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Control of a neuroprosthesis for grasping using off-line
classification of electrocorticographic signals: case study
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Study design: Proof of concept study to control a neuroprosthesis for grasping using identification of
arm movements from ECoG signals.
Objective: To test the feasibility of using electrocorticographic (ECoG) signals as a control method for
a neuroprosthesis for grasping.
Setting: Acute care hospital, Toronto Western Hospital and spinal cord injury (SCI) rehabilitation
centre, Toronto Rehabilitation Institute, Lyndhurst Centre. Both hospitals are located in Toronto,
Canada.
Methods: Two subjects participated in this study. The first subject had subdural electrodes implanted
on the motor cortex for the treatment of essential tremor (ET). ECoG signals were recorded while the
subject performed specific arm movements. The second subject had a complete SCI at C6 level (ASIA B
score) and was fitted with a neuroprosthesis, capable of identifying arm movements from ECoG signals
off-line, for grasping. To operate the neuroprosthesis, subject 2 issued a command that would trigger
the release of a randomly selected ECoG signal recorded from subject 1, associated with a particular arm
movement. The neuroprosthesis identified which arm movement was performed at the time of
recording and used that information to trigger the stimulation sequence. A correct ECoG classification
resulted in the neuroprosthesis producing the correct hand function (that is grasp and release).
Results: The neuroprosthesis classified ECoG signals correctly delivering the correct stimulation
strategy with 94.5% accuracy.
Conclusions: The feasibility of using ECoG signals as a control strategy for a neuroprosthesis for
grasping was shown.
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Introduction

Functional electrical stimulation (FES) elicits muscle con-

traction using electrical impulses and is used as a motor

neuroprosthesis to facilitate movement after spinal cord

injury (SCI). The term ‘neuroprosthesis’ will be used in this

study to refer to a motor neuroprosthesis.

Neuroprostheses are controlled using switches, linear

variable resistors, joysticks, position sensors, electromyo-

graphic signals and speech.1 A more intuitive method for

controlling neuroprosthetic devices would be to use brain

activity. Brain–machine interfaces (BMIs) translate brain

signals into control commands for electronic devices.

Electrical signals reflecting brain activity have been used

most extensively for developing BMI systems. Non-invasive

techniques for recording the electrical activity of the brain

include EEG (electroencephalography). Invasive techniques

allow the recording of local field potentials (LFPs) reflecting

the activity of a group of neighbouring neurons. LFPs can be

recorded using macroelectrodes placed on the surface of the

brain, resulting in electrocorticographic (ECoG) signals,

and using microelectrodes placed intracortically. These

microelectrodes can also record the activity of individual

neurons.

Operating an EEG-based BMI requires the user to change

brain activities voluntarily. To do this, the user is often

trained for up to several months. Therefore, an important
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challenge in the development of BMIs is minimizing the

required training. For example, using ECoG signals, the

training time can be reduced to the order of minutes.2

Spectral and temporal changes in brain activity elicited by

voluntary movements have been used to reduce the training

time of a BMI user. These changes have allowed the

identification of specific movements and the detection and

estimation of kinematic parameters of the motion performed.3

Single cell recordings in monkeys and in humans have

yielded important results in the detection and estimation of

kinematic parameters from brain activity making it possible

to control computer cursors and robotic arms using the

activity from a group of neurons.4,5 However, there are

concerns regarding the reliability and long-term stability of

single neuronal recordings.6

Local field potentials, including ECoG recordings, offer

alternatives to single neuron recordings. The changes in

power of frequency components of LFPs reflect kinematic

information of arm movements,7–10 and recently it was

possible to predict the hand position from ECoG signals.6

The convergence of the fields of neuroprosthetics and BMI

seems to be the natural next step in the development of

these two fields. Using BMI technology, a neuroprosthesis

could detect the intention to perform a specific movement

and deliver the electrical stimulation to produce that exact

movement. The benefit of such a system would be enhanced

further if the user required little or no training to use this

device.

