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Artificial intelligence unravels interpretable malignancy grades
of prostate cancer on histology images
Okyaz Eminaga1✉, Fred Saad2,3,4,5, Zhe Tian3, Ulrich Wolffgang6, Pierre I. Karakiewicz2,3,4, Véronique Ouellet4,5, Feryel Azzi4,5,7,8,
Tilmann Spieker9,10, Burkhard M. Helmke11, Markus Graefen12, Xiaoyi Jiang13, Lei Xing14, Jorn H. Witt15, Dominique Trudel4,5,7,8,16 and
Sami-Ramzi Leyh-Bannurah12,15,16✉

Malignancy grading of prostate cancer (PCa) is fundamental for risk stratification, patient counseling, and treatment decision-
making. Deep learning has shown potential to improve the expert consensus for tumor grading, which relies on the Gleason score/
grade grouping. However, the core problem of interobserver variability for the Gleason grading system remains unresolved. We
developed a novel grading system for PCa and utilized artificial intelligence (AI) and multi-institutional international datasets from
2647 PCa patients treated with radical prostatectomy with a long follow-up of ≥10 years for biochemical recurrence and cancer-
specific death. Through survival analyses, we evaluated the novel grading system and showed that AI could develop a tumor
grading system with four risk groups independent from and superior to the current five grade groups. Moreover, AI could develop a
scoring system that reflects the risk of castration resistant PCa in men who have experienced biochemical recurrence. Thus, AI has
the potential to develop an effective grading system for PCa interpretable by human experts.
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INTRODUCTION
Prostate cancer (PCa) is one of the most prevalent malignant
diseases in males and exhibits diverse cancer aggressiveness and
prognosis1. When PCa is diagnosed, usually by biopsy, the
pathological examination of cancer differentiation and dissemi-
nation status are key determinants for selecting appropriate
treatments2. Currently, pathologists grade PCa malignancy
based on the modified Gleason grading system, originally
established in the 1960s3. The first version of the Gleason
grading system was based on five tissue patterns (labeled 1–5)
that identified different transformation conditions of prostatic
tissues according to tissue architecture, growth, and glandular
features3,4. This grading system produces a score that considers
two identical or different patterns to grade PCa differentiation,
and the order in which patterns are added differs according to
tissue sampling (biopsy core vs. whole prostate)3,4. PCa grading
was further refined after patterns 1 and 2 were mostly identified
as benign with the identification of basal cells by immunohis-
tochemistry, and some of those patterns 1 and 2 were
reclassified as Gleason pattern 3 as well5,6. In 2016, Epstein et
al. proposed a modified version of the Gleason grading system
that included five grade groups (GGs) instead of nine different
Gleason scores (such as 3+ 3, 4+ 3, and 5+ 3) to achieve a
more concise prognostic stratification according to biochemical
recurrence (BCR) rates7.
Despite strong prognostic capacities and continual revisions

since its introduction8, GG reproducibility has remained limited

because of interobserver variability in grading and quantifica-
tion, leading to grade inconsistency even among expert
pathologists, thus increasing the potential risk of treatment
delay or suboptimal treatment choice9,10. Contemporary studies
have highlighted the great potential of artificial intelligence (AI)
in improving GG consistency and achieving accuracy compar-
able to expert levels11–13. However, these studies likely inherited
the limitations of the current grading system as the histological
ground truth is based on evaluations from a small group of
expert pathologists, which is not necessarily reflective of the
global pathology community (social and cognitive biases) or
grading correctness14.
To bypass these reproducibility limitations, we applied AI to

develop a novel recurrence prediction system based on long-
term PCa prognosis instead of interobserver-based histology. We
relied on the tissue microarray (TMA) framework of the Canadian
Prostate Cancer Biomarker Network (CPCBN) initiative of the
Terry Fox Research Institute; this initiative implemented thor-
oughly validated techniques to ensure the collection of
representative samples of PCa from radical prostatectomy (RP)
specimens15.
In this study, we developed a calibrated and interpretable

algorithm for predicting PCa outcomes in multiple independent
cohorts that could eventually be integrated into existing prog-
nostic and predictive nomograms.
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RESULTS
Survival modeling
To establish a novel system for predicting recurrence, we initially
investigated a multicenter population (CPBCN, n= 1489) in which
the overall BCR probability was 33.1% (n= 493). The median time
to BCR events was 26 (interquartile range [IQR], 8–52) months; in
contrast, the median follow-up was 109 (76–141) months in
patients without BCR events. The development and first external
validation sets (CPBCN cohort) were not statistically different with
respect to pathological tumor (pT) stage, pathological nodal (pN)
status, and GG (Supplementary Table S1). Among 600 patients in
the development set, 225 (37.5%) experienced recurrence during
follow-up (median follow-up, 91 [42–123] months); in contrast,
among 889 patients in the first external validation set, 268 (30.1%)
had BCR (median follow-up, 75 [43–116] months).
Figure 1 summarizes the study methodology using histology

images as data input, the confidence scores for BCR as output, and
the binarized recurrence status as the ground truth for model
development and evaluation. The Supplementary Materials
include cohort descriptions for all datasets included in this study
(Supplementary Tables S1–S3).
In the first external validation set, the BCR model demonstrated

a c-index of 0.682 ± 0.018 and a generalized concordance
probability of 0.927 (95% CI: 0.891–0.952). The AUROC for the
BCR model was 0.714 (95% CI: 0.673–0.752). Using a cutoff of 0.5
for the BCR confidence score, the sensitivity was 50.0% and the
specificity was 83.2%. The precision and recall of the BCR model at
a 0.5 threshold were 56.3% and 50.0%, respectively. The
calibration plot demonstrated good correlation between the
predicted BCR probability (BCR score) and observed 10-year BCR-
free survival rate (Supplementary Figure S1).

