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Universal scaling between wave speed and size enables
nanoscale high-performance reservoir computing based
on propagating spin-waves
Satoshi Iihama1,2, Yuya Koike2,3,4, Shigemi Mizukami2,5 and Natsuhiko Yoshinaga2,4✉

Physical implementation of neuromorphic computing using spintronics technology has attracted recent attention for the future
energy-efficient AI at nanoscales. Reservoir computing (RC) is promising for realizing the neuromorphic computing device. By
memorizing past input information and its nonlinear transformation, RC can handle sequential data and perform time-series
forecasting and speech recognition. However, the current performance of spintronics RC is poor due to the lack of understanding of
its mechanism. Here we demonstrate that nanoscale physical RC using propagating spin waves can achieve high computational
power comparable with other state-of-art systems. We develop the theory with response functions to understand the mechanism
of high performance. The theory clarifies that wave-based RC generates Volterra series of the input through delayed and nonlinear
responses. The delay originates from wave propagation. We find that the scaling of system sizes with the propagation speed of spin
waves plays a crucial role in achieving high performance.
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INTRODUCTION
Non-local magnetization dynamics in a nanomagnet, spin-waves,
can be used for processing information in an energy-efficient
manner since spin-waves carry information in a magnetic material
without Ohmic losses1. The wavelength of the spin-wave can be
down to the nanometer scale, and the spin-wave frequency
becomes several GHz to THz frequency, which are promising
properties for nanoscale and high-speed operation devices.
Recently, neuromorphic computing using spintronics technology
has attracted great attention for the development of future low-
power consumption AI2. Spin-waves can be created by various
means such as magnetic field, spin-transfer torque, spin-orbit
torque, voltage induced change in magnetic anisotropy and can
be detected by the magnetoresistance effect3. Therefore, neuro-
morphic computing using spin waves may have a potential of
realizable devices.
Reservoir computing (RC) is a promising neuromorphic

computation framework. RC is a variant of recurrent neural
networks (RNNs) and has a single layer, referred to as a reservoir,
to transform an input signal into an output4. In contrast with the
conventional RNNs, RC does not update the weights in the
reservoir. Therefore, by replacing the reservoir of an artificial
neural network with a physical system, for example, magnetization
dynamics5, we may realize a neural network device to perform
various tasks, such as time-series prediction4,6, short-term
memory7,8, pattern recognition, and pattern generation. Several
physical RC has been proposed: spintronic oscillators5,9, optics10,
photonics11,12, memristor13–15, field-programmable gate array16,
fluids, soft robots, and others (see the following reviews for
physical reservoir computing17–19). Among these systems, spin-
tronic RC has the advantage in its potential realization of
nanoscale devices at high speed of GHz frequency with low
power consumption, which may outperform conventional electric

computers in future. So far, spintronic RC has been considered
using spin-torque oscillators5,9, magnetic skyrmion20, and spin
waves in garnet thin films21–24.
One of the goals of neuromorphic computing is to realize

integrated RC chip devices. To make a step forward in this
direction, performance of a single RC unit must be studied and
significantly more computational power per unit area might be
required. For example, even for the prediction task of one-
dimensional spatio-temporal chaos requires 104−105 nodes6,10.
Spatio-temporal chaos is an irregular dynamical phenomenon
expressed by a deterministic equation. Its time series data is
complex but still much simpler than the climate forecast. To
increase the number of degrees of freedom N with keeping the
total system size, the single RC unit (N~100 in this study) should
be nanoscale25 ideally ~100 nm or less. Also, high-speed operation
at GHz frequency compatible with semiconductor devices might
be desired.
Spintronics has been a promising technology for the develop-

ment of nanoscale and high-speed operation nonvolatile memory
devices. However, the current performance of spintronic RC
demonstrated experimentally still remains poor compared with
the Echo State Network (ESN)7,8, idealized RC model implemented
in conventional computers with random network and nodes
updated by the tanh activation function. The biggest issue is a lack
of our understanding of how to achieve high performance in the
physical RC systems. It has been well studied that for the ESN, the
memory capacity (MC) is bounded by N7. MC quantifies how many
past steps RC can memorize. For the ESN with linear activation
function, MC becomes N as long as each node is independent
from other nodes. It has also been shown that the information
processing capacity (IPC) of RC is bounded by N26. Here, IPC
captures the performance of RC in terms of the memory of past
information and nonlinear transformation (see also Methods:
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Learning tasks). Besides MC and IPC, the computational capabil-
ities of RC have been measured by the task of approximating the
input-output relation of dynamical system models, such as the
nonlinear autoregressive moving average (NARMA) model27. The
NARMA model describes noisy but correlated output time series
from uniformly random input. Since the performance of MC and
IPC is correlated with that of the NARMA task28 (see also Methods:
Relation of MC and IPC with learning performance and
Supplementary Information Section I and II), it is natural to expect
that the higher performance of RC is achieved under larger N.
To make N larger, the reservoir has to have a larger degree of

freedom, either by connecting discrete independent units or by
using continuum media. Using many units may be impractical
because we need to make those units and connect them. The latter
approach using continuum media is promising because spatial
inhomogeneity may increase the number of degrees of freedom of
the physical system. In this respect, wave-based computation in
continuum media has attracting features. The dynamics in the
continuum media have large, possibly infinite, degrees of freedom.
In fact, several wave-based computations have been proposed29,30.
The question is how to use the advantages of both wave-

based computation and RC to achieve high-performance
computing of time-series data. Even though the continuum
media may have a large degree of freedom, in practice, we
cannot measure all the information. Therefore, the actual N
determining the performance of RC is set by the number of
measurements of the physical system. There are two ways to
increase N; by increasing the number of physical nodes, Np, to
measure the system (or the number of discrete units)31, and by
increasing the number of virtual nodes, Nv

32,33. Increasing Np is a
natural direction to obtain more information from the con-
tinuum physical system. For spin wave-based RC, so far, higher
performance has been achieved by using a large number of
input and/or output nodes23,24,34. However, in practice, it is
difficult to increase the number of physical nodes, Np, because it
requires more wiring of multiple nodes. To make computational
devices, fewer nodes are preferable in terms of cost and effort to
make the devices. With these motivations in our mind, in this
study, we propose spin-wave RC, in which we extract the
information from the continuum media using a small number of
physical nodes.
Along this direction, using Nv virtual nodes for the dynamics with

delay was proposed to increase N in32. The idea of the virtual nodes
is to use the time-multiplexing approach. By repeating the input Nv

times at a certain time, we may treat reservoir states during the Nv

steps as states in different virtual nodes. This idea was applied in
optical fibers with a long delay line11 and a network of oscillators
with delay33. Ideally, the virtual nodes enhance the number of
degrees by N= NpNv. However, the increase of N=NpNv with Nv

does not necessarily improve performance. In fact, RC based on STO
(spin torque oscillator) struggle with insufficient performance both
in experiments9 and simulations35. On the other hand, for the
photonic RC, the virtual nodes work effectively; even though it
typically uses only one physical node (Np= 1), the performance is
high, for example, MC≈NvNp. Still, the photonic RC requires a large
size of devices due to the long delay line11,12. To use the virtual
nodes as effectively as the physical nodes, we need to clarify the
mechanism of high performance using the virtual nodes. Never-
theless, the mechanism of high performance remains elusive, and
no unified understanding has been made.
In this work, we show nanoscale and high-speed RC based on

spin wave propagation with a small number of inputs can achieve
performance comparable with the ESN and other state-of-art RC
systems. More importantly, by using a theoretical model, we clarify
the mechanism of the high performance of spin wave RC. We
show the scaling between wave speed and system size to make
virtual nodes effective.

