks described in the human brain neuro-
anatomy atlases.34 Regions of interests used for CST were
subcortical white matter of motor cortex, posterior limb of internal
capsule, cerebral peduncle, pons and medulla.35 FA values of the
tracts were obtained by averaging the FA values in these regions
of interests where CST goes through. The researcher who
performed the analysis was blinded to participants’ group
assignment.

Arm and hand function measurements
Testing for arm and hand function. The Jebsen–Taylor Hand
Function Test (JTHFT) was used as the primary outcome measure
of arm and hand functions. The test36 has shown to have good to
excellent inter-rater and intrarater reliability,37 and capacity for
detecting performance change in activities that resemble daily life
activities. Time to perform seven everyday activities (for example,
writing, feeding) was tested. We excluded the writing task because
of heavy dependence on the side with less impairment.38

Administration of the JTHFT subtests was discontinued after
120 s if a subject could not complete the task in that time. Scores
were recorded in number of items completed/total time (in s).39

This modified method of recording had superiority compared with
traditional recordings of total time only. Thus, changes in number
of items completed within 120 s could be reflected as an increase
or decrease of performance.

Self-report of arm function with Motor Activity Log. Participants
were asked to report ‘how much’ and ‘how well’ they have used
their arm during 30 daily activities such as brushing hair, drinking
from a glass and picking up the phone. Two scores were
generated from this self-report; however, for the purpose of this
study, only the amount of use was used as we were interested in
increased activity of the arm in daily life.40 A score of 0.50 was
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used to report as minimal clinically important difference in stroke
population.41

Assessments were performed by the same senior therapist who
was blinded to study assignment.

RESULTS
Participant demographics and clinical scores at baseline
Four participants with impairment in upper-limb motor functions
caused by incomplete, cervical SCI were randomized into active
versus sham stimulation groups. The characteristics of the
participants are presented in Table 1. All four participants
successfully completed the 2-week treatment intervention.

Motor function changes after active tDCS and repetitive training
After 10 sessions of active treatment, both participants demon-
strated improvement in trained arms and, to a certain extent, in
the non-trained arm as measured with JTHFT. Individual improve-
ments were observed in subtests of JTHFT. For example, subject 1
completed the ‘simulated feeding’ subtest in 20 s, after scoring ‘0’
at baseline. The task consists of scooping five beans with a spoon
from the top of a table and dropping them one by one into a can.
This task requires a firm grip of the spoon and proximal arm
movements. Subtests of subject 2 showed significant improve-
ment in page turning with the non-trained arm, in which he
turned all five pages in 27 s, compared with being able to turn just
one page in 120 s before treatment. He also showed improve-
ments in picking up small objects with his non-trained side by
picking up four items in 120 s versus ‘0’ items in 120 s before
treatment.
Amount of use (Motor Activity Log-Amount of Use) of the

trained arm increased significantly by exceeding minimal clinical
significant difference of 0.5.

Motor function changes after sham tDCS and repetitive training
Ten sessions of sham stimulation with repetitive robotic training
resulted in minimal improvement of arm and hand functions. For
example, subject 3 was able to initiate the page-turning task and
turned two pages in 120 s with her trained arm, compared with
zero pages before treatment. In addition, she was able to pick up
and move six small items with the non-trained arm within 97 s,
compared with ‘0’ items before treatment, and was able to initiate
simulated feeding by scooping and moving one bean with the
non-trained arm within 120 s, compared with ‘0’ before treatment.
Subject 4 showed slightly higher improvements in the non-trained
arm compared with his trained side.
Amount of use (Motor Activity Log-Amount of Use) of the

trained arm did not show significant change (Table 2).

Brain diffusion tensor fiber tractography analysis
We found an overall positive trend in FA values in participants
regardless of group assignments and arm being trained. FA was

not found to be sensitive for the effects of tDCS in our small
cohort. The mean FA change in active versus sham stimulation
groups are shown in Table 3 and demonstrated in Figure 1.

DISCUSSION
In this pilot case series, individuals with chronic, incomplete
cervical SCI underwent an intervention consisting of 10 sessions of
combined anodal tDCS with RAT or RAT only. Neural correlates
related to treatment-induced changes before and after treatment
were measured with DTI. After treatment, our findings demon-
strate (a) modest improvement in motor functions in patients
treated with anodal tDCS and repetitive training and (b) a positive
trend in DTI measures demonstrated as an overall increase in FA
change.
In contrast to a large number of studies in stroke recovery,

very few studies have examined the effects of primary motor
cortex stimulation in improving arm and leg motor functions
after SCI. Several researchers have reported improvement in
International Neurological Classification motor and sensory scores,
hand functions,24,26,42 or gait functions43,44 when stimulating M1
with high-frequency repetitive transcranial magnetic stimulation.
On the basis of findings from our study, one can speculate
that anodal tDCS, when applied at 2 mA for 20 min before a
high-intensity repetitive arm training protocol, has the potential to
facilitate movement recovery, but this must be interpreted with
caution because of the very small sample size, differences in
elapsed time since injury (longer in the control group), age (higher
in control group) and differences in baseline motor function
(lower in the control group).
When comparing groups for amount of arm use in real-life

environments, three out of four patients reported minimal use at
the beginning of the study. As expected, high-functioning patients
had the highest score on Motor Activity Log-Amount of Use.
However, after treatment, patients in the active group started to
use their arms during daily activities more than patients in the
control group. The so-called ‘learned non-use’ was first proposed