Our novel model revealed a better effect size (hazard ratio) and
higher generalized concordance probability than the classical
models ResNet16, VGG-1617, and EfficientNet18, which were trained
on the same development set for BCR prognosis. EfficientNet and
the novel model provided the lowest AIC and BIC. A non-nested
partial likelihood ratio test revealed that EfficientNet did not fit
better than the novel model. Importantly, our novel BCR model
had between 8- and 32-times fewer feature maps in the last
convolutional layer for BCR prediction (before being fully
connected) and a parameter capacity 125, 54-, or 24-times smaller
than the models mentioned above (Supplementary Table S4). We
observed no performance benefits from using image patches at
×20 or ×40 object magnifications, the attention aggregation layer,
or the Cox deep convolutional model concept (Supplementary
Table S5).
The results of the CHAID analysis are shown in Supplementary

Figure S2. Based on the BCR scores estimated by our model and
CHAID, BCR scores ≤5% were considered low risk, BCR scores
between 6% and 42% were low intermediate, BCR scores between
43% and 74% were high intermediate, and BCR scores ≥75% were
high risk.

Recurrence-free survival
One study conducted univariate and multivariable Cox regression
analyses on CPCBN and PROCURE cohorts to assess the prognostic
value of the novel risk classification system for PCa recurrence
(Supplementary Tables S6 and S7). The results showed that the
BCR score was an independent prognostic factor for recurrence,
along with PSA level, tumor stage, GG, and surgical margin status.
The novel risk classification system showed a better model fit and
superiority over GG (Table 1). No significant multicollinearity
between variables was identified (VIF < 2), indicating the correla-

Fig. 1 Slides from tissue microarrays (TMAs) with prostates samples from five sites were scanned, and the tissue regions were marked
and extracted using QuPath (i.e., TMA slide image). We then tiled each TMA core image into patches labeled by biochemical recurrence
(BCR) status to develop our BCR model. We estimated the average BCR scores for each patient and applied survival modeling to introduce our
novel risk-based grading for prostate cancer. The development set consisted of 600 patients, whereas the international external validation sets
included three radical prostatectomy cohorts (CPCBN, PROCURE, and PLCO). The cohort description for all datasets included in this study can
be obtained from Supplementary Tables S1–S3. PLCO: The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. The
endpoints we are shown in the black box. CSS: Cancer-specific survival. We emphasize that PC regions were manually demarcated on whole-
slide images following the instruction given by a senior pathologist.
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tion between variables (GG and the novel risk group) is negligibly
small.
The survival rates varied across the novel risk groups in both the

cohorts, as shown in and Fig. 2A, B (See supplementary Table S8
for 3-, 5-, 10-years BCR-free survival rates). The survival rates for GG
are shown in the Supplementary section for comparison
(Supplementary Tables S9 and S10 and Figures S3 and S4). The
estimated power for BCR survival analysis in this study was
determined to be ≥99% at an alpha level of 5% for each cohort.

Cancer-specific Survival
This study examined cancer-specific survival using a novel risk
classification system in three cohorts: the CPCBN, PROCURE, and
PLCO cohorts. In the CPCBN cohort, the novel score was a
significant prognostic factor for cancer-specific mortality and
tumor stage; in contrast, GG was not an independent prognostic
factor (Supplementary Table S11). In the PROCURE Quebec
Prostate Cancer Biobank (PROCURE cohort), the novel risk score
was an independent prognostic factor, along with the nodal stage;
in contrast, the tumor stage was insignificant (Supplementary
Table S12). Supplementary Table S13 summarizes the results of
the Cox regression analyses of the PLCO cohort, further validating
the independent prognostic value of the risk score for cancer-
specific mortality using whole-slide images.
In the CPCBN and PROCURE cohorts, the multivariate Cox

regression model with novel risk groups fit well, similar to the full
model. However, the model with GG fits the data poorly (Table 2).
In the PLCO cohort, both the GG and risk groups fit poorly
compared with the full model, and the difference in the goodness-
of-fit between the model with GG and the model with risk groups
was insignificant. No significant multicollinearity between vari-
ables was identified (VIF < 2). The estimated power for BCR
survival analysis in this study was determined to be ≥95% at an
alpha level of 5% for each cohort. The Fine-Gray competing risk
regression analyses further validated the independent prognostic
value of our novel risk groups for cancer-specific mortality on
external validation sets (Supplementary Tables S14–S16).
The Kaplan–Meier curves for cancer-specific survival according