Upper limb neuroprostheses11–14 have been controlled by

individuals with quadriplegia using single cell recordings15

and EEG signals after training that lasted between 3 days and

4 months.12 To generate control commands, the EEG-based

BMI users used motor imagery,11 closing and opening of the

eyes13 and self-regulation of power in specific frequency

bands.12 The accuracies reported for these systems range

from 7613 to 94.2%.12

The purpose of this study was to test the feasibility of using

ECoG signals as a control strategy for a neuroprosthesis for

grasping. A neuroprosthetic device was created and

controlled using ECoG signals acquired earlier. In the

following section, it will be shown that an ECoG-driven

neuroprosthesis can be implemented using a 4-channel

ECoG electrode and minimal training time to achieve

94.5% accuracy.

Materials and methods

To test the integration of a BMI system and a neuroprosthesis

for grasping, it is necessary either to (1) implant an

individual with SCI with an ECoG electrode or (2) use ECoG

signals recorded from another individual, already implanted

with a subdural electrode, to control a neuroprosthesis

instrumented on an individual with SCI. As we could not

justify the implantation of the ECoG electrode solely for

testing the system feasibility, we used the second approach.

Subjects

Two subjects participated in this study. Subject 1 was a

67-year-old woman implanted with subdural (ECoG)

electrodes for the treatment of essential tremor (Figure 1a).

She was recruited from the movement disorder clinic at the

Toronto Western Hospital and gave informed consent to

participate. The study was approved by the University Health

Network Research Ethics Board.

Subject 2 was a 35-year-old man with a complete cervical

SCI (C6 level/ASIA B) and had received 4 weeks of FES

therapy treatment for restoring grasping function, as part of

another study.16 He was able to use his arms and wrists but

had no hand movement. He gave written and informed

consent to participate in this study as required and approved

by the Toronto Rehabilitation Institute Research Ethics

Board. Figure 1b shows subject 2 wearing the neuroprosth-

esis for grasping.

We certify that all applicable institutional and govern-

mental regulations concerning the ethical use of human

volunteers were followed-up during the course of this

research.

Electrocorticographic and motion recordings

Electrocorticographic signals and arm movements were

recorded simultaneously from subject 1 during a single 1-h

session 3 days after the initial implantation of the subdural

electrode. The subdural electrode had a single row of four

Figure 1 Participants. (a) X-ray image of subject 1 with subdural
electrodes implanted on the motor cortex over the representation of
the upper limb. (b) Subject 2. (c and d) Surface stimulation
electrodes used to elicit palmar and lateral grasps.
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platinum–iridium disc contacts (4mm diameter and 10mm

centre-to-centre distance, RESUME 3586, Medtronic,

Minneapolis, MN, USA). The electrode was implanted over

the arm representation of the left motor cortex, which was

confirmed intra-operatively using electrical stimulation

delivered directly to the brain and observing contractions

of the right upper limb.

Monopolar ECoG signals were band limited (0.5–500Hz)

and recorded (sampling rate¼2kHz, SynAmps2, Compume-

dics, Charlotte, NC, USA). The ECoG signals were down-

sampled to 200 samples per second and subtracted from each

other to create differential signals using the recordings from

non-adjacent electrodes (for example, contacts 3 and 1).17

Using only the right upper limb, subject 1 performed wrist

flexion, reaching to the right and reaching to the left

movements after an auditory cue and held the final position

of the movement until a second auditory cue. A motion

sensor was placed over the dorsal aspect of the third

metacarpal of the right hand to record the movement using

a six-dimensional (X, Y, Z, roll, yaw and pitch) motion-

capture system (Fastrak, Polhemus Inc., Colchester, VT,

USA). Only position recordings (X, Y and Z) were used for

this study.17 Each movement was repeated at least 35 times,

and each trial was visually inspected to identify mistrials,

defined as: (1) a trial in which the individual had performed

a movement different from what had been instructed; (2) the

participant had started to move before the auditory cue; or

(3) the movement was not completed. Table 1 and Figure 2

show the movements performed along with the number of

trials used to carry out this study.