Table 1. Participant demographics and clinical assessment scores

Subject Age Gender Neurological level of injury AIS grade Time since injury (months) ISNCSCI scores Handedness (R/L)

UEMS UESS (LT and PP) Before injury Side being trained

1 48 Male C6 D 38 23 32 R R
2 36 Male C5 D 8 37 21 R R
3 52 Female C5 C 202 22 23 R L
4 63 Male C5 D 47 25 23 R R

Abbreviations: AIS, American Spinal Injury Association (ASIA) Impairment Scale; ISNCSCI, International Standard Neurological Classification of Spinal Cord
Injury; L, left; LT, light touch; PP, pin prick; R, right; UEMS, upper-extremity motor score; UESS, upper-extremity sensory score.

Table 2. Changes in Jebsen–Taylor hand function score

Active group Control group

Subject 1 Subject 2 Subject 3 Subject 4

Pre Post Pre Post Pre Post Pre Post

JTHFT TA (items/s) 0.12 0.25 0.42 0.48 0.01 0.02 0.08 0.09
JTHFT NTA (items/s) 0.12 0.1 0.02 0.04 0.02 0.04 0.24 0.28
MAL-AOU (0–5) 0.4 3.5 3.2 5 0.2 0.4 0.1 0.1

Abbreviations: JTHFT, Jebsen–Taylor hand function test; MAL-AOU, motor
activity log-amount of use; NTA, non-trained arm; TA, trained arm.
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by Taub et al.45 Regardless of the etiology (that is, stroke or SCI),
learned non-use usually develops in response to excess motor
disability after central nervous system injury.45 Unfortunately,
most patients with long-term paralysis tend to use their paretic
hand less in daily life, despite residual motor function. This
acquired non-use can further lead to reversible loss of neural and
behavioral function. Therefore, overcoming learned non-use
and decreasing compensatory movements should be carefully
integrated into successful therapeutic strategies that aim to
improve motor functions after SCI. In the present study, we were
able to demonstrate positive changes in the amount of use in
participants who received M1 stimulation in addition to intense
exercise. However, further studies are needed to explore short-
and long-term effects of learned non-use in patients with SCI and
its negative effect on poor recovery.
To the best of our knowledge, no previous studies in adults

have investigated changes in DTI values in response to relatively
short intensive repetitive treatments of upper limbs. In previous
studies, recovery of motor functions after SCI has been highly
correlated to preservation of longitudinally oriented axonal tracts
in the white matter46 and myelination of intact axons. Tract quality
has been roughly defined to correlate positively with FA. In our
study, we observed a positive FA change in both right and left
corticospinal tracts and across all participants. Interestingly, JTHFT

performance not only improved in the trained arm, but also in the
non-trained side. Despite unilateral training, this finding is
particularly interesting and needs to be further explored. One
can speculate that increased FA values might be a reflection of
training-induced modification in white matter microstructure and
may indicate increased coherence of CST fibers, increased
myelination or increased axon density with resulting improvement
in fine motor control, but results should be interpreted with
caution.
The results from this study demonstrated that in vivo

quantification of the CST, the main motor pathway, is feasible in
adults with chronic cervical incomplete SCI using 2 mm slices at
3.0 T. Furthermore, this study has shown that this pathway is
sensitive to the extent of functional recovery induced by a
combination therapy protocol.
The main limitation of this study is the small sample size (n= 4).

A larger sample size with groups homogeneous in, that is, baseline
motor function and time since injury is warranted to draw a
stronger conclusion. In addition, interpretation of the changes in
diffusion in white matter is not straightforward. In the future,
we expect to see the use of DTI in mainstream clinical practice to
both prognosticate and to monitor recovery in patients with spinal
cord disease. In the long term, we believe our work will shed light
onto controlled clinical trials with larger sample sizes.

Table 3. Diffusion tensor imaging attributes of corticospinal tract at two time points before and after therapy

CST Participant 1 Participant 2 Participant 3 Participant 4

FA Pre Post Pre Post Pre Post Pre Post

CST (TA) 0.62± 0.11 0.67± 0.10 0.63± 0.12 0.66± 0.13 0.69± 0.08 0.71± 0.10 0.59± 0.11 0.57± 0.10
CST(NTA) 0.63± 0.15 0.69± 0.16 0.72± 0.13 0.75± 0.11 0.67± 0.11 0.72± 0.14 0.61± 0.13 0.65± 0.15

Abbreviations: CST, corticospinal tract; DTI, diffusion tensor imaging; FA, fractional anisotropy (no units); NTA, non-trained arm; TA, trained arm.
Data are presented as mean± s.d.

Figure 1. Illustration of the corticospinal tracts of each subject from two time points: before (a, c, e, g) and after (b, d, f, h). Regions of interest
used to construct the pathways were subcortical white matter of the motor cortex, posterior limb of the internal capsule, cerebral peduncle,
pons and medulla (ROIs are illustrated in the descending order in a, respectively). As background, b0 map from diffusion tensor imaging maps
is used.
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