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Plasma iron levels appraised 15 days after spinal cord injury
in a limb movement animal model
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Study design: Experimental, controlled trial.
Objectives: The purpose of this study was to evaluate plasma iron and transferrin levels in a limb
movement animal model with spinal cord injury (SCI).
Setting: Universidade Federal de São Paulo, Departamento de Psicobiologia.
Methods: In all, 72 male Wistar rats aged 90 days were divided into four groups: (1) acute SCI (1 day,
SCI1), (2) 3 days post-SCI (SCI3), (3) 7 days post-SCI (SCI7) and (4) 15 days post-SCI (SCI15).
Each of these groups had corresponding control (CTRL) and SHAM groups. Plasma iron and transferrin
levels of the different groups were analyzed using a one-way analysis of variance (ANOVA) followed by
Tukey’s test.
Results: We found a significant reduction in iron plasma levels after SCI compared with the CTRL
group: SCI1 (CTRL: 175±10.58mgdl–1; SCI: 108.28±11.7 mgdl–1), SCI3 (CTRL: 195.5±11.00 mgdl–1;
SCI: 127.88±12.63 mgdl–1), SCI7 (CTRL: 186±2.97 mgdl–1; SCI: 89.2±15.39 mgdl–1) and SCI15
(CTRL: 163±5.48 mgdl–1; SCI: 124.44±10.30mgdl–1) (Po0.05; ANOVA). The SHAM1 group
demonstrated a reduction in iron plasma after acute SCI (CTRL: 175±10.58 mgdl–1; SHAM:
114.60±7.81 mgdl–1) (Po0.05; ANOVA).
Conclusion: Reduced iron metabolism after SCI may be one of the mechanisms involved in the
pathogenesis of sleep-related movement disorders.
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Introduction

Periodic leg movement (PLM) and restless leg syndrome

(RLS) are sleep disorders arising from neurological disorders

that may involve the dopaminergic and iron systems, among

other factors.1–4

PLM is also sometimes associated with other conditions

such as spinal cord injury (SCI).5,6 Esteves et al.7 evaluated

the occurrence of limb movements during sleep in rats with

SCI. In their study, the animals began to present leg

movements during sleep at 4 days after SCI. In 2007, Esteves

et al.8 analyzed sleep patterns in SCI animals. In addition to

experiencing reduced sleep efficiency and an increased

number of arousals, the animals presented limb movements

that began at 4 days after lesion and remained until the end

of the experiment, thus constituting a PLM animal model

with SCI. Similar to this SCI animal model, a decreased sleep

efficiency, an increase in the number of arousals and in the

presence of PLMs have been reported in clinical situations.9

Iron concentration is another factor associated with SCI

and PLM. Liu et al.10 analyzed the total concentrations of

iron, protein carriers and low-weight iron in rats with SCI

between the T3 and L1 vertebrae. Their study found a rapid

increase in the total extracellular iron levels 20min after

lesion impact that peaked at 1.32±0.77 mm in the first

sample. Iron levels had declined by 1h after lesion, and they

remained low for 2h.

However, long-term variations in iron levels after SCI have

not yet been addressed in the literature. Most studies have

examined variations in iron levels shortly after SCI but

have not monitored long-term developments. Therefore, the

aim of this study was to evaluate plasma iron and transferrin

levels in a limb movement animal model at longer time

periods after SCI.

Materials and methods

This study was part of the Psychobiology and Exercise

Research Center research program at the Psychobiology
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Department, Universidade Federal de São Paulo and was

approved by the Research Ethics Committee of Hospital São

Paulo, Universidade Federal de São Paulo (0061/04).

Male Wistar rats at 90 days of age were used in this study.

The rats were from the breeding facility at the Psychobiology

Department, Universidade Federal de São Paulo.

Rats were kept under a 12-h light/dark cycle, and the

temperature was maintained at 23±2 1C. Chow and water

ad libitum were supplied to standard cages. Cages were

cleaned every day to remove the sawdust used as bedding

before the experiment.

A set of four experiments was performed using animals

divided into groups:

� SCI1: 1 day after SCI (n¼7)

� SCI3: 3 days after SCI (n¼9)

� SCI7: 7 days after SCI (n¼5)

� SCI15: 15 days after SCI (n¼9)

For each group, there was a corresponding control (CTRL)

group and a corresponding SHAM group.

At the end of the experiment, the rats were decapitated at

the same time (1000 hours) each day for blood collection

and subsequent iron and transferrin analysis.

Spinal cord injury

The rats were anesthetized with a combination of ketamine

hydrochloride (Ketamine, Merck, São Paulo, Brazil) at

140mgkg–1, intraperitoneal and diazepam (Valium, Roche,

São Paulo, Brazil) at 5.5mgkg–1, intraperitoneal Once anesthe-

tized, the thoracic level 9 (T9) spinal process was identified by

palpation and the rats were subjected to trichotomy in the

dorsal region. The rats were kept in a prone position using

a stereotactic apparatus (David Kopf, Tujunga, CA, USA) and

a midline incision to expose the back muscles was performed.