RESULTS
Reservoir computing using wave propagation
The basic task of RC is to transform an input signal Un to an output
Yn for the discrete step n= 1, 2,…, T at the time tn. For example,
for speech recognition, the input is an acoustic wave, and the
output is a word corresponding to the sound. Each word is
determined not only by the instantaneous input but also by the
past history. Therefore, the output is, in general, a function of all
the past input, Yn ¼ g fUmgnm¼1

� �
as in Fig. 1a. The RC can also be

used for time-series prediction by setting the output as Yn=
Un+1

4. In this case, the state at the next time step is predicted
from all the past data; namely, the effect of delay is included. The
performance of the input-output transformation g can be
characterized by how much past information does g have, and
how much nonlinear transformation does g perform. We will
discuss that the former is expressed by MC36, whereas the latter is
measured by IPC26 (see also Methods: Relation of MC and IPC with
learning performance).
We propose physical computing based on a propagating wave

(see Fig. 1b, c). Time series of an input signal Un can be
transformed into an output signal Yn (Fig. 1a). As we will discuss in
the next paragraph, this transformation requires large linear and
nonlinear memories; for example, to predict Yn, we need to
memorize the information of Un−2 and Un−1 (see also Methods:
Relation of MC and IPC with learning performance and
Supplementary Information Section I). The input signal is injected
in the first input node and propagates in the device to the output
node spending a time τ1 as in Fig. 1b. Then, the output may have
past information at tn−τ1 corresponding to the step n−m1. The
output may receive the information from another input at
different time tn−τ2. The sum of the two pieces of information
is mixed and transformed as Un�m1Un�m2 either by nonlinear
readout or by nonlinear dynamics of the reservoir (see next
section: Learning with reservoir computing and Methods). We will
demonstrate the wave propagation can indeed enhance MC and
learning performance of the input-output relationship.
Before explaining our learning strategy described in next

section Spin wave reservoir computing, we discuss how to
achieve accurate learning of the input-output relationship Yn ¼
g fUmgnm¼1

� �
from the data. Here, the output may be dependent

on a whole sequence of the input fUmgnm¼1 ¼ U1; ¼ ;Unð Þ. Even
when both Un and Yn are one-variable time-series data, the input-
output relationship g(⋅) may be T-variable polynomials, where T is
the length of the time series. Formally, g(⋅) can be expanded in a
polynomial series (Volterra series) such that g fUmgnm¼1

� � ¼P
k1;k2;���;knβk1;k2;���;knU

k1
1 U

k2
2 � � �Ukn

n with the coefficients βk1;k2;���;kn
27.

Therefore, even for the linear input-output relationship, we need T
coefficients in g(⋅), and as the degree of powers in the polynomials
increases, the number of the coefficients increases exponentially.
This observation implies that a large number of data is required to
estimate the input-output relationship. Nevertheless, we may
expect a dimensional reduction of g(⋅) due to its possible
dependence on the time close to the current step, tn, and on
the lower powers. Still, our physical computers should have
degrees of freedom N≫ 1, if not exponentially large.
The reservoir computing framework is used to handle time-

series data of the input U and the output Y7. In this framework, the
input-output relationship is learned through the reservoir
dynamics X(t), which in our case, is magnetization at the detectors.
The reservoir state at a time tn is driven by the input at the nth
step corresponding to tn as

Xðtnþ1Þ ¼ f XðtnÞ;Unð Þ (1)

with nonlinear (or possibly linear) function f(⋅). The output is
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approximated by the readout operator ψ(⋅) as

Ŷn ¼ ψ XðtnÞð Þ: (2)

Our study uses the nonlinear readout ψ XðtÞð Þ ¼ W1XðtÞþ
W2X2ðtÞ6,37. The weight matrices W1 and W2 are estimated from
the data of the reservoir dynamics X(t) and the true output Yn,
where X(t) is obtained by Eq. (1). With the nonlinear readout, the
RC with linear dynamics can achieve nonlinear transformation, as
Fig. 1b. We stress that the system also works with linear readout
when the RC has nonlinear dynamics37. We discuss this case in
Supplementary Information Section V A. In this study, we focus on
the second-order polynomial for the readout function. This is
because we focus on the second-order IPC to quantify the
performance of nonlinear transformation with delay (see Methods:
Learning tasks: Information Processing Capacity (IPC)). In Supple-
mentary Information Section I, we clarify that second-order
nonlinearity is necessary to achieve high performance for the
NARMA10 task. The effect of the order of the polynomials in the
readout function is discussed in Supplementary Information
Section V B.

Spin wave reservoir computing
The actual demonstration of the spin-wave reservoir computing is
shown in Fig. 2 and each step is described in Learning with reservoir
computing below. First, we demonstrate the spin-wave RC using
the micromagnetic simulations (see Methods: Micromagnetic

simulations). Next, to get an insight into the mechanism of learning,
we discuss the theoretical model using a response function
(see Methods: Theoretical analysis using response function).

Learning with reservoir computing. In this section, we describe
each step of our spin-wave RC corresponding to each sub-figure in
Fig. 2. Performance of spin-wave reservoir computing is evaluated
by NARMA10 task (Fig. 2 (1,5,6)), MC and IPC (Fig. S2 in
Supplementary Information Section III), and prediction of chaotic
time-series data using Lorenz model (Fig. 5). Details of learning
tasks are described in Methods: Learning tasks.

● step 1: preparing input and output time-series data
Our goal using RC is to learn the functional g(⋅) in Yn ¼

g fUmgnm¼1

� �
for the input time series Un and the output time

series Yn (see Fig. 1a). At the first step, we prepare the ground-
truth time series data for the input Un and output Yn for the
time step n= 1,…,T. We assume both input and output are
discrete time steps in time. In this study, we focus on the
continuous value of the input and output, and therefore,
Un; Yn 2 R. To show the performance of our method does not
rely on the continuous input, we also demonstrate the
performance for the binary and senary inputs in Supplemen-
tary Information Section IV. The concrete form of the
preparing data will be specified in each task discussed in
Methods: Learning tasks.

● step 2: preprocessing the input and translating it into a
physical input

Fig. 1 Illustration of physical reservoir computing and reservoir based on propagating spin-wave network. a Schematic illustration of
output function prediction by using time-series data. Output signal Y is transformed by past information of input signal U. b Schematic
illustration of reservoir computing with multiple physical nodes. The output signal at physical node A contains past input signals in other
physical nodes, which are memorized by the reservoir. c Schematic illustration of reservoir computing based on propagating spin-wave.
Propagating spin-wave in ferromagnetic thin film (m∥ez) is excited by spin injector (input) through spin-transfer torque at multiple physical
nodes with reference magnetic layer (m∥ex) of magnetic tunnel junction. x-component of magnetization is detected by spin detector (output)
through magnetoresistance effect using magnetic tunnel junction shown by a cylinder above the thin film at each physical node.
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Next, we preprocess the input time series data so that we
may drive the physical magnetic system and may perform
reservoir computing. The preprocess has two parts: input
weights and translation into physical input. First, the input
time series Un is multiplied by the input weight for each
physical node. This is necessary because each physical node
receives different parts of the input information. In the ESN,
the input weights are typically taken from uniform or binary
random distribution38. In this study, we use the method of
time multiplexing with Nv virtual nodes32. In this case, the
input weights are more involved. Details of preprocessing
inputs are described in Methods: Details of preprocessing
input data

