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Identifying physical activity type in manual wheelchair users
with spinal cord injury by means of accelerometers

X García-Massó1, P Serra-Añó2, LM Gonzalez3, Y Ye-Lin4, G Prats-Boluda4 and J Garcia-Casado4

Study design: This was a cross-sectional study.
Objectives: The main objective of this study was to develop and test classification algorithms based on machine learning using
accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI).
Setting: The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the
University of Valencia.
Methods: A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping,
working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted
with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion,
housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and
group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers.
Results: We found that although the accuracy of the classifiers for individual activities was moderate (55–72%), with higher values for
a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2–93.6%).
Conclusions: With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group
activity recognition system (490%). Such a system with the minimum of intervention would be a valuable tool for studying physical
activity in individuals with SCI.
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INTRODUCTION

Physical activity (PA) plays an important role in the health of
individuals with spinal cord injury (SCI). PA is a protective factor
that reduces the risk of illnesses such as cardiovascular disease and
type II diabetes1–3 and other common comorbidities in this popula-
tion (for example, pressure ulcers).4,5

An appropriate method of quantifying PA levels in individuals with
SCI during their daily activities is essential for several reasons.6 First,
these methods may be used in epidemiological studies to establish
more precisely the effects of PA on their health. Second, it can be used
to monitor the effectiveness of PA promotion programs in this
population. Finally, with the appropriate hardware and software, those
suffering from SCI may carry out continuous control of their energy
expenditure and thereby adjust their physical and nutritional habits to
achieve a healthy lifestyle.
Accelerometers are currently the devices most commonly used

to measure PA, although other methods such as heart rate7,8

and questionnaires9,10 have been validated for people with SCI.
Early studies quantified PA by estimating energy expenditure.
However, recent works estimate not only energy expenditure,
but also the type of activity being carried out, according to the
acceleration pattern produced,11–16 important in studies on the SCI
population. The performance of certain activities could either

prevent or aggravate certain health problems (for example, shoulder
pain).17,18

Although studies have been published that establish the necessary
mathematical models for estimating types of physical activities,11–16

few of them have tackled this problem in subjects with SCI.
Specifically, Postma et al.,19 using a total of six accelerometers, were
able to identify wheelchair propulsion from other activities (for
example, lying down, body transfer, doing dishes…). Their classifier
achieved an accuracy of 92%. Later, Hiremath et al.20 classified the
type of activity performed by SCI subjects using accelerometry,
galvanic skin response, skin temperature and near-body temperatures.
They were able to distinguish between resting, propulsion, arm-
ergometer and deskwork, with an accuracy of 96.2% using quadratic
discriminant analysis (QDA). Although four types of activities were
included in this latter study, a broader study needed to be carried out
in order to identify a wider range of activities. Therefore, the aims of
the present work were:

1. To develop and test classification algorithms to identify (1) 10
individual activities and (2) 5 grouped activities, performed by
manual wheelchair users with SCI equipped with accelerometers.

2. To establish the minimum number of accelerometers needed for a
given accuracy for each application.
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MATERIALS AND METHODS

Participants
A total of 20 subjects took part in the study [40.03 (10.57) years, 75.8 (17.54) kg
and 1.76 (0.09) m]. The researchers recruited participants from two different
institutions: (1) Hospital la Fe of Valencia and (2) Asociación Provincial de
Lesionados Medulares y Grandes Discapacitados (ASPAYM). The subjects had
suffered spinal damage between the T2 and L5 vertebrae, and had been
diagnosed at least 1 year before the start of this study. The level and
completeness of the SCI (Table 1) were determined by a complete neurological
examination conducted by a medical specialist, using the American Spinal
Injury Association Impairment Scale. Their independence status expressed as
mean (s.d.) was 65.3 (7.61). This independence measurement was determined
using Spinal Cord Independence Measure version III.21

The exclusion criteria were: (1) history of depressive or cognitive disorders;
(2) posttraumatic cervical myelopathy, (3) motor or sensory impairment of the
upper extremities, (4) ischemic heart disorder or recent osteoporotic fractures;
(5) presence of tracheotomy; or (6) sacrotuberous ulcers or hypertension.
All the subjects gave written consent to participate in the study that was

previously approved by the university’s ethical committee. We certify that all
applicable institutional and governmental regulations concerning the ethical use
of human volunteers were followed during the course of this research.