to risk classification in the three external validation sets showed
significant differences among the risk groups (Fig. 2C–E).
Supplementary Table S17 summarizes cancer-specific survival
rates across the three cohorts and shows a distinct separation of
survival rates among the risk groups 10 or 15 years after RP. The

low-risk group of the novel grading system had no PCa-related
deaths in any of the three cohorts; in contrast, the GG in the
current grading system included patients who died owing to PCa
in two of the three cohorts.
PLCO cohort analysis showed that the number of slides per case

and its correlation with the risk score did not significantly affect
the prognostic value (Supplementary Table S18). Additional
information on survival probabilities, Kaplan–Meier curves for
the GG, Gleason score groups, and the PCa pathological stage is
provided in Supplementary Tables S19–S21 and Supplementary
Figures S5–S8 for comparison.

Castration-resistant prostate cancer
Castration-resistant prostate cancer (CRPC) occurs when PCa
progresses despite therapy-induced castrate conditions. The
current study assessed the occurrence of castration-resistant
prostate cancer (CRPC) in men experiencing biochemical recur-
rence and their association with our novel scoring and grading
systems. Figure 3 shows that the proportion of CRPC increases
with risk groups in men with biochemical recurrence on the
PROCURE cohort. In support to this observation, we found a
significant correlation between risk group and the development of
CRPC (Kendall’s rank correlation tau: 0.22; z= 4.2277; p < 0.0001).
Moreover, we identified that the low-risk group had no CRPC case
and that all CRPC cases (100%) were found in the intermediate or
high-risk groups. Multivariate Cox regression analysis showed that
the novel risk score was an independent prognosticator for CRPC
development whereas pT, pN and surgical margin status were not
(Table 3).

Interpretability
Table 4 shows the concordance between the five pathologists and
novel risk classifications. This table summarizes the synergistic
efforts between AI and pathologists in defining a novel grading
system for PCa. Despite being completely blinded to the novel risk
classification and clinicopathological information, we found a
striking alignment between the pathologists and risk classification
in sorting image groups. Despite not relying on pattern
proportions like the GG and the absent of significant collinearity
between our novel risk group and GG, the image group
representing the low-risk group included Gleason pattern 3
mostly; in contrast, the high-risk group included Gleason patterns
4 and 5, with Gleason pattern 3 being almost absent. The

Table 1. The model reduction and the partial likelihood ratio (LR) test revealed that a baseline model with the novel risk groups is statistically
comparable to the full model to predict cancer-specific survival.

Model Nested partial likelihood ratio test, LR (p-value) AIC BIC

1st external validation set (CPCBN)

Baseline model + risk group + GG Reference (full model) 167.5161 169.6403

Baseline model + risk group 1.560 (0.213) 167.07 168.4861

Baseline model + GG 4.114 (0.036) 169.6098 171.0259

Baseline model (pT) 7.557 (0.027) 171.0623 171.7703

2nd external validation set (PROCURE)

Baseline model + risk group + GG Reference (full model) 170.6459 174.824

Baseline model + risk group 4.094 (1.2e−1) 172.7398 175.8733

Baseline model + GG 10.056 (1.8e−3) 178.7017 181.8353

Baseline model (pT + pN) 27.777 (6.8e−5) 194.4228 196.5119

In contrast, GG (Gleason score/ISUP grade groups) was not comparable to the full model. Akaike information criterion (AIC) and Bayesian information criterion
(BIC) support this finding as well since the fit of a baseline model with the novel risk groups is better than the fit of a baseline model with GG. pT: pathologic
tumor stage; pN: pathologic nodal stage. +pN was excluded due to non-significance to prognose cancer-specific survival in the CPCBN external validation set.
The best-performing models are highlighted in bold. Higher AIC and BIC are associated with the worst model fitness. No significant multicollinearity between
variables was identified (the Variance Inflation Factors, VIF, were below 2).
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pathologists found a mixture of Gleason patterns 3 and 4 in the
intermediate group, with a trend in favor of Gleason pattern 4 in
the high-intermediate group. Figure 4 exemplary illustrates the
histopathological gradient for distortion of glandular architecture
as well as the Supplementary section include information on
accessing image groups.
The in-depth evaluation of 64 representative features revealed

that specifically the 23rd representative feature showed two
distinct distributions (different variances) according to the risk
groups and the recurrence status (Levene test, P < 0.0001).
According to the histogram and bimodal (one-vs-other) distribu-
tion comparisons, the feature distribution for low or high-risk
group was noticeably more distinguishable than the feature
distribution for low- or high-intermediate groups (Fig. 4). The
evaluation of image patches selected according to the feature
distribution (dominant red range for low and high-risk group, the
overlapped range for intermediate groups) revealed a histopathol-
ogy pattern gradient across the risk groups (Fig. 4). Supplementary
Figures S9–S13 provide the distribution patterns for 64 feature
representations stratified by recurrence status and risk groups.
Gleason pattern 5 was mostly observed in the lower inter-

mediate risk group (31% for CPCBN and 27% for PROCURE), higher
intermediate/high-risk groups (67% for CPCBN and 73% for
PROCURE). GG2 (3+ 4) predominantly belonged to intermediate
risk groups, accounting for 76% in PROCURE and 80% in CPCBN.