● step 3: driving the physical system

Our RC architecture consists of the update of reservoir state
variables X(t) as

Xðt þ ΔtÞ ¼ f XðtÞ;UðtÞð Þ (3)

and the readout

Ŷn ¼ W � ~~XðtnÞ: (4)

We approximate the functional g(⋅) by the weight W and the
(extended) reservoir states ~~X.
In our system, the reservoir state is magnetization at ith

nanocontact (physical node) and at time tn,k (virtual node).
The magnetic system is driven by the injected DC current
proportional to the input time series U, described in Methods:

Fig. 2 Schematic illustration of spin-wave reservoir computing using micromagnetic simulation and prediction of NARMA10 task. Input
signals U are transformed into the piece-wise constant input U(t), multiplied by binary mask BiðtÞ, and transformed into injected current
jðtÞ ¼ 2jc~UiðtÞ with ~Ui ¼ BiðtÞUðtÞ for the ith physical node. Current is injected into each physical node with the cylindrical region to apply
spin-transfer torque and to excite spin-wave. Higher damping regions in the edges of the rectangle are set to avoid reflection of spin-waves.

The x-component of magnetization mx at each physical and virtual node are collected and the extended state ~~X is constructed from mx and
m2

x . Output weights are trained by linear regression. The labels (1) to (6) correspond to step 1 to step 6 in Section Learning with reservoir
computing, respectively.
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Micromagnetic simulations, with a pre-processing filter. From
the resulting spatially inhomogeneous magnetization m(x, t),
we measure the averaged magnetization at ith nanocontact
mi(t).

● step 4: measurement, readout, and post-processing
We choose the x-component of magnetization mx,i as a

reservoir state, namely, Xn ¼ fmx;iðtn;kÞgi2½1;Np�;k2½1;Nv �. For the
output transformation, we use ψðmi;xÞ ¼ W1;imi;x þW2;im2

i;x .
Therefore, the dimension of our reservoir is 2NpNv. The
nonlinear output transformation can enhance the nonlinear
transformation in reservoir6, and it was shown that even
under the linear reservoir dynamics, RC can learn any
nonlinearity37,39. In Supplementary Information Section V A,
we also discuss the linear readout, but including the
z-component of magnetization X ¼ mx ;mzð Þ. In this case, mz

plays a similar role to m2
x .

In our spin wave RC, the reservoir state is chosen as x-
component of the magnetization

X ¼ mx;1ðtnÞ; ¼ ;mx;iðtnÞ; ¼ ;mx;NpðtnÞ
� �T

; (5)

for the indices for the physical nodes i= 1,2,…,Np. Here, Np is
the number of physical nodes, and each mx,i(tn) is a T-
dimensional row vector with n= 1, 2,…,T. We use a time-
multiplex network of virtual nodes in RC32, and use Nv virtual
nodes with time interval θ. The expanded reservoir state is
expressed by NpNv × T matrix ~X as (see Fig. 2–(4))

~X ¼ mx;1ðtn;1Þ;mx;1ðtn;2Þ; ¼ ;mx;1ðtn;kÞ; ¼ ;mx;1ðtn;Nv Þ;
�
¼ ;mx;iðtn;1Þ;mx;iðtn;2Þ; ¼ ;mx;iðtn;kÞ; ¼ ;mx;iðtn;Nv Þ; ¼ ;

mx;Npðtn;1Þ;mx;Npðtn;2Þ; ¼ ;mx;Npðtn;kÞ; ¼ ;mx;Npðtn;Nv Þ
�T
;

(6)

where tn,k= ((n−1)Nv+ (k−1))θ for the indices of the virtual
nodes k= 1, 2,…,Nv. The total number of rows is N=NpNv. We
use the nonlinear readout by augmenting the reservoir state as

~~X ¼
~X

~X � ~X

 !
; (7)

where ~XðtÞ � ~XðtÞ is the Hadamard product of ~XðtÞ, that is,
component-wise product. Therefore, the dimension of the
readout weights is N= 2NpNv. As discussed in Eq. (2), we focus
on the readout function of the form

ψ XðtÞð Þ ¼ W1XðtÞ þW2X2ðtÞ. When additional nonlinear terms
are included in the readout, we may add the rows of ~X � ~X � � � �
~X in Eq. (7).

● step 5: training and optimization of the readout weight
The weights in the readout are trained by reservoir variable X

and the output Y to approximate the ground-truth output Y by
the estimated one Ŷ as Eq. (4). The readout weight W is trained
by the data of the output Y(t)

W ¼ Y � ~~X
y

(8)

where X† is pseudo-inverse of X.
Unless otherwise stated, We use 1000 steps of the input time-

series as burn-in. After these steps, we use 5000 steps for
training and 5000 steps for test for the MC, IPC, and NARMA10
tasks.

● step 6: testing the trained RC
Once we train the output wight W, we perform a test to

estimate the approximated output Ŷ as

Ŷ ¼ W � ~~X: (9)

By comparing the estimated output Ŷ and the ground-truth
output Y, we may quantify the performance of the RC.

Performance of the tasks for MC, IPC, NARMA10, and
prediction of chatoic time-series
Figure 3 shows the results of the three tasks. When the time scale
of the virtual node θ is small and the damping α is small, the
performance of spin wave RC is high. As Fig. 3a shows, we achieve
MC ≈ 60 and IPC ≈ 60. Accordingly, we achieve a small error in the
NARMA10 task, NRMSE ≈ 0.2 (Fig. 3c). These performances are
comparable with state-of-the-art ESN with the number of
nodes~100. When the damping is stronger, both MC and IPC
become smaller. Because the NARMA10 task requires the memory
with the delay steps ≈ 10 and the second order nonlinearity with
the delay steps ≈ 10 (see Supplementary Information Section I),
the NRMSE becomes larger when MC≲ 10 and IPC≲ 102/2.
In fact, when θ and α are small, MC ≈ NpNv and IPC ≈ NpNv. The

result suggests that our spin-wave RC can use half of the degrees
of freedom, respectively, for linear and nonlinear memories. Note
that our system has N= 2NvNp. Around θ= 0.1 ns and
α= 5.0 × 10−4, IPC exceeds NvNp= 64 whereas MC becomes

Fig. 3 Virtual node distance θ dependence of MC and IPC for. a micromagnetics simulation and b response function method with different
damping parameters α. MC and IPC normalized by the total number of dimensions N= 2NvNp are shown in the right axis. c Normalized root
mean square error, NRMSE for NARMA10 task is plotted as a function of θ with different α.
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smaller than NvNp. This is consistent with the trade-off between
MC and IPC26. The reason why IPC exceeds NvNp is as follows; even
when we use the linear readout using only mx, IPC becomes small
but nonzero as shown in Supplementary Information Section V A.
Therefore, mx can perform nonlinear transformation because mx

exhibits oscillation with a finite amplitude. However, the nonlinear
effect is too weak to have IPC ≈ NpNv, and mx mainly performs
linear memory.
The results of the micromagnetic simulations are semi-

quantitatively reproduced by the theoretical model using the
response function, as shown in Fig. 3b. This result suggests that
the linear response function Gðt; t0Þ captures the essential
feature of delay t � t0 due to wave propagation. Similar to the
results of micromagnetic simulations, our spin-wave RC shows
IPC ≈ NpNv when θ and α are small. MC is slightly under-
estimated but still shows MC/N > 0.25, i.e. MC/(NvNp) > 0.5. When
MC and IPC are computed using the response function, each of
them is strictly bounded by NvNp because the linear part mx can
learn the linear memory (MC) whereas the nonlinear part m2