Data collection
The subjects were asked to perform 10 physical activities (using their own
wheelchair): lying down, body transfers, moving items, mopping, working on a
computer, watching TV, arm-ergometer exercise, passive propulsion, slow
propulsion and fast propulsion. A detailed description of each activity can be
found in a previous study.22 Each activity was carried out for 10min with
1–2min of rest between activities, with only one exception in the case of body
transfers, in which the activity took place for 1min followed by 1min of rest
for a total of 10min to avoid overloading the shoulder musculoskeletal system.
All these measurements have been supervised by the same researcher to ensure
the successful completion of these activities.
During these activities, body forces were monitored by four accelerometers

(Actigraph model GT3X, Actigraph, Pensacola, FL, USA) having the sampling
frequency of 30Hz. A bandpass digital filter between 0.25 and 2.5 Hz was
implemented in order to reduce the influence of the static acceleration and the

higher frequency components (manufacturer hardware characteristic). Then,
the accelerations (expressed in counts) were rectified and integrated in 1-s
epochs. The accelerometers were placed one on each wrist, one on the
nondominant waist and on the nondominant side of the chest (Figure 1).
Elastic belts were used in order to minimize movements of the accelerometers,
and the spatial orientation was similar in all the subjects.

Signal processing
The Matlab R2012a (Mathworks Inc., Natick, MA, USA) was used for signals
processing. We worked out 14 variables for each axis (that is, X, Y, Z and
resultant vector) at 4, 5, 6 and 7min for each activity.
The s.d., variance and the 10th, 25th, 50th, 75th and 90th percentiles,

interquartile range and the range between the 10th and 90th percentiles were
calculated in the time domain. The lag-one correlation of each min was also
worked out as a measure of temporal dynamics.15

The acceleration signal was analyzed using the two-level wavelet transform,
the mother wavelet being Daubechies 2.23 We calculated the Euclidean norm of
the detail coefficients of the first and second levels of resolution and the
approximation coefficients of the second level (that is, ND1, ND2, NA2).
The sample entropy was computed for each axis (tolerance= 0.3 s.d.; patter

length= 2).24 Finally, we computed the cross-correlation between the three
orthogonal axes (that is, x–y, y–z and x–z cross-correlations).25 The total
number of variables was 59 for each accelerometer (that is, 14 variables for the
four axes and three variables for the correlation between axes).

Data analysis
Classifiers were designed for individual activities and grouped activities; those
for individual activities had 10 possible categories (that is, each activity
performed) and grouped activities had 5 categories (Table 2), established
according to the activity’s objective or function.
In order to determine the required number of accelerometers to properly

identify the activities or groups of activities, the data from several acceler-
ometers were combined. The configurations tested were: (1) dominant wrist
accelerometer, (2) nondominant wrist accelerometer, (3) both wrist acceler-
ometers and (4) all four accelerometers.
The first step was to split the database (800 data= 20 subjects× 10 PAs× 4

min per PA) into two data sets (Figure 2). One was used to train and validate
the classifiers (n= 640) and the other to test them (n= 160). We checked that
there were no statistically significant differences in the computed variables
between data sets by means of the Wilcoxon rank sum test (P40.05) and that
the percentage of cases of each activity was the same in both data sets.

Table 1 Subject’s characteristics

Subject Neurological level AIS score Time of injury Etiology

1 T4 B 229 Trauma

2 T11–12 A 264 Trauma

3 T4 A 88 Trauma

4 T7 A 81 Trauma

5 T5 A 24 Trauma

6 T4 A 236 Tumor

7 T4 A 34 Trauma

8 L5–S1 B 59 Surgery

9 T10–11 A 233 Trauma

10 T5 A 359 Trauma

11 T4–5 A 153 Trauma

12 T12 A 401 Congenital sclerosis

13 T4 A 90 Trauma

14 T5 A 290 Trauma

15 T5 A 122 Trauma

16 T5–6 A 79 Tumor

17 T7 A 67 Trauma

18 T12 A 19 Multiple sclerosis

19 T12–L1 B 435 Trauma

20 T5 A 193 Trauma

Abbreviations: A, complete injury; B, sensory incomplete; AIS, American Spinal Injury
Association Impairment Scale; L, lumbar; T, thoracic.
Time of injury is expressed in months. Figure 1 Location of the accelerometers.
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A principal component analysis was then applied to reduce the dimensions
of the data matrix parameters. This analysis was applied to the training set of
the above-cited four combinations of accelerometers. These databases were
reduced from 59, 59, 118 and 236 variables, respectively to 22, 22, 41 and 78
principal components (99% of the variance was maintained). The coefficients
of this analysis of the training set were applied to the test set so as to obtain the
principal components of these data. The principal components of the two data
sets were used as inputs in the subsequent analysis.
We used three different machine learning algorithms to design the

classifiers:26 linear discriminant analysis, QDA and support vector machines
(SVMs). The classifiers were designed and validated using a 10-fold stratified
cross-validation that was performed 20 times to reduce the randomization
effect. The optimal combination of variables was determined using a forward
sequential feature selection algorithm that included only those variables that
significantly improved classifier accuracy. The feature selection algorithm
stopped when the addition of any new variable did not improve classifier
accuracy by 0.5%. Once the classifiers were designed with the training set, we
applied them to the test set and computed the classification accuracy:

Accuracy ¼ True Positivesþ True Negatives

True Positivesþ True Negativesþ False Positivesþ False Negatives

RESULTS

Table 3 shows the accuracy of the different classifiers implemented in
the test set using the information from the different accelerometer
configurations to distinguish each of the 10 individual activity types.
As expected, it can be seen that in general the accuracy of the classifier
improves as the number of accelerometers increases. However, the
accuracy obtained is always <75%, regardless of the number/position
of the accelerometer and the classification algorithm used.
Figure 3 shows the accuracy of the individual activity classifiers in

each of the 10 categories. It can be observed that in many activities
accuracy values near or above 90% are achieved, particularly when two
or four accelerometers are used. However, some activities (for
example, PC work or passive propulsion), which could be confused
with each other, have particularly low accuracy values, giving a slightly
low overall accuracy value for the classifier.
On the other hand, the grouped activity classifiers showed good

accuracy in all cases (between 83.2 and 93.6%; Table 4). Again, it can
be seen that in general, the higher the number of accelerometers, the
higher the classification accuracy. In contrast, the classification
algorithm does not seem to significantly influence the prediction
capability. It is noteworthy that there are three classifiers with accuracy
values above 90%: (1) two wrists with QDA, (2) all with QDA and
(3) all with SVMs.
The accuracy of the classifiers for each category is shown in

Figure 4. It can be observed that those with the lowest values are

Table 2 Individual and grouped activities

Order Individual activity Grouped activity

1 Lying down Sedentary

2 Body transfers Transfers

3 Moving items Housework

4 Mopping Housework

5 Watching TV Sedentary

6 Working on a computer Sedentary

7 Arm-ergometer Moderate physical activity

8 Passive propulsion Sedentary

9 Slow propulsion Locomotion

10 Fast propulsion Locomotion

Figure 2 Schematic overview of the process to obtain the individual activity classifiers. The process is the same for individual and grouped activity classifiers.

Table 3 Accuracy of the individual activities classifiers

Dominant Nondominant Two wrists All

LDA 61.4 63.3 62.9 69.3

QDA 55.0 63.0 67.8 72.5

SVM 59.1 61.5 68.9 65.9

Abbreviations: LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM,
support vector machine.
Data are expressed as a percentage of total cases that belong to that category.
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body transfers and locomotion. It is also noteworthy that the
accuracies of the body transfer and housework categories seem to be
the most dependent on the number of accelerometers used, whereas
the accuracy of the other three categories is fairly stable, regardless of
the number of accelerometers and algorithms used.
Finally, Table 5 shows the confusion matrix of the QDA classifier

for grouped activities that uses information from the accelerometers
on both wrists. As shown, the rate of properly classified sedentary
activities is very high (93.75–100%) and only 6.25% of the cases of
working with computers or passive propulsion are misclassified. The
classification error in the locomotion category is mainly because of the
fact that the slow propulsion activity is misclassified as housework in
39.34% of cases. In the housework category, high accuracy values are
observed for both activities. Of the cases, 90.56% of the moving items
cases and 85.94% of the mopping cases were properly classified;
14.41% of the transferring activity cases were misclassified as house-
work. Finally, it is noteworthy that 100% accuracy is reached in
moderate physical activity

DISCUSSION

In the present work we designed and implemented several classifiers
using only recordings from accelerometers in SCI patients to

distinguish (1) 10 individual activities and (2) 5 categories of grouped
activities according to the activity’s aim or function. None of the
classifiers obtained an overall accuracy of 473% in identifying the 10
activities, regardless of the number of accelerometers and the
algorithm used. The relatively low values are most likely because of
the fact that some of the activities shared similar patterns, for example,
watching television, working with a PC or passive propulsion.
Additional information would be needed to overcome this limitation.
When the activities were grouped by their aim or function,

promising results were obtained. In general, it has been observed that
the more accelerometers used, the higher the classifier accuracy. Three
classifiers were obtained with an average accuracy of 490%: (1) two
wrists with QDA, (2) all with QDA and (3) all with SVMs. In
configurations (2) and (3), the use of four accelerometers did not
provide a significant increase in the accuracy of the classifier using the
QDA algorithm. Compared with configuration (3), classifier (1) has
the advantage that the QDA algorithm is computationally much more
efficient and could be easily implemented in a real-time system.
Moreover, using only two accelerometers greatly simplifies the
recording protocol and also improves patient comfort during
recording. This suggests that the optimal setting of the classifier to
distinguish the five categories of SCI activities tested was obtained with
the QDA algorithm and the accelerometers on both wrists.
Sedentary activities and moderately intensive physical activities

obtained good rates of correct classification (always 493.75%). These
results are comparable with those of other authors who obtained
92% accuracy in distinguishing different activities in SCI patients.19

However, in this latter study, six accelerometers were used and only
two categories were classified: two types of wheelchair propulsion
versus other activities: lying down, body transfer and doing dishes.19

The accuracy values obtained in the present work are similar to those
obtained by other authors:20 it obtained 96.2% in identifying four

Figure 3 Accuracy of the classifiers for individual activities with the algorithms: (top) linear discriminant analysis, (middle) quadratic discriminant analysis
and (bottom) support vector machines.