We created a nearest neighbour classifier (Matlab,

Mathworks, Natick, MA, USA) using five trials of each motor

task to identify the performed arm movements by analyzing

the ECoG signals. The remaining trials were used to test the

neuroprosthetic system.

To classify the subdural signals, we identified ECoG

spectral components correlated with the kinematic compo-

nents of the arm movement (Pearson correlation coefficient

40.1; statistics degrees of freedom¼600). Time-resolved

spectra were obtained using a spectrogram (128-sample

Hamming window, 128-point fast Fourier transform and

127-point overlap). The 20 frequency components with the

highest correlation coefficients were grouped using a

histogram with bins representing frequency bands of 10Hz.

Details of this process can be found in Chin et al.17

Neuroprosthesis for grasping

The right hand of subject 2 was fitted with a neuroprosthesis

for generating palmar and lateral (key pinch) grasps.18 The

neuroprosthesis was designed and created specifically for this

study using a Compex Motion four-channel transcutaneous

electrical stimulator (Compex S.A., Lausanne, VD, Switzer-

land).

The grasping movements were achieved by stimulating:

(1) flexor digitorum superficialis and flexor digitorum

profundus using two electrodes connected in parallel with

channel 1 (20mA) for generating finger flexion; (2) flexor

pollicis brevis using channel 2 (14mA) for generating thumb

opposition; and (3) extensor digitorum communis using

channel 3 (22mA) for generating hand opening. The Palmar

grasp was obtained by stimulating channels 1 and 2,

simultaneously. The lateral grasp was achieved by stimulat-

ing channel 1 followed by channel 2, 500ms later. Stimula-

tion of channel 3 generated hand opening. In all cases, the

stimulation frequency was set at 40Hz and the pulse

duration was 300 ms. Figure 3 depicts the stimulation profiles

to elicit the grasping synergies.

The neuroprosthesis had three accessible buttons (Buddy

Button 57000 Series, AbleNet Inc., Roseville, MN, USA) that

could be activated by subject 2 using the dorsal aspect of his

left hand. Pressing buttons 1 or 2 elicited palmar grasp or

lateral grasp, respectively. A second activation of either of

these switches generated hand opening. Button 3 was used

to turn the neuroprosthesis on and off. A 2-h training period

allowed the user to become comfortable using the neuro-

prosthesis commanded with the three buttons.

Table 1 Movements performed by subject 1 along with duration of
movement, available trials and movement ranges

Task
Duration
(ms)

Number of
good trials

Range of motion (mean±s.d.)

X (cm)
(up–down)

Y (cm)
(left–right)

Z (cm)
(proximal–distal)

WF 219.4±64.1 20 0.96±0.42 1.22±0.8 1.6±1.1
RTR 208.8±48.8 25 17.7±0.62 34.9±3.2 9.4±0.6
RTL 253.5±44.6 23 7.16±1.24 32.3±2.4 5.32±0.9

Abbreviations: RTL, reaching to the left; RTR, reaching to the right; WF, wrist

flexion.

The movements included WF, RTR and RTL.

Figure 2 Movements performed by subject 1. These included
(a) wrist flexion (WF), (b) reaching to the right (RTR) and (c)
reaching to the left (RTL).
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Thereafter, the accessibility buttons were disconnected

from the stimulator and reconnected to the ECoG classifier.

With this modification, pressing buttons 1, 2 and 3 resulted

in the random selection and classification of an ECoG signal

recorded when subject 1 had performed wrist flexion,

reaching to the right and reaching to the left movements,

respectively. The classified trials excluded the recordings

used to create the classifiers. After the classifier determined

which ECoG signal had been extracted, it commanded the

neuroprosthesis to perform the desired hand function or to

turn the stimulator on/off. The correct classification of the

ECoG signals resulted in the correct stimulation sequence

delivered by the neuroprosthesis. A diagram depicting the

complete implemented neuroprosthetic system is shown in

Figure 4.