x
can learn the nonlinear memory (IPC). In fact, IPC in Fig. 3b is
bounded by NpNv = 64 in contrast with RC using micromagnetic
simulations.
Propagating spin waves play a crucial role in high perfor-

mance. We perform micromagnetic simulations with damping
layers between nodes (Fig. 4a). The damping layers inhibit spin

wave propagation. The result of Fig. 4b shows that the MC is
substantially lower than that without damping, particularly
when θ is small. The NARMA10 task shows a larger error
(Fig. 4d). When θ is small, the suppression is less effective. This
may be due to incomplete suppression of wave propagation.
We also analyze the theoretical model with the response
function by neglecting the interaction between two physical
nodes, namely, Gij = 0 for i ≠ j. In this case, information
transmission between two physical nodes is not allowed. We
obtain smaller MC and IPC than the system with wave
propagation, supporting our claim (see Fig. 4c).
Our spin wave RC also works for the prediction of time-series

data. In the study of ref. 6, the functional relationship between the
state at t+ Δt and the states before t is learned by the ESN The
schematics of this task are shown in Fig. 5c. The trained ESN can
estimate the state at t+ Δt from the past states from the
estimated time series, and therefore, during the prediction step, it
can predict the dynamics without the ground-truth time series
data (Fig. 5c). In ref. 6, the prediction for the chaotic time-series
data was demonstrated. Figure 5 shows the prediction using our
spin wave RC for the Lorenz model. We can demonstrate that the
RC shows short-time prediction (Fig. 5a) and, more importantly,
reconstruct the chaotic attractor (Fig. 5b). Because the initial
deviation exponentially grows in a chaotic system, we cannot
reproduce the same time series in the prediction step.

Fig. 4 Effect of the network connection on the performance of reservoir computing. a Schematic illustration of the network of physical
nodes connected through propagating spin-wave [left] and physical nodes with no connection [right]. b, c MC and IPC obtained using a
connected network with 8 physical nodes [top] and physical nodes with no connection [bottom] calculated by b micromagnetics simulation
and c response function method plotted as a function of virtual node distance θ. Nv= 8 virtual nodes are used. d Normalized root mean
square error, NRMSE for NARMA10 task obtained by micromagnetics simulation is plotted as a function of θ with a connected network [top]
and physical nodes with no connection [bottom]. MC and IPC normalized by the total number of dimensions N= 2NvNp are shown in the right
axis.
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Nevertheless, we may reproduce the shape of the trajectory in the
phase space.

Scaling of system size and wave speed
To clarify the mechanism of the high performance of our spin
wave RC, we investigate MC and IPC of the system with different
characteristic length scales/and different wave propagating speed
v. We choose the characteristic length scale of our spin-wave RC
system as the diameter 2R of the circle on which inputs are
located (see Fig. 2-(3)), namely, l= 2R. Hereafter, we denote the
characteristic length by l for general systems but interchangeably
by l and R for our system. We use our theoretical model with the
response function discussed in Methods: Theoretical analysis
using response function to compute MC and IPC in the parameter
space (v, R). This calculation can be done because the computa-
tional cost of our model using response function is much cheaper
than numerical micromagnetic simulations. In this analysis, we
assume that spin waves are dominated by the dipole interaction.
This implies that the speed of the spin wave is constant. The
power spectral density shown in Supplementary Information
Section VIII A indicates that the amplitude of the spin waves is
dominated by small wavenumbers k < 1/l0. Nevertheless, the
exchange interaction comes into play at 0≪ k < 1/l0. The effect of
the exchange interaction is that the speed of wave propagation
exhibits distribution due to the wavenumber-dependent waves,

which are faster than the waves of the dipole-only system.
Accordingly, the average speed becomes faster. Although this
effect modifies the evaluation of the spin-wave propagation
speed, it does not change the scaling discussed in this section. We
discuss the effect in Supplementary Information Section VII A.
Figure 6a, b shows that both MC and IPC have maximum

when R ∝ v. The response function for the magnetization
dynamics Eqs. (16) and (17) have a peak at some delay time
as schematically shown in Fig. 6e (see also Section VII in
Supplementary Information). Therefore, the response function
plays the role of a filter such that the magnetization of the ith
node mi(t) at time t has the information of the input at time t−τ.
The position of the peak is dependent on the distance between
two nodes and the wave speed. As a result, mi(t) may have the
information of different delay times (see also Fig. 1c).
The maximum delay time can be evaluated from the maximum
time that spin wave propagation spends. This is nothing but the
time for wave propagation between the furthest physical nodes.
RC cannot memorize the information beyond this time scale of
the delay. Together with the nonlinear readout, the spin-wave
RC can memorize the past information and its nonlinear
transformation.
To obtain a deeper understanding of the result, we perform the

same analyses for the further simplified model, in which the
response function is replaced by the Gaussian function Eq. (19)
(see Methods). This functional form has the peak at t= Rij/v and

Fig. 5 Prediction of time-series data for the Lorenz system using reservoir computing with micromagnetic simulations. The parameters
are θ= 0.4 ns and α= 5.0 × 10−4. a The ground truth (A1(t), A2(t), A3(t)) and the estimated time series ðÂ1ðtÞ; Â1ðtÞ; Â3ðtÞÞ are shown in blue and
red, respectively. The training steps are during t < 0, whereas the prediction steps are during t > 0. b The attractor in the A1A3 plane for the
ground truth and during the prediction steps. c Schematics of the training and prediction steps for this task. During the training step, RC
estimates the time series of the next time step Âiðt þ ΔtÞ (i= 1, 2, 3) from the input time series Ai(t) (i= 1, 2, 3) by optimizing the readout
weights so that the estimated Âiðt þ ΔtÞ approximates the ground truth Ai(t+Δt). During the prediction step after the training step, using the
optimized readout weights, the estimated ÂiðtÞ is transformed into the time series at the next step Âiðt þ ΔtÞ, which is further used for
the estimation at future time steps t+ 2Δt,t+ 3Δt,…. The ground truth time series is no longer used during the prediction step except at the
initial time step.
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the width of the response function is w, where Rij is the distance
between ith and jth physical nodes (see Fig. 6e). Even in this
simplified model, we obtain MC ≈ 40 and IPC ≈ 60, and also the
maximum when l= 2R∝ v (Fig. 6c, d). From this result, the origin
of the optimal ratio between the length and speed becomes
clearer; when l≪ v, the response functions under different Rij
overlap so that different physical nodes cannot carry the
information of different delay times. On the other hand, when
l≫ v, the characteristic delay time l/v exceeds the maximum delay
time to compute MC and IPC, or exceeds the total length of the
time series. Note that we set the maximum delay time as 100,
which is much longer than the value necessary for the NARMA10
task.
We also analyse the results of micromagnetic simulations along

the line with the scaling argument using the response function. As
shown in insets of Fig. 7, MC becomes smaller when vτ0 is larger
under the fixed l, and when l is smaller l with fixed vτ0. These
trends of scaling obtained by micromagnetic simulations are
comparable with the Gaussian model. However, the position of

the peak deviates from the theoretical value. We speculate this is
due to the finite system size, whose effect is not included in the
theoretical model.