Table 4 Accuracy of the grouped activities classifiers

Dominant Nondominant Two wrists All

LDA 85.9 83.9 87.1 89.4

QDA 84.5 86.7 90.4 90.7

SVM 83.2 87.0 86.8 93.6

Abbreviations: LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM,
support vector machine.
Data are expressed as a percentage of total cases that belong to that category.
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types of activities (rest, deskwork, arm-ergometer and propulsion).
Unlike other authors who used input variables of acceleration, galvanic
skin response, skin temperature and near body,20 in the present work
only acceleration data (from the two wrists) were used.
On the other hand, the accuracy values obtained for the activity

recognition systems in SCI patients compare favorably with those
published regarding the able-bodied population. Trost et al.16 obtained
88.4% accuracy in classifying activities clustered into the following
categories: sedentary, light household activities and games, household
activities and moderate-to-high-intensity sports, walking and running.
In addition, in this context, Khan et al.12 reached 97.9% of properly
classified recording time in the following activities: lying, standing,
walking and running. Liu et al.13 combined several sensors (two
accelerometers and a flow meter) and achieved 84.7% correct
classification in 13 different activities. Therefore, the activity recogni-
tion systems proposed in the present study show similar accuracy to
those in other populations when considering groups of similar
activities.
It is remarkable that the grouped activities classifier, employing the

recordings from two accelerometers with the QDA algorithm, often
identified some locomotion activities, such as housework. In spite of
the fact that rapid propulsion was correctly distinguished from other
household chores, probably because of the greater magnitude of the
accelerations, slow propulsion was misclassified as housework in
39.34% of cases. This may be because while performing household
tasks (mopping or moving objects) the subjects had to propel the
wheelchair at a slow speed (similar to slow propulsion). The inclusion
of additional parameters that take into account the temporal structure
of the data or the variation of the spectral parameters over time could
help to improve accuracy in these cases.

Figure 4 Accuracy of the classifiers for grouped activities with the algorithms: (top) linear discriminant analysis, (middle) quadratic discriminant analysis and
(bottom) support vector machines.

Table 5 Confusion matrix of the QDA classifier, implemented using

information from two accelerometers placed in both wrists for grouped

activities

QDA grouped activities classifier

Sedentary Locomotion Housework

Body

transfers MPA

Real type of activity
Sedentary
Lying down 100 0 0 0 0

PC work 93.75 0 6.25 0 0

Watching TV 100 0 0 0 0

Passive

propulsion

93.75 0 0.09 6.16 0

Locomotion
Slow propulsion 0 60.66 39.34 0 0

Fast propulsion 0 93.75 6.25 0 0

Housework
Moving ítems 0 0 90.56 9.44 0

Mopping 0 7.25 85.94 6.81 0

Body transfers
Transferring 0 0 14.41 85.59 0

MPA
Arm-ergometer 0 0 0 0 100

Abbreviations: MPA, moderate physical activity; QDA, quadratic discriminant analysis.
Data are expressed as a percentage of total cases that belong to that category.
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Finally, this study has some limitations. First, it would be advisable
to expand the database in terms of the numbers of both subjects and
activities. Second, although some extent of variability has been
included in the data used to design the classifiers as participants used
their own wheelchair that could have different dynamic responses for
each of the movements, the physical activities were carried out in a
controlled environment, following the instructions of a supervisor,
with a break between activities so as to minimize fatigue. Future
studies should confirm the good results obtained in this work in
conditions closer to everyday life. In such conditions, events such as
transitions between activities, the type or inclination of the surfaces
and so on could worsen classification accuracy. In summary, we
believe that this work provides the basis for a minimally intrusive
expert system that would monitor daily physical activity in SCI
subjects, for whom monitoring is of great significance.
In short, the highest accuracy values (83.2–93.6%) were those

obtained on activities grouped according to objective or function.
Classifiers of individual activities showed lower classification accuracy
(55–72.5%). The best performance was obtained from four acceler-
ometers and QDA or SVM algorithms. However, an activity recogni-
tion system with good accuracy (490%) was also achieved with only
two accelerometers and the QDA algorithm. Because of the fact that
two accelerometers are less stressful for the subject, it would be useful
to implement this system in future studies to identify activities in
subjects with SCI.
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