Muscles and ligaments were carefully dissected to expose the

spinal apophyses of the T8–T9 vertebrae. The dorsal portion of

the T9 vertebra was removed to expose the dorsal surface

of the spinal cord. With the aid of an electronic magnifying

glass, the dura mater was opened longitudinally and folded

back laterally. The spinal cord was exposed, and 2% lidocaine

was administered to produce local anesthesia and to minimize

the trauma of acute transection. Once the local anesthesia had

set in, the spinal cord was carefully transected using a scalpel.

After transection, the surgical opening was sutured in two

layers (muscle and skin). After sterilizing the surgical sutures,

the rats were given an intramuscular injection of 100000 IU

penicillin and placed in a photo-thermo-stimulation cage.

After 12h, animals were put in individual cages with water and

chow ad libitum. From the surgery day until the end of

the experiment, the rats were examined daily to assess

their general condition, and abdominal massage was per-

formed to assist urine excretion and defecation in an attempt

to minimize the signs or symptoms of suffering, such as

inappetence, dehydration, surgical suture infection, abdom-

inal distension and prostration. If these signs appeared, the

experiment was halted and the rat was killed.

In the SHAM group, we performed the skin and muscle

incision at T9 without SCI; the CTRL group did not undergo

any surgical intervention.

Iron analysis

Iron levels were determined using the two-point enzymatic

method (Vitro, Johnson & Johnson, Raritan, NJ, USA) with a

600nm wavelength reading.

Transferrin levels were analyzed by immunoturbidimetry

reactions (Advia 1650, Bayer, Holliston, MA, USA).

Statistical analysis

Variables related to iron and transferrin for the different

groups were analyzed using analysis of variance (ANOVA) for

independent measures.

Student’s t-test was used to analyze weight changes in

animals before and after the experimental procedure.

All analyses adopted a significance level of Pp0.05, and

the results are shown as the mean±standard error. Weight

values are reported in means±standard deviation.

Results

The figures below show the plasma transferrin and iron

levels of the CTRL, SHAM and SCI animals from each group.

Experiment: acute SCI (SCI1)

Compared with CTRL1, the SCI1 (1 day after SCI) and the

SHAM1 group showed significantly reduced levels of plasma

iron (F(2,15)¼12.008, P¼0.00077; ANOVA) and transferrin

(F(2,15)¼25.688, P¼0.00001; ANOVA) (Figure 1a).

Experiment: SCI3

The SCI3 group showed a significant difference in levels of

plasma iron compared with the CTRL3 group (F(2,17)¼8.5652,

P¼0.00267; ANOVA). Plasma transferrin levels in the

SCI3 group were significantly different from the SHAM3

group, and the SHAM3 group was significantly different

from the CTRL3 group (F(2,17)¼10.090, P¼0.00129; ANOVA)

(Figure 1b).

Experiment: SCI7

The SCI7 showed significantly lower plasma iron (F(2,14)¼
11.540, P¼0.00109; ANOVA) and transferrin (F(2,14)¼
12.364, P¼0.00081; ANOVA) levels relative to the CTRL7

and SHAM7 groups (Figure 2a).

Experiment: SCI15

The SCI15 group showed a significant difference in plasma

iron levels relative to the CTRL15 and SHAM15 groups

(F(2,17)¼19.244, P¼0.00004; ANOVA).

There were significant differences between the SCI15 and

SHAM15 groups in plasma transferrin levels (F(2,17)¼3.7091,

P¼0.04605; ANOVA) (Figure 2b).

We observed significant weight loss in the SCI1 group, the

SHAM1 group, the SCI3 group and the SCI15 group after the

experimental procedures (Student’s t-test, Pp0.05) (Table 1).

Discussion

The pathophysiology of movement disorders during sleep is

complex and not fully understood. The current status of
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research into these disorders points to depleted iron reserves

in the central nervous system (CNS), dysfunctional dopami-

nergic systems and the likely involvement of the spinal

cord.2

Our results support the notion that iron may be associated

with the development of movement disorders. Conditions

associated with secondary PLM, such as pregnancy and

terminal kidney disease, are characterized by iron deficiency,

which suggests that the latter may lead to the development

of RLS and PLM. Although most of the patients with

RLS present normal plasma ferritin levels, cerebrospinal

fluid ferritin levels are low, suggesting an iron deficiency in

the CNS.1,2,4

Our results showed significantly reduced plasma iron

levels after the first day of SCI that lasted until the fifteenth

day after SCI. In the acute (SCI1) experiment, there were

reductions in iron in the SCI groups and the SHAM groups

relative to the CTRL group. This decrease may be associated

with the SCI surgery because surgical intervention leads to

the loss of large amounts of blood, and the body may not be

producing enough blood to maintain iron homeostasis,

thus causing anemia. This hypothesis is supported by

the SCI3, SCI7 and SCI15 groups because there was no

statistical difference between the corresponding SHAM and

CTRL groups.