Within these intermediate risk groups, GG2 was predominantly
found in the lower intermediate risk group, making up 76% in
CPCBN and 88% in PROCURE.

DISCUSSION
In this study, we developed and externally validated a novel
grading system for PCa that was superior to the existing grading
systems. We demonstrated that AI could be a helpful tool for
generating a well-calibrated grading system interpretable by
human experts, including risk stratification groups with distinct
survival probabilities that enable communication with and
between domain experts and between patients and experts to
make clinical decisions7,19,20. A well-calibrated deep learning
model significantly mitigates the usual concerns of overconfi-
dence and enables the interpretation of the model’s prediction as
scores21,22. Lastly, risk stratification further enables the exploration
of common histopathologic patterns by risk scores7,19,20.
Previous AI efforts have focused on replicating grading systems

using supervised learning. Bulten et al. reported a deep learning
model trained with the semi-automatic region-level annotation
technique and slide-level annotations to show a Cohen’s quadratic
kappa score (κquad) of 0.918 (95% CI 0.891–0.941)11. Similarly,
Ström et al. developed an ensemble of deep learning models
trained with automatically generated region-level annotations
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from pen marks and slide-level annotations, yielding a linear-
weighted kappa score (κlin) of 0.8323.
A recent study proposed a weakly supervised deep learning

model that leveraged only the global Gleason score of whole-slide
images during training to grade patch-pixel-level patterns and
perform slide-level scoring accurately24. The authors reported an
average improvement on Cohen’s quadratic kappa score (κquad) of
approximately 18% compared to full supervision for the patch-
level Gleason grading task24. Similarly, another study reported that
the use of the AI-assisted method was associated with significant

improvements in the concordance of PCa grading and quantifica-
tion between pathologists: pathologists 1 and 2 had 90.1%
agreement using the AI-assisted method vs. 84.0% agreement
using the manual method (p < 0.001)25.
Despite these results being promising, the current grading

system still suffers from reader dependency, and any AI-based
solution developed to improve the interrater agreement for tumor
grading will apply to a closed network of human readers with
associated social and cognitive biases. To address these integral
notions of AI design, our grading system was calibrated with
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Fig. 2 The development of Ca. A Kaplan–Meier curves of biochemical recurrence (BCR)-free survival according to BCR score risk stratification
in the first external Validation set (CPCBN, Canada). P-value was measured using the log-rank test. Blue represents the low-risk group (0–5%
BCR score), yellow represents the low-intermediate risk group (6–42%), gray represents the high-intermediate risk group (43–74%), and red
represents the high-risk group (75–100%). The dotted lines indicate the median survival. In addition, the number of patients at risk and of
censored observations are provided for the follow-up period. B Kaplan–Meier curves of biochemical recurrence (BCR)-free survival according
to risk groups in the second external Validation set (PROCURE). Blue represents the low-risk group (0-5% BCR score), yellow represents the low-
intermediate risk group (6–42%), gray represents the high-intermediate risk group (43–74%), and red represents the high-risk group
(75–100%). The p-value was measured using the log-rank test. The number of patients at risk and of censored observations are provided for
the follow-up period. C Kaplan–Meier curves of cancer-specific survival according to the risk groups in the first external Validation set (CPCBN,
Canada). The P-value was measured using the log-rank test. Blue represents the low-risk group (0–5% BCR score), yellow represents the low-
intermediate risk group (6–42%), gray represents the high-intermediate risk group (43–74%), and red represents the high-risk group
(75–100%). The number of patients at risk and of censored observations are provided for the follow-up period. D Kaplan–Meier curves of
cancer-specific survival according to risk groups in the second external Validation set (PROCURE, Canada). The p-value was measured using
the log-rank test. Blue represents the low-risk group (0–5% biochemical recurrence score), yellow represents the low-intermediate risk group
(6–42%), gray represents the high-intermediate risk group (43–74%), and red represents the high-risk group (75–100%). The number of
patients at risk and of censored observations are provided for the follow-up period. E Kaplan–Meier curve of cancer-specific survival according
to risk groups in the third external Validation set (PLCO, U.S.). The p-value was measured using the log-rank test. Blue represents the low-risk
group (0–5% BCR score), yellow represents the low-intermediate risk group (6–42%), gray represents the high-intermediate risk group (43–74%), and
red represents the high-risk group (75–100%). The number of patients at risk and of censored observations are provided for the follow-up period.
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different risk groups independent of human readers. Our
approach also overcomes the challenges of interpreting an AI-
designed grading system as human readers can identify pattern
trends in our grading system. Finally, our novel grading system
accurately facilitated PCa grading at the clinically relevant case
level using a limited number of representative PCa tissues (three
to four small regions representing the index PCa on an RP
specimen) or a fully representative slide from an RP specimen.
Previous studies have explored the potential of digital