Subject 2 picked up 18 objects,19 shown in Table 2, which

required palmar and lateral grasps. Each object was grasped

and lifted from a table using the neuroprosthesis. The

participant held the objects in pronation and supination

and then released them. To test all of the available classes

(ECoG signals), the user was asked to turn the neuroprosth-

esis off and on after grasping two objects consecutively.

Classification tests

The accuracy of classification (as the number of trials in

which the system performed the action required by the user

divided by the total number of activations of the neuro-

prosthesis) was measured. The time between the activation

of a user switch and the issuing of the classification result

was also recorded.

Results and discussion

We confirmed the presence of ECoG spectral components

correlated with each one of the kinematic dimensions of the

movements performed by subject 1 (Table 3). Figure 5 shows

histograms created by grouping 20 spectral components

identified as the most strongly correlated with kinematic

recordings. The distribution of correlated frequencies was

found to depend on the type of movement performed by

subject 1 (Po0.001, w2-statistic), suggesting that the recorded

LFP activity is distinct for each arm movement performed.

Subject 2 was able to use the neuroprosthesis with an

accuracy of 94.5%. Most of the incorrect classifications

occurred when the system attempted to classify trials

corresponding to wrist flexion, as shown by the confusion

matrix provided in Table 4. A closer inspection of the

kinematic recordings revealed that the wrist flexion motion

was less consistent than the reaching movements. This was

likely the cause of the misclassification. The average time

elapsed between the ECoG classification and the activation

of the neuroprosthesis was 1870±109ms.

There are seven grasping styles and dozens of combina-

tions, which can be generated using the current FES

technology. However, providing a user interface to control

these functions independently remains a challenge, regard-

less of the user’s motor abilities. This is an unsolved problem

in the FES field. A BMI capable of identifying multiple

movements has the potential to command multiple grasps

using a single interface.

In this work, we presented a BMI system that used ECoG

signals to control a neuroprosthesis for grasping. Activation

of the neuroprosthesis triggered an off-line classification

process of a single ECoG trial. The result of this classification

triggered specific electrical stimulation sequences to perform

palmar and lateral grasps, as well as for turning the electrical

stimulator on and off. We believe that the short time

required to create the system (o60min, including both the

System on/off

Button 3: Activation - ECoG RTL

Button 2: Activation - ECoG RTR

Button 1: Activation - ECoG WF

flexor digitorum superficialis
flexor digitorum profundus
flexor pollicis brevis

extensor digitorum communis

III

II

I IV V

Return to Idle

Stimulation Sequence for Palmar Graspa

System on/off

Button 3: Activation - ECoG RTL

Button 2: Activation - ECoG RTR

Button 1: Activation - ECoG WF

flexor digitorum superficialis
flexor digitorum profundus
flexor pollicis brevis

extensor digitorum communis

III

II

I IV V

Return to Idle

Stimulation Sequence for Lateral Graspb

Figure 3 Stimulation sequences for (a) palmar and (b) lateral
grasps. Both stimulation sequences used three stimulation channels.
Each channel stimulated a different muscle or nerve at different times
for generating synergistic movements. (I) Pressing button 3 was used
to turn the stimulator on through a random selection and
classification of electrocorticographic (ECoG) signals recorded while
subject 2 was reaching to the left (RTL). (II) Pressing buttons 1 or 2
caused the system to classify randomly selected ECoG signals
recorded while subject 2 was performing wrist flexion (WF) or
reaching to the right (RTR), respectively. The result of the
classification triggered a specific stimulation sequence to elicit
palmar or lateral grasps. (III) Grasping was sustained until either
button 1 or 2 was pressed a second time, which resulted in a change
in the stimulation delivered to facilitate hand opening. (IV) After 3 s,
the stimulation stopped and the neuroprosthesis returned to an idle
state. (V) Button 3 could also be used to turn the stimulator off
through the classification of a randomly selected ECoG signal
recorded when subject 2 was reaching to the left. This figure was
adapted from Popovic and Keller.18
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neuroprosthesis and BMI design) along with the small

number of trials used to create the classifier (that is , five)

using activity from only four contacts to identify three

different movements performed with the same limb make

this system unique.