Reservoir computing scaling and performance in comparison
with the literature
Our results suggest the universal scaling between the size of the
system and the speed of the RC based on wave propagation.
Figure 7 shows reports of reservoir computing in literature with
multiple nodes plotted as a function of the length of nodes l and
products of wave speed and delay time vτ0 for both photonic and
spintronic RC. MC and NRMSE for NARMA10 tasks using photonic
and spintronic RC are reported in refs. 12,40–45 for photonic RC and
refs. 9,23,34,35,46–49 for spintronic RC. Table 1 and 2 summarize the
reports of MC for photonic and spintronic RC with different length
scales, which are plotted in Fig. 7. We evaluate the characteristic
length l in the reported systems by the longest distance between
physical nodes for spintronic RC and the size of the feedback loop
unit for photonic RC. Our system of the spin wave has a

(a) (b)

(c) (d)

wave speed (log m/s)ch
ar

ac
te

ris
tic

 s
iz

e,
 2
R

 (l
og

 n
m

)

1.0 3.02.0

2.0

3.0

4.0

MC

10

20

30

40

50

60
damping time

wave speed (log m/s)ch
ar

ac
te

ris
tic

 s
iz

e,
 2
R

 (l
og

 n
m

)

1.0 3.02.0

2.0

3.0

4.0

IPC

10

20

30

40

50

60

damping time

wave speed (log m/s)ch
ar

ac
te

ris
tic

 s
iz

e,
 2
R

 (l
og

 n
m

)

1.0 3.02.0

2.0

3.0

4.0

MC

10

20

30

40

4.0 5.0
wave speed (log m/s)ch

ar
ac

te
ris

tic
 s

iz
e,

 2
R

 (l
og

 n
m

)
1.0 3.02.0

2.0

3.0

4.0

IPC

10

20

30

40

4.0 5.0

60

50

time re
sp

on
se

 fu
nc

tio
n

11( )G t
12( )G t 13( )G t

14( )G t

15( )G t

time 

dense

sparse

memorize(e) maximum delay time 
that can be memorized 

w

13
/R v

Fig. 6 Scaling between characteristic size and propagating wave speed obtained by response function method. The characteristic size
l= 2R is quantified by the radius R of the circle on which inputs are located (see Fig. 2-(3)). a, c MC and b, d IPC as a function of the
characteristic length scale between physical nodes R and the speed of wave propagation v with θ= 0.04 ns and α= 5.0 × 10−4. The results
with the response function for the dipole interactions Eqs. (16) and (17) a, b and for the Gaussian function Eq. (19) c, d are shown. Open circle
symbols in a–d corresponds to wave speed (v= 200m⋅s−1) and length (l= 2R= 500 nm) used in micromagnetic simulation. The damping
time shown in a, b expresses the length scale obtained from the wave speed multiplied by the time scale of damping associated with α.
e Schematic illustration of the response function and its relation to wave propagation between physical nodes. When the speed of the wave is
too fast, all the response functions are overlapped (dense regime), while the response functions cannot cover the time windows when the
speed of the wave is too slow (sparse regime).
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characteristic length l~500 nm and a speed of v~200 m s−1. For
the spintronic RC, the dipole interaction is considered for wave
propagation in which speed is proportional to both saturation
magnetization and thickness of the film50 (see Supplementary
Information Section VIII A). For the photonic RC, the characteristic

speed is the speed of light, v~108 m s−1. Symbol size corresponds
to MC taken from the literature (see Tables 1 and 2). Plots are
roughly on a broad oblique line with a ratio l/(vτ0)~1. Therefore,
the photonic RC requires a larger system size, as long as the delay
time of the input τ0= Nvθ is the same order (τ0= 0.3−3 ns in our
spin wave RC). As can be seen in Fig. 6, if one wants to reduce the
length of physical nodes, one must reduce wave speed or delay
time; otherwise, the information is dense, and the reservoir cannot
memorize many degrees of freedom (See Fig. 6e). Reducing delay
time is challenging since the experimental demonstration of the
photonic reservoirs has already used a short delay close to the
instrumental limit. Also, reducing wave speed in photonics
systems is challenging. On the other hand, the wave speed of
propagating spin-wave is much lower than the speed of light and
can be tuned by configuration, thickness and material parameters.
If one reduces wave speed or delay time over the broad line in
Fig. 7, information becomes sparse and cannot be used efficiently
(See Fig. 6e). Therefore, there is an optimal condition for high-
performance RC.
The performance is comparable with other state-of-the-art

techniques, which are summarized in Fig. 8. For example, for the
spintronic RC, MC ≈ 3023 and NRMSE ≈ 0.234 in the NARMA10 task

Fig. 7 Reports of reservoir computing using multiple nodes are
plotted as a function of the length between nodes (l) and
characteristic wave speed (v) times delay time (τ0) for photonics
systems (open symbols) and spintronics systems (solid symbols).
The size of symbols corresponds to MC, which is taken from
literature12,23,34,41–43,45 and this work. The color scale represents MC
evaluated by using the response function method. Inset figures
show comparison between micromagnetic simulation and response
function simulation using Gaussian model Eq. (19). Solid and open
star symbols in the insets are vτ0 evaluated by considering dipole
interaction only (v = 200 m/s) and with modification of exchange
interaction (v = 1000 m/s).

Table 1. Report of photonic RC with different length scales used in
Fig. 7

Reports Length, l Time interval, τ0 vτ0 N MC

Duport et al.41 1.6 km 8 μs 2.4 km 50 21

Dejonckheere et al.42 1.6 km 8 μs 2.4 km 50 37

Vincker et al.43 230 m 1.1 μs 340 m 50 21

Takano et al.12 11 mm 200 ps 60 mm 31 1.5

Sugano et al.45 10 mm 240 ps 72 mm 240 10

speed of light, v = 3 × 108 m/s is used.

Table 2. Report of spintronic RC with different length scales used in
Fig. 7

Reports l τ0 v vτ0 N MC

Nakane et al.23 5 μm 2 ns 2.4 km/s 4.8 μm 72 21

Dale et al.34 50 nm 10 ps 200 m/s 2 nm 100 35

This work 500 nm 1.6 ns 200 m/s 320 nm 64 26

v is calculated based on magneto-static spin wave described in
Supplementary Information Section VIII A.

Fig. 8 Reservoir computing performance compared with different
systems. a MC reported plotted as a function of physical nodes Np.
b Normalized root mean square error, NRMSE for NARMA10 task is
plotted as a function of Np. Open blue symbols are values reported
using photonic RC while solid red symbols are values reported using
spintronic RC. MC and NRMSE for NARMA10 task are taken from
refs. 9,23,24,34,46,48,49 for spintronic RC and refs. 40–44 for photonic RC.
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are obtained using Np ≈ 100 physical nodes. However, the
spintronic RC with one physical node and 101−102 virtual nodes
does not show high performance; MC is less than 10 (the bottom
left points in Fig. 8). This fact suggests that the spintronic RC so far
cannot use virtual nodes effectively, namely, MC≪ N= NpNv. On
the other hand, for the photonic RC, comparable performances are
achieved using Nv ≈ 50 virtual nodes, but only one physical node.
As we discussed, however, the photonic RC requires mm system
sizes. Our system achieves comparable performances using≲ 10
physical nodes, and the size is down to nanoscales keeping the
2−50 GHz computational speed. We also demonstrate that the
spin wave RC can perform time-series prediction and reconstruc-
tion of an attractor for the chaotic data. This has not been done in
spintronic RC.