biomarkers or AI-based Gleason grading systems for survival
prediction and prognosis in PCa. For instance, a most recent
nested case-control study developed a prognostic biomarker for
BCR using ResNet-50D26 and a TMA cohort, and the time to
recurrence was utilized to label the histology images27. Wulczyn
et al. proposed an AI-based Gleason grading system for PCa-
specific mortality based on Inception12-derived architecture28.
Yamamoto et al. utilized deep autoencoders29 to extract key
features that were then fed into a second machine learning model
(regression and support vector machine30) to predict the BCR
status for PCa at fixed follow-up time points (Year 1 and 5)31. Other
studies also utilized multimodal data (molecular feature and
histology) for prognosis in different cancers32,33. Overall, these
studies set the ground for further survival analyses using AI;
however, they were limited by the post hoc explanation of their
black box models that is not necessarily reflective of interpretable,
clinically relevant well-validated algorithms34–36.
Our novel grading system is also prognostic for the develop-

ment of CRPC which represents an advanced progression stage of
PCa with poor outcome, that no longer completely responds to
the androgen deprivation therapy and consequently continues to
progress37,38. Our data demonstrate the potential use of our novel
grading system as clinical tool to determine cases at high-risk of
CRPC development and accordingly propose a risk-adapted
personalized surveillance strategy.

One of the most important aspects to consider when
developing tools for clinical decision-making is practicality and
clinical utility. Our novel model was calibrated to predict 10-year
BCR-free survival probability and facilitate model interpretation. It
should also be noted that the standard prognostic factors for PCa
are all obtained during diagnosis or treatment without accounting
for any time information. Accordingly, we integrated this
important aspect into our novel prediction system and selected
model architectures for comparison based on recent surveys for
medical imaging39,40 and the PANDA Challenge41 for PCa.
Similarly, because c-index and ROC curves are not ideal for
comparing prognostic models, we utilized the partial LR test, AIC,
and BIC to identify which model configuration fits better and
provides a superior prognostic performance42. The novel predic-
tion system presented in this study does not rely on Cox models
to calculate risk scores and determine risk groups. In this study,
Cox models were used only to evaluate the accuracy and clinical
utility of the grading system.
This study applied the Gleason grading system for nomology

and ontology to describe the histopathological contents of each
group as it is widely accepted as a communication terminology for
histopathological changes in PCa among domain experts (includ-
ing urologists, pathologists, and oncologists), despite their
interrater limitations. Although there was some unsurprising
overlap between our risk scores and the GG, the risk groups
provided significantly different interpretations of the GG patterns.
Furthermore, our analysis revealed no significant evidence of
multicollinearity among various parameters, including Gleason
grade (GG) and the risk groups. This suggests that the variables we
considered in our study are independent and not significantly
correlated with each other.
We limited the sampling dimension to 0.6 mm (utilizing TMA

cores) while evaluating the interpretability of our novel grading
system. This restriction enabled us to improve the readability of
the histological content associated with the risk score. Our TMA

Table 2. The model reduction and the partial likelihood ratio (LR) test revealed that a baseline model with the novel risk groups is statistically
comparable to the full model to predict cancer-specific survival.

Model Nested partial likelihood ratio test, LR (p-value) AIC BIC

1st external validation set (CPCBN)

Baseline model + risk group + GG Reference (full model) 167.5161 169.6403

Baseline model + risk group 1.560 (0.213) 167.07 168.4861

Baseline model + GG 4.114 (0.036) 169.6098 171.0259

Baseline model (pT) 7.557 (0.027) 171.0623 171.7703

2nd external validation set (PROCURE)

Baseline model + risk group + GG Reference (full model) 170.6459 174.824

Baseline model + risk group 4.094 (1.2e−1) 172.7398 175.8733

Baseline model + GG 10.056 (1.8e−3) 178.7017 181.8353

Baseline model (pT + pN) 27.777 (6.8e−5) 194.4228 196.5119

3rd external validation set (PLCO)a

Baseline model + risk group + GS Reference (full model) 298.0581 301.8323

Baseline model + risk group 14.849 (1e−4) 310.9075 313.4237

Baseline model + GS 5.15 (0.023) 301.2158 303.732

Baseline model (prostate pathologic stage) 26.769 (1.54e−06) 320.8274 322.0855

In contrast, GG (Gleason score/ISUP grade groups) was not comparable to the full model. Akaike information criterion (AIC) and Bayesian information criterion
(BIC) support this finding as well since the fit of a baseline model with the novel risk groups is better than the fit of a baseline model with GG. pT: pathologic
tumor stage; pN: pathologic nodal stage. +pN was excluded due to non-significance to prognose cancer-specific survival in the CPCBN external validation set.
For PLCO external validation set, we used GS provided by the study instead of GG and prostate pathologic stage (considers T, N, and M stages) due to the
study history. The best-performing models are highlighted in bold. Higher AIC and BIC are associated with the worst model fitness.
aSince both GS and risk groups were significantly inferior than the full model, we applied the non-nested partial likelihood ratio test to compare between GS
Cox model and risk group Cox model; our risk group demonstrated non-inferiority to GS, indicating comparable goodness of fit (z= 1.091, p= 0.138). No
significant multicollinearity between variables was identified (VIF < 2).
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cohorts were assembled through a meticulous process involving
rigorous protocols and quality control components to ensure the
sampling of representative prostate cancer tissues for each
respective case15,43.
We adopted the definition proposed by Rudin for interpretable