The technology and procedures used in this study have a

good record of stability and reliability in clinical applications

resulting in an increased interest in the development of BMIs

using ECoG signals. However, it is still necessary to verify

the long-term performance of subdural electrodes in BMI

applications.

This work allowed us to explore our ideas of the

integration of BMI systems and FES, and run a true end-to-

end system test on the use of ECoG signals to control a

neuroprosthesis for grasping. Although several reports

describe the control of robotic or virtual systems with brain

activities, we selected this application because of its clinical

prevalence; FES is the technology currently used to facilitate

movement in persons with SCI. However, to conduct our

tests, we could not justify the implantation of subdural

electrodes or the instrumentation of an arm with a

neuroprosthesis when these interventions were not required

for medical reasons. Owing to these ethical challenges, the

only possible solution was to use two subjects, which is why

the ECoG signals used to trigger the neuroprosthesis were

not recorded from the same individual instrumented with

the neuroprosthetic system.

Although the movements identified from subject 1 were

different from those produced by the neuroprosthesis in

subject 2, we believe that this work brings us closer to a

situation in which individuals will be able to elicit a

movement in their paralyzed limbs by attempting or

imagining that same movement. We feel confident that in

future implementations, this discrepancy can be overcome

and that the neuroprosthesis will be able to produce the exact

movement identified from ECoG recordings. By doing this,

the level of transparency of interaction between the user and

a neuroprosthetic device will increase dramatically.

Voluntary movement-related changes in power in the

b-band appear to show temporal differences20 in patients

with ET. These differences may affect the correlation values

on which the classification method is based. However, we

have tested successfully the presented method in individuals

with Parkinson’s disease and ET, and we are confident

that the method used will work in different patient

populations.

Although our system operates on ECoG signals recorded

while actual arm movements were performed, our immedi-

ate work will focus on developing a classifier that will be able

to classify imagined and/or intended movements for con-

trolling the neuroprosthesis. We also plan to develop a

system capable of identifying specific arm movements from

ECoG recordings in real time.

Figure 4 Complete experimental setup. The user pressed one of three buttons to control the neuroprosthesis. Each button was associated
with a dataset of ECoG signals recorded earlier. The system randomly extracted a single trial of the corresponding dataset, which was classified
using a nearest neighbour classifier. The result of the classification process was then used to trigger a stimulation sequence. When the
classification was successful, the correct stimulation sequence was delivered by the neuroprosthesis. Conversely, an incorrect classification
would result in an incorrect action taken by the neuroprosthesis. ECoG, electrocorticographic; WF, wrist flexion; RTR, reaching to the right; RTL,
reaching to the left.

Table 2 Objects used to test the neuroprosthesis

Required grasping
approach

Object

Palmar Mug, book, 355ml soft drink can (full), mobile
phone, wooden blocks with high friction surface
(100, 200 and 300g), wooden blocks with wooden
surface (100, 200 and 300g), wooden blocks with
low friction surface (100, 200 and 300g)

Lateral Sheet of paper, paper bag, die, credit card, pencil

The different objects required the use of both palmar and lateral grasps.

Table 3 Correlation coefficients values between ECoG spectral compo-
nents and kinematic recordings

WF RTR RTL

Average correlation coefficient 0.42±0.03 0.43±0.04 0.45±0.05
P-value (Fisher’s combined
probability test)

o0.005 o0.005 o0.005

Abbreviations: ECoG, electrocorticographic; RTL, reaching to the left; RTR,

reaching to the right; WF, wrist flexion.

The correlation values were obtained by averaging over all dimensions (X, Y, Z) of

movement and were translated into P-values using Fisher’s combined

probability test.
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