DISCUSSION
Our results of micromagnetic simulations suggest that our system
has a potential of physical implementation because all the
parameters in this study are feasible using realistic materials. We
found that RC performance such as MC can be increased by use of
materials with low damping parameter. Thin films of Heusler
ferromagnet with lower damping has been reported51–53,
considered as material system for spin-wave RC in this study.
Nanoscale propagating spin waves in a ferromagnetic thin film
excited by spin-transfer torque using nanometer electrical
contacts have been observed54–56. Patterning of multiple electrical
nanocontacts into magnetic thin films was demonstrated in
mutually synchronized spin-torque oscillators56. In addition to the
excitation of propagating spin-wave in a magnetic thin film, its
non-local magnetization dynamics can be detected by tunnel
magnetoresistance effect at each electrical contact57, as schema-
tically shown in Fig. 1c, which are widely used for the
development of spintronics memory and spin-torque oscillators.
The size of a magnetic tunnel junction can be 40nm in diameter,
and therefore, it is compatible with our proposed system. In
addition, virtual nodes are effectively used in our system by
considering the speed of propagating spin-wave and distance of
physical nodes; thus, high-performance reservoir computing can
be achieved with the small number of physical nodes, contrary to
many physical nodes used in previous reports. Spin wave can be
excited by current pulse with typical time scale of GHz frequency,
for example by Heusler ferromagnet alloys discussed above. This
leads to the realization of fast and energy-efficient spin-wave RC.
Energy consumption needed to process one time step calculated
is an order of magnitude smaller than other physical RC such as
memristor-based RC, which is mainly due to the fact that shorter
input pulse can be used in spin-wave RC (see Supplementary
Information Section IX). Therefore, spin-wave RC have potential to
be used for future energy-efficient physical RC with spintronics
read out network such as spin crossbar arrays58,59.
There is an interesting connection between our study and the

recently proposed next-generation RC37,60, in which the linear
ESN is identified with the NVAR (nonlinear vectorial autoregres-
sion) method to estimate a dynamical equation from data. Our
theoretical analyses, shown in Eq. (15), clarify that the
magnetization dynamics at physical and virtual nodes can be
expressed by the Volterra series of the input, namely, a time
delay of Uk with its polynomials (see Methods: Relation of MC
and IPC with learning performance). On the other hand, the
linear input-output relationship can be expressed with a delay as
Yn+1= anUn+ an−1Un−1+…, or more generally, with the non-
linear readout or with higher-order response functions, as
Yn+1= anUn+ an−1Un−1+…+ an,nUnUn+ an,n−1UnUn−1+….
These input-output relations are nothing but Volterra series of
the output as a function of the input with delay and
nonlinearity27. The coefficients of the expansion are associated
with the response function. Therefore, the performance of RC

falls into the independent components of the matrix of the
response function, which can be evaluated by how much delay
the response functions between two nodes cover without
overlap. We should stress that the form of expansion is imposed
neither in the response function nor in micromagnetic simula-
tions. The structure is obtained from the analyses of the LLG
equation. The results would be helpful to a potential design of
the network of the physical nodes.
We should note that the polynomial basis of the input-output

relation in this study originates from spin wave excitation around
the stationary state mz≈1. When the input data has a hierarchical
structure, another basis may be more efficient than the
polynomial expansion. Another setup of magnetic systems may
lead to a different basis. We believe that our study shows simple
but clear intuition of the mechanism of high-performance RC, that
can lead to the exploration of another setup for more practical
application of the physical RC.

METHODS
Physical system of a magnetic device
We consider a magnetic device of a thin rectangular system with
cylindrical injectors (see Fig. 1c). The size of the device is L × L × D.
Under the uniform external magnetic field, the magnetization is
along the z direction. Electric current translated from time series
data is injected at the Np injectors with the radius a and the same
height D as the device. The spin-torque by the current drives
magnetization m(x, t) and propagating spin-waves as schemati-
cally shown in Fig. 1c. The magnetization is detected at the same
cylindrical nanocontacts as the injectors. The nanocontacts of the
inputs and outputs are located on the circle with its radius R (see
Fig. 2-(3)). The size of our system is L= 1000 nm and D= 4 nm. We
set a= 20 nm unless otherwise stated. We set R= 250 nm in
Performance of tasks for MC, IPC, NARMA10, and prediction of
chaotic time-series section but R is varied in Scaling of system size
and wave speed section as a characteristic length scale.

Details of preprocessing input data
In the time-multiplexing approach, the input time-series U ¼
ðU1;U2; ¼ ;UT Þ 2 RT is translated into piece-wise constant time-
series ~UðtÞ ¼ Un with t= (n−1)Nvθ+ s under k= 1,…,T and
s= [0, Nvθ) (see Fig. 2–(1)). This means that the same input
remains during the time period τ0= Nvθ. To use the advantage of
physical and virtual nodes, the actual input ji(t) at the ith physical
node is U(t) multiplied by τ0-periodic random binary filter BiðtÞ.
Here, BiðtÞ 2 f0; 1g is piece-wise constant during the time θ. At
each physical node, we use different realizations of the binary
filter as in Fig. 2-(2). The input masks play a role as the input
weights for the ESN without virtual nodes. Because the different
masks are used for the different physical nodes, each physical and
virtual node may have different information about the input time
series.
The masked input is further translated into the input for the

physical system. Although numerical micromagnetic simulations
are performed in discrete time steps, the physical system has
continuous-time t. The injected current density ji(t) at time t for the
ith physical node is set as jiðtÞ ¼ 2jc~UiðtÞ ¼ 2jcBiðtÞUðtÞ with
jc= 2 × 10−4/(πa2)A/m2. Under a given input time series of the
length T, we apply the constant current during the time θ, and
then update the current at the next step. The same input current
with different masks is injected for different virtual nodes. The
total simulation time is, therefore, TθNv.

Micromagnetic simulations
We analyze the magnetization dynamics of the Landau-Lifshitz-
Gilbert (LLG) equation using the micromagnetic simulator mumax3 61.
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The LLG equation for the magnetization M(x, t) yields

∂tMðx; tÞ ¼ � γμ0
1þα2 M ´Heff

� αγμ0
Msð1þα2ÞM ´ M ´Heffð Þ

þ _Pγ
4M2

s eD
Jðx; tÞM ´ M ´mfð Þ:

(10)

In the micromagnetic simulations, we analyze Eq. (10) with the
effective magnetic field Heff=Hext+Hdemag+Hexch consists of the
external field, demagnetization, and the exchange interaction. The
concrete form of each term is

Heff ¼ Hext þ Hdemag þ Hexch; (11)

Hext ¼ H0ez (12)

Hms ¼ � 1
4π

Z
∇∇

Mðx0Þ
jx� x0j dx

0 (13)

Hexch ¼ 2Aex

μ0Ms
ΔM; (14)

where Hext is the external magnetic field, Hms is the magnetostatic
interaction, and Hexch is the exchange interaction with the exchange
parameter Aex. The spin waves are driven by Slonczewski spin-
transfer torque62, which is described by the last term of Eq. (10). The
driving term is proportional to the DC current, namely, J(x, t)= ji(t) at
the ith nanocontact and J(x, t)= 0 other regions.
Parameters in the micromagnetics simulations are chosen as

follows: The number of mesh points is 200 in the x and y
directions, and 1 in the z direction. We consider Co2MnSi Heusler
alloy ferromagnet, which has a low Gilbert damping and high spin
polarization with the parameter Aex= 23.5 pJ/m, Ms= 1000 kA/m,
and α= 5 × 10−4 51–53,63,64. Out-of-plane magnetic field μ0H0= 1.5
T is applied so that magnetization is pointing out-of-plane. The
spin-polarized current field is included by the Slonczewski
model62 with polarization parameter P= 1 and spin torque
asymmetry parameter λ= 1 with the reduced Planck constant ℏ
and the charge of an electron e. The uniform fixed layer
magnetization is mf= ex. We use absorbing boundary layers for
spin waves to ensure the magnetization vanishes at the boundary
of the system65. We set the initial magnetization as m= ez. The
magnetization dynamics is updated by the fourth-order Runge-
Kutta method (RK45) under adaptive time-stepping with the
maximum error set to be 10−7.
The reference time scale in this system is t0= 1/γμ0Ms ≈ 5 ps,

where γ is the gyromagnetic ratio, μ0 is permeability, and Ms is
saturation magnetization. The reference length scale is the
exchange length l0 ≈ 5 nm. The relevant parameters are Gilbert
damping α, the time scale of the input time series θ (see Section
Learning with reservoir computing), and the characteristic length
between the input nodes R.