AI34, which obeys a domain-specific set of constraints so that
human experts can better understand it. Interpretable AI
necessitates a calibrated model, a requirement that aligns with
its importance in clinical decision-making, whereas post hoc
explanation of a black box model does not necessarily equate to
interpretable AI34,44. Moreover, within the domain of deep neural
networks, the model generalization primarily arises from the
presence of a substantial inductive bias intrinsic to their
architectural design; notably, deep neural networks demonstrate
behavior that closely approximates Bayesian principles, as
substantiated by prior research45–48. This specific property
strengthens our assumption that bimodal distributions linked to
the corresponding risk groups are observable for certain features
within the penultimate fully connected layer, as demonstrated in
Fig. 4 and Supplementary Figures S9 to S13; such alteration in the
bimodal distribution across different risk groups provides insights
into the model’s inference and the feature distributions resulting
from the input images.
Although our results are robust, and our novel grading system

does not rely on GG nor pattern proportions, whether it can
overcome sampling errors, tissue fragmentation, degradation, or

Fig. 3 Risk Classification and CRPC Frequency in the PROCURE Cohort. Distribution of castration-resistant prostate cancer (CRPC) cases
across the novel risk classification groups illustrated as bar plot (a) and cross tabulation (b) in men with biochemical recurrence (PROCURE
cohort). The frequency of CRPC is significantly associated with the risk groups (Kendall’s rank correlation tau: 0.22; z= 4.2277; p < 0.0001).

Table 3. Multivariate Cox regression analysis for prognosis of
castration-resistant prostate cancer (CRPC) in men with biochemical
recurrence on the PROCURE external validation set.

Parameter Hazard ratio
(95% CI)

z p Generalized
concordance
probability (95% CI)

Tumor stage

pT2 Reference

pT3a 1.15 (0.40–3.29) 0.27 0.78863 0.536 (0.288–0.767)

pT3b 2.17 (0.81–5.78) 1.54 0.12297 0.684 (0.448–0.853)

pN1 vs.
pN0/x

1.23 (0.55–2.75) 0.50 0.61392 0.552 (0.355–0.734)

PSM 1.59 (0.78–3.24) 1.26 0.20647 0.613 (0.437–0.764)

Risk score 5.82
(1.72–19.73)

2.83 0.00467 0.853 (0.632–0.952)

We found that the risk score is a significant and independent
prognosticator for CRPC, whereas tumor and nodal stages as well as
positive surgical margin status were not prognostic for CRPC (n= 47).
CI confidence interval, PSM positive surgical margins.
The bold value highlights the highest effect size.
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artifacts caused by prostate biopsy and/or poor RP tissue quality is
unknown. We did not evaluate our grading system on the biopsy
materials for survival modeling as a sampling effect (evident from
the increase in PCa on RP) and the effects of time or intermediate
events (such as cancer progression) until treatment (such as RP)
were difficult to control in the experimental setting. In contrast,
these effects were easier to control with RP specimens, and it was
previously demonstrated that TMA, corresponding biopsy samples
and RP specimens were comparable to GG15,43. The selection
strategy for whole-slide images (WSIs) or tissue microarray (TMA)
sampling in the current cohorts was determined exclusively by the
study organizers before the initiation of the current study. Thus,
our strategy mitigated the observer bias by ensuring that data
collectors were not involved with data analysis process of the
current study. Although we did not have control over the WSI or
TMA sampling and case selection process for the current study,
our power analyses indicate that the sample size we have is
adequate to execute our study. Moreover, the TMA cohorts were
primarily designed for biomarker validation, specifically to assess
the effectiveness of biomarkers in predicting or prognosing
survival outcomes. The selection of TMA samples accordingly
followed predetermined criteria set by the study organizers to
ensure accurate representation and robust validation while
mitigating the selection bias15,43. To mitigate potential bias from
interobserver variability in labeling histopathological image
groups, we requested explanations from pathologists to better
understand the factors influencing their decisions. This approach
aimed to improve transparency and provide insights into the
potential sources of bias in the interpretation of histopathological
images. Finally, our AI-based grading system was not developed
to detect PCa; therefore, additional models to detect PCa are
required for a fully automated grading system.
This study introduced and validated a novel grading system

resulting from the synergy between AI and domain knowledge.
Future research should focus on identifying the application
boundaries of our novel grading system in a real-world setting,
including its possible integration into existing nomograms used to
predict prognosis and treatment response.