We also analyzed transferrin plasma levels in all groups

and found significant reductions in the SCI, SCI3 and SCI7
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Figure 2 Evaluation of plasma iron and transferrin levels in CTRL7, SHAM7, SCI7 (a) and CTRL15, SHAM15, SCI15 (b) groups. *Differs from
CTRL group (ANOVA Po0.05). #Differs from SHAM group (ANOVA Po0.05).
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Figure 1 Evaluation of plasma iron and transferrin levels in CTRL1, SHAM1, SCI1 (a) and CTRL3, SHAM3, SCI3 (b) groups. *Differs from CTRL
group (ANOVA Po0.05). #Differs from SHAM group (ANOVA Po0.05).

Table 1 Weights of animals before and after SCI

Group N1 Weight before
injury (g)

Weight after
SCI (g)

Weight
loss (%)

CTRL1 6 337.66±21.68 339.00±12.12
SHAM1 5 420.46±45.64 400.63±45.61a 4.71
SCI1 7 340.14±17.00 324.71±17.00a 4.53
CTRL3 6 396.30±49.83 407.07±60.06
SHAM3 5 380.06±35.55 370.83±33.6 2.42
SCI3 7 325.18±29.88 280.66±27.97a 13.69
CTRL7 6 375.74±53.76 421.53±56.48
SHAM7 6 315.18±53.76 334.35±46.82
SCI7 5 378.86±76.36 337.74±65.75 10.85
CTRL15 6 404.42±28.71 469.11±25.77
SHAM15 5 408.32±22.49 396.01±21.83 3.01
SCI15 8 340.06±36.79 287.34±19.47a 15.50

Abbreviations: CTRL, control; SCI1, spinal cord injury at 1 day (acute); SCI3,

spinal cord injury at 3 days; SCI7, spinal cord injury at 7 days; SCI15, spinal

cord injury at 15 days.

Student’s t-test; Po0.05.
aDiffers from weight before.
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groups relative to the CTRLs. One hypothesis explaining this

observation is that the reduction of transferrin occurs as a

protective mechanism, as there was also a reduction in iron

during this period.11

A number of studies in RLS animal models have suggested

that the correlation between iron levels and the presence of

the disorder is related to the dopaminergic system. Qu et al.3

found that animals with A11 nucleus lesions contained less

iron, especially in the spinal cord, and found reduced iron

levels in mice with normal iron ingestion and A11 nucleus

lesions. This finding is particularly noteworthy because

human RLS patients show reduced brain iron, an observation

that is currently unexplained.

The possibility that iron loss causes dopaminergic dysfunc-

tion in the CNS has not been addressed and requires further

study in humans and in animal models.

Several theories have been proposed to explain the

relationship between reduced iron and impaired dopaminer-

gic system functioning in RLS patients. Theoretically,

dopaminergic function could be diminished by any (or all)

of the following:

� Downregulation of type 2 dopamine receptors.3

� Iron-mediated impairment of tyrosine hydroxylase, which

produces L-dopa that causes the decarboxylization of

dopamine.12

� A reduction in the amount of ferritin in some regions of

the brain causing a reduction in D1 and D2 dopamine

receptors13 and a subsequent deficiency in extracellular

dopamine transport to the striatum.12

Our study contradicts other studies such as that of Mizuno

et al.14 that describe iron reduction in RLS individuals

occurring only in the CNS with plasma iron concentrations

remaining at normal values.

Weight loss was also noted in the SCI animals. Skeletal

muscle, in which muscle contraction is induced by nerve

stimulation, prompts the muscle to work to maintain its

structural and functional integrity. However, denervation

leads to the non-stimulation of skeletal muscles, muscle

atrophy and subsequent weight loss, as observed in the rats

in this study. This provides a possible explanation for muscle

atrophy in SCI rats because SCI hinders the rat0s movements

and leads to diminished locomotor activity.15,16

A possible limitation of this is that, because of technical

problems, ferritin levels were not determined. Such an

analysis would be extremely important because ferritin is

an endothelial reticulum protein responsible for storing iron,

and there is a relationship between serum ferritin levels and

the amount of iron stored.17

In previous studies,7,8 we found increased limb move-

ments during sleep in rats from 4 days after SCI onward.

Because the present investigation demonstrated reduced

levels of plasma iron in rats 1, 3, 7 and 15 days after SCI,

our findings suggest a temporal association between in-

creased limb movements induced by SCI and reduced levels

of plasma iron.

However, because studies of CNS iron levels have obtained

inconclusive results, further research is required.
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