Theoretical analysis using response function
To understand the mechanism of high performance of learning by
spin wave propagation, we also consider a model using the
response function of the spin wave dynamics. By linearizing the
magnetization around m= (0, 0, 1) without inputs, we may
express the linear response of the magnetization at the ith
readout mi=mx,i+ imy,i to the input as

miðtÞ ¼ PNp

j¼1

R
dt0Gijðt; t0ÞUðjÞðt0Þ; (15)

where the response function Gij for the same node is

Giiðt � τÞ ¼ 1
2π e

�~hðαþiÞðt�τÞ
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

ðd=4Þ2ðαþiÞ2ðt�τÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

ðd=4Þ2ðαþiÞ2ðt�τÞ2

q (16)

and for different nodes,

Gijðt � τÞ ¼ a2
2π e

�~hðαþiÞðt�τÞ

´ 1

ðd=4Þ2ðαþiÞ2ðt�τÞ2 1þ jRi�Rj j2
ðd=4Þ2ðαþiÞ2ðt�τÞ2

� �3=2 : (17)

The detailed derivation of the response function is shown in
Supplementary Information Section VII. Here, U(j)(t) is the input
time series at jth nanocontact. The response function has a self
part Gii, that is, input and readout nanocontacts are the same,
and the propagation part Gij, where the distance between the
input and readout nanocontacts is ∣Ri−Rj∣. In Eqs. (16) and (17),
we assume that the spin waves propagate only with the dipole
interaction. We discuss the effect of the exchange interaction in
Supplementary Information Section VII A. We should note that
the analytic form of Eq. (17) is obtained under certain
approximations. We discuss its validity in Supplementary
Information Section VII A.
We use the quadratic nonlinear readout, which has a structure

m2
i ðtÞ ¼ PNp

j1¼1

PNp

j2¼1

R
dt1
R
dt2

Gð2Þ
ij1 j2

ðt; t1; t2ÞUðj1Þðt1ÞUðj2Þðt2Þ:
(18)

The response function of the nonlinear readout is

Gð2Þ
ij1 j2

ðt; t1; t2Þ / Gij1ðt; t1ÞGij2ðt; t2Þ. The same structure as
Eq. (18) appears when we use a second-order perturbation
for the input (see Supplementary Information Section V A). In
general, we may include the cubic and higher-order terms of
the input. This expansion leads to the Volterra series of the
output in terms of the input time series, and suggests how the
spin wave RC works as shown in Methods: Relation of MC and
IPC with learning performance (see also Supplementary
Information Section II for more details). Once the magnetiza-
tion at each nanocontact is computed, we may estimate MC
and IPC.
We also use the following Gaussian function as a response

function,

GijðtÞ ¼ exp � 1
2w2 t � Rij

v

� �2� �
(19)

where Rij is the distance between ith and jth physical nodes. The
Gaussian function Eq. (19) has its mean t= Rij/v and variance w2.
Therefore, w is the width of the Gaussian function (see Fig. 6e). We
set the width as w= 50 in the normalized time unit t0. In
Supplementary Information Section VII A, we introduce the skew
normal distribution, which generalize Eq. (19) to include the effect
of exchange interaction.

Learning tasks
NARMA task. The NARMA10 task is based on the discrete
differential equation,

Ynþ1 ¼ αYn þ βYn
P9
p¼0

Yn�p þ γUnUn�9 þ δ: (20)

Here, Un is an input taken from the uniform random distribution
Uð0; 0:5Þ, and Yn is an output. We choose the parameter as
α= 0.3, β= 0.05, γ= 1.5, and δ= 0.1. In RC, the input is U= (U1,
U2,…,UT) and the output Y= (Y1, Y2,…, YT). The goal of the
NARMA10 task is to estimate the output time-series Y from the
given input U. The training of RC is done by tuning the weights W
so that the estimated output ŶðtnÞ is close to the true output Yn in
terms of squared norm jŶðtnÞ � Ynj2.
The performance of the NARMA10 task is measured by the

deviation of the estimated time series Ŷ ¼ W � ~~X from the true
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output Y. The normalized root-mean-square error (NRMSE) is

NRMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
ðŶðtnÞ�YnÞ2P

n
Y2
n

r
: (21)

Performance of the task is high when NRMSE≈0. In the ESN, it was
reported that NRMSE ≈ 0.4 for N= 50 and NRMSE ≈ 0.2 for
N= 20031. The number of node N= 200 was used for the speech
recognition with ≈0.02 word error rate31, and time-series
prediction of spatio-temporal chaos6. Therefore, NRMSE ≈ 0.2 is
considered as reasonably high performance in practical applica-
tion. We also stress that we use the same order of nodes (virtual
and physical nodes) N= 128 to achieve NRMSE ≈ 0.2.

Memory capacity (MC). MC is a measure of the short-term memory
of RC. This was introduced in ref. 7. For the input Un of random time
series taken from the uniform distribution, the network is trained for
the output Yn= Un−k. Here, Un−k is normalized so that Yn is in the
range [–1,1]. The MC is computed from

MCk ¼ hUn�k ;W � XðtnÞi2
hU2

nihðW � XðtnÞÞ2i
: (22)

This quantity is decaying as the delay k increases, and MC is defined
as

MC ¼ Pkmax

k¼1
MCk : (23)

Here, kmax is a maximum delay, and in this study we set it as
kmax ¼ 100. The advantage of MC is that when the input is
independent and identically distributed (i.i.d.), and the output
function is linear, then MC is bounded by N, the number of internal
nodes7.
We show the example of MCk as a function of k and IPCj as a

function of k1 and k2 in Fig. S2a and b. When the delay k is short,
MCk≈ 1 suggesting that the delayed input can be reconstructed by
the input without the delay. When delay becomes longer reservoir
does not have capacity to reconstruct delayed input, however, MCk
and IPCj defined by Eqs. (22) and (25) have long tail small positive
values, making overestimation of MC and IPC. To avoid the
overestimation, we use the threshold value ε= 0.03727 below which
we set MCk= 0. The value of ε is set following the argument of ref. 26.
When the total number of readouts is N(=128) and the number of
time steps to evaluate the capacity is T(=5000), the mean error of the
capacity is estimated as N/T. We assume that the distribution of the
error yields χ2 distribution as (1/T)χ2(N). Then, we may set ε such that
ε ¼ ~N=T where ~N is taken from the χ2 distribution and the probability
of its realization is 10−4, namely, Pð~N � χ2ðNÞÞ ¼ 10�4. In fact, Fig.
S2a demonstrates that when the delay is longer, the capacity
converges to N/T and fluctuates around the value. In this regime, we
set MCk= 0 and do not count for the calculation of MC. The same
argument applies to the calculation of IPC.