METHODS
Data
Cohorts. In this study, we adopted a study design that focused
on the analysis of independent retrospective cohorts. The patients
with CPCBN were randomly divided into development and
validation sets based on their institutions. The development
cohort included 600 RP cases from two institutions in the CPCBN
framework15,43. Each center received ethical approval from their
Institutional Review Board (IRB) for biobanking activity and for
their contributions to the CPCBN. CTRNet standards were followed
for quality assurance and ensured appropriate handling of human
tissue49. The first external validation set, the CPCBN cohort,
included 889 RP cases from three different institutions within the
CPCBN framework, anonymized to minimize bias and excluding
the institutions used in the development set to avoid potential
label leakage. The second cohort included 16 digital TMA scans of
897 patients from the PROCURE cohort50,51. The study has been
approved by the McGill University Institutional Review Board
(study number A01-M04-06A). Lastly, the 1502 H&E-stained whole-
slide images from 861 RP cases in the Prostate, Lung, Colorectal,
and Ovarian (PLCO) Cancer Screening Trial (NCT00339495; PLCO
cohort) were used52,53. Only cores or representative slides from
the RP index lesion were used to develop and validate the
malignancy grading system for PCa. Access to the PLCO data set
was approved through the National Cancer Institute Cancer Data
Access System. Informed consent was obtained from all subjects
involved in the study and managed by the respective organizers.
The current study was conducted in accordance with the
Declaration of Helsinki, and the respective study organizers were
responsible for obtaining the ethical approval. The Supplementary
Methods details TMA construction and histological images of
these cohorts as well as their exclusion and inclusion criteria.

Clinicopathological information. Histological images of PCa,
clinicopathological information, and longitudinal follow-up data
were available for all cases. Clinicopathological data included age
at diagnosis, preoperative prostate-specific antigen (PSA) mea-
surements, RP TNM classification, and RP GG for all patients at the
RP and TMA core sample levels. Tumor staging was based on the

Table 4. Image group assessment by pathologist in accordance with the BCR score risk stratification with decision explanation.

Pathologist Sorting agreement with AI Explanation

Pathologist A Yes Group A: Dominant Gleason pattern 3
Group B: Mixed Gleason pattern 3 and 4, cannot determine which pattern is dominant.
Group C: Mixed Gleason pattern 3 and 4, but Gleason pattern 4 is dominant.
Group D: Few Gleason pattern 3, mostly Gleason pattern 4 and/or 5.

Pathologist B Yes Group A has the most favorable malignancy grade (mostly Gleason pattern 3), whereas Group D has the
worst differentiation grade (hard to identify Gleason pattern 3, mostly Gleason pattern 4 and 5). Cannot
determine a significant difference in pattern distribution in Group B and C, but it seems to me that C has
more Gleason pattern 4.

Pathologist C Yes There is a pattern trend in these image groups, likely driven by Gleason pattern 3. For example, Group A
has mostly Gleason pattern 3 and Group D has mostly Gleason pattern 4 and 5. This trend is, however, not
clearly visible in group B and C (mixed Gleason patterns 3 and 4).

Pathologist D Partially Group A: Dominantly favorable Gleason pattern 3
Group B: Mixed Gleason patterns 3 and 4
Group D: Dominantly Gleason pattern 4 and 5 (Mostly Gleason score at least 8)
Group C: Mostly heterogenous prostate cancer constellation with dominance of Gleason pattern 4.

Pathologist E Yes Group A: Dominant Gleason pattern 3. Rare occurrences of mucinous cribriform, glomeruloid patterns
Group B: Mixed Gleason pattern 3 and 4, with rare occurrence of single cells (pattern 5). When pattern 4 is
present, it is mostly ill-defined, sometimes cribriform.
Group C: Dominant pattern 4, with rare occurrences of pure pattern 3. Pattern 4 is often cribriform.
Group D: Dominant patterns 4 and 5.

The image groups, which were randomly assigned, required sorting by the pathologists. Pathologist D weighted the heterogeneity definition to rank group D
and C, thereby resulting into the partial agreement.
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2002 TNM classification54 and grading according to the 2016
WHO/ISUP consensus55. All data were available from the
corresponding framework and study trial. The clinicopathological
information was obtained through a meticulous chart review
process, involving the extraction of data and the data quality
control from the electronic health records (EHR) of each
participating hospital.

Follow-up and endpoints. Most patients were regularly followed
after RP to identify BCR, defined as two consecutive increases in
serum PSA levels above 0.2 ng/mL, PSA persistence (failure to fall
below 0.1 ng/mL), initiation of salvage or adjuvant treatment, and
cancer-specific death. BCR status (non-BCR vs. BCR) and cancer-
specific death status were documented during the follow-up

period. Non-BCR cases or cancer survivors with incomplete follow-
up duration were censored at the date of last follow-up for
survival analyses. The occurrence of the castration-resistant
prostate cancer (CRPC) during the follow-up period was addition-
ally documented.