Information processing capacity (IPC). IPC is a nonlinear version of
MC26. In this task, the output is set as

Yn ¼ Q
k
Pdk ðUn�kÞ (24)

where dk is non-negative integer, and Pdk ðxÞ is the Legendre
polynomials of x order dk. As MC, the input time series is uniform
random noise Un 2 Uð0; 0:5Þ and then normalized so that Yn is in
the range [–1,1]. We may define

IPCd0;d1;¼ ;dT�1 ¼ hYn;W � XðtnÞi2
hY2

nihðW � XðtnÞÞ2i
: (25)

and then compute jth order IPC as We may define

IPCj ¼ P
dks:t:j¼

P
k
dk

IPCd1;d2 ;¼ ;dT : (26)

When j= 1, the IPC is, in fact, equivalent to MC, because P0ðxÞ ¼ 1
and P1ðxÞ ¼ x. In this case, Yn= Un−k for di= 1 when i= k and
di= 0 otherwise. Equation (26) takes the sum over all possible
delay k, which is nothing but MC. When j > 1, IPCj captures the
nonlinear transformation and delays up of the jth polynomial
order. For example, when j= 2, the output can be Yn ¼
Un�k1Un�k2 or Yn ¼ U2

n�k þ const: In this study, we focus on j= 2
because the second-order nonlinearity is essential for the
NARMA10 task (see Supplementary Information Section I). In
ref. 26, IPC is defined by sum of IPCj over j. In this study, we focus
only on IPC2, which plays a relevant role for the NARMA10 task
(see Supplementary Information Section I). We denote IPC and
IPC2 interchangeably.
The example of IPC2 as a function of the two delay times k1 and

k2 is shown in Fig. S2b. When both k1 and k2 are small, the
nonlinear transformation of the delayed input Yn ¼ Un�k1Un�k2
can be reconstructed from Un. As the two delays are longer, IPC2
approaches the value N/T of systematic error. As we performed for
the MC task, we define the same threshold ε, and do not count the
capacity below the threshold in IPC2.

Prediction of chaotic time-series data. Following ref. 6, we perform
the prediction of time-series data from the Lorenz model. The
model is a three-variable system of (A1(t), A2(t), A3(t)) yielding the
following equation

dA1
dt

¼ 10ðA2 � A1Þ (27)

dA2
dt

¼ A1ð28� A3Þ � A2 (28)

dA3
dt

¼ A1A2 � 8
3
A3: (29)

The parameters are chosen such that the model exhibits chaotic
dynamics. Similar to the other tasks, we apply the different masks
of binary noise for different physical nodes, BðlÞ

i ðtÞ 2 f�1; 1g.
Because the input time series is three-dimensional, we use three
independent masks for A1, A2, and A3, therefore, l∈ {1, 2, 3}. The
input for the ith physical node after the mask is given as

BiðtÞ~UiðtÞ ¼ Bð1Þ
i ðtÞA1ðtÞ þ Bð2Þ

i ðtÞA2ðtÞ þ Bð3Þ
i ðtÞA3ðtÞ. Then, the

input is normalized so that its range becomes [0, 0.5], and applied
as an input current. Once the input is prepared, we may compute
magnetization dynamics for each physical and virtual node, as in
the case of the NARMA10 task. We note that here we use the
binary mask of {−1, 1} instead of {0, 1} used for other tasks. We
found that the {0,1} does not work for the prediction of the Lorenz
model, possibly because of the symmetry of the model.
The ground-truth data of the Lorenz time-series is prepared

using the Runge-Kutta method with the time step Δt= 0.025. The
time series is t ∈ [−60, 75], and t ∈ [−60, −50] is used for
relaxation, t 2 �50; 0ð � for training, and t 2 0; 75ð � for prediction.
During the training steps, we compute the output weight by
taking the output as Y= (A1(t+ Δt), A2(t+ Δt), A3(t+ Δt)). After
training, the RC learns the mapping (A1(t), A2(t), A3(t))→ (A1(t+ Δt),
A2(t+ Δt), A3(t+ Δt)). For the prediction steps, we no longer use
the ground-truth input but the estimated data ðÂ1ðtÞ; Â2ðtÞ; Â3ðtÞÞ
as schematically shown in Fig. 5c. Using the fixed output weights
computed in the training steps, the time evolution of the
estimated time-series ðÂ1ðtÞ; Â2ðtÞ; Â3ðtÞÞ is computed by the RC.

Relation of MC and IPC with learning performance
The relevance of MC and IPC is clear by considering the Volterra
series of the input-output relation. The input-output relationship is
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generically expressed by the polynomial series expansion as

Yn ¼ P
k1;k2;��� ;kn

βk1;k2;���;knU
k1
1 U

k2
2 � � �Ukn

n : (30)

Each term in the sum has kn power of Un. Instead of polynomial
basis, we may use orthonormal basis such as the Legendre
polynomials

Yn ¼ P
k1;k2 ;��� ;kn

βk1;k2;���;knPk1ðU1ÞPk2ðU2Þ � � � PknðUnÞ: (31)

Each term in Eqs. (30) and (31) is characterized by the non-
negative indices (k1, k2,…,kn). Therefore, the terms corresponding
to j= ∑iki= 1 in Yn have information on linear terms with time
delay. Similarly, the terms corresponding to j= ∑iki= 2 have
information of second-order nonlinearity with time delay. In this
view, the estimation of the output Y(t) is nothing but the
estimation of the coefficients βk1;k2;¼ ;kn .
Here, we show how the coefficients can be computed from the

magnetization dynamics. In RC, the readout of the reservoir state
at ith node (either physical or virtual node) can also be expanded
as the Volterra series

~~X
ðiÞ
ðtnÞ ¼ P

k1;k2;��� ;kn

~~β
ðiÞ
k1;k2;��� ;knU

k1
1 U

k2
2 � � �Ukn

n ; (32)

where ~~X
ðiÞ
ðtnÞ is measured magnetization dynamics and Un is the

input that drives spin waves. At the linear and second-order in Uk,
Eq. (32) is discrete expression of Eqs. (15) and (18). By comparing
Eqs. (30) and (32), we may see that MC and IPC are essentially a

reconstruction of βk1;k2;���;kn from ~~β
ðiÞ
k1;k2;��� ;kn with i∈ [1, N]. This can

be done by regarding βk1;k2;���;kn as a T+ T(T−1)/2+⋯-dimensional
vector, and using the matrix M associated with the readout
weights as

βk1 ;k2;���;kn ¼ M �

~~β
ð1Þ
k1;k2;��� ;kn

~~β
ð2Þ
k1;k2;��� ;kn

..

.

~~β
ðNÞ
k1;k2;��� ;kn

0
BBBBBBBB@

1
CCCCCCCCA
: (33)

MC corresponds to the reconstruction of βk1;k2 ;���;kn for ∑i ki= 1,
whereas the second-order IPC is the reconstruction of βk1;k2;���;kn for
∑iki= 2. If all of the reservoir states are independent, we may
reconstruct N components in βk1;k2 ;���;kn . In realistic cases, the
reservoir states are not independent, and therefore, we can
estimate only <N components in βk1;k2;���;kn . For more details,
readers may consult Supplementary Information Sections I and II.
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