Model development
The development cohort was further divided into training and in-
training validation sets, with the largest single-institution cohort used
as the training set. Gleason patterns were utilized to ensure consistent
histological appearance in circular cores with a diameter of
approximately 0.6mm. Gleason patterns 3+ 3 and 4+ 4 were
specifically used to evaluate homogeneous cores to ensure

Fig. 4 The upper row reveals the histograms for the 23rd representative feature (the 23rd feature has the highest positive weight value
of 0.38 in the sigmoid prediction equation and one of the five representative features altered by BCR status) of our novel model after
stratifying by the risk groups for one-vs.-other comparisons on the first external Validation set (CPCBN, Canada). The target distribution is
marked in red, whereas the other distribution is marked in green; the overlapped distribution is highlighted in brown. The histology images
are patches selected based on the distribution patterns (dominant red range for low and high-risk group, the overlapped range for
intermediate groups). Overall, the variance for feature distributions is differed by the risk groups. Specifically, the feature distribution is
shifting between these risk groups. We identified a clear histopathological gradient for distortion of glandular architecture (e.g.,
disappearance of organized glandular architecture) by the risk groups based on these patches. p-value was estimated using the Levene Test
and the two-sided significance level was set to ≤0.0001. Example histology images are captured at ×10 objective magnification (~330 ×
330 µm). The supplementary section includes the entire feature distribution visualization and the access information to larger image sets
representing these risk groups.
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consistency in the histological appearance. These patterns were
selected to determine the minimum and maximum ranges of
architectural tissue alteration within the circular cores. In contrast,
cores with Gleason pattern 4+ 3 were considered to represent
heterogeneous cores, indicating an intermediate stage of architectural
alteration of the tissue. The selection of Gleason pattern 3 cores was
limited to cases without recurrence during follow-up to ensure a clean
pattern. Images including Gleason pattern 5 were intentionally
excluded from the training set. By removing pattern 5 and 3+ 4
from the training set, we aimed to encourage the model to learn and
rely on other distinguishing features that are indicative of different
malignancy patterns other than the Gleason pattern system (quasi
zero-shot learning). As a result, the model development process
accounted for tissue appearance and distortion variations indepen-
dent of the current Gleason grading system.
The study employed neural architecture search using PlexusNET

and grid search to find the best architecture model for BCR
prediction56. ADAM optimization algorithm and cross-entropy loss
function were used to train the models57. The optimal architecture
was selected based on a 3-fold cross-validation performance. The
resulting model was trained on the entire training set with early
stopping and triangular cyclical learning rates applied to mitigate
overfitting. Model performance was evaluated at the case level
using confidence scores and metrics such as AUROC and
Heagerty’s c-index58–60. Tile-level predictions were aggregated to
determine core- or slide-level predictions, and case-level predic-
tions were estimated by averaging core- or slide-level predictions.
In parallel, we repeated the same steps using ResNet-50RS16,61,

VGG-1617, and EfficientNet18, as these represent state-of-the-art or
classical architectures (SOTA)16–18,61, and we then assessed the
effect sizes (i.e., hazard ratio) for each model for BCR prognosis at
case level. In a similar manner, we tested the performance benefits
of using image patches at ×20 or ×40 object magnification, using
the COX deep convolutional neural network concept as described
by Katzman et al.62 or the attention aggregation layer63 instead of
the global average pooling for our survival modeling.
The risk classification model for BCR was constructed using the

chi-square automatic interaction detector (CHAID) algorithm64,
with probabilities cutoffs identified on the development set and
validated on external validation sets.

Model evaluation
In the development and external validation cohorts, confidence
scores for BCR (BCR scores) were generated for all cases.
Prognostic classification and accuracy were measured using
AUROC, Heagerty’s C-index, and generalized concordance prob-
ability. The goodness-of-fit was assessed using Akaike information
criterion (AIC) and Bayesian information criterion (BIC)65–67.
Calibration plots were created for external validation of the BCR

model to evaluate its interpretability. Harrell’s “resampling model
calibration” algorithm was applied to assess model calibration68,69.
BCR predictions were compared to corresponding Kaplan–Meier
survival estimates within 10 years.
Univariate and multivariate weighted Cox regression analyses were

conducted on external validation cohorts using Schemper et al.’s
method to provide unbiased hazard ratio estimates, even in cases of
non-proportional hazards70. Parameters included age at diagnosis,
surgical margin status, preoperative serum levels of PSA, pT stage, pN
stage, GG, and BCR confidence scores. Parameters significant in the
univariate analysis were included in the multivariate Cox regression
analysis to identify independent prognostic factors for BCR.
Cox regression models were used for cancer-specific survival to

examine the prognostic value of the novel score/grading system,
including GG, tumor stage, and the novel score/grading system. In
addition to that, we performed the Fine-Gray competing risk
regression analyses for cancer-specific mortality, while considering

other competing causes of death reported in the death
certificates. Kaplan–Meier survival estimates were used to
approximate the BCR and cancer-specific survival probabilities
for GG and the novel risk classification.
Nested partial likelihood ratio tests were conducted to compare

different Cox regression model configurations (only categorical
variables) and determine the best model for prognosis71. The best-
performing grading system (novel grading vs. GG) was chosen
based on the lowest changes in partial likelihood ratio and
p-values. The AIC and BIC values were compared among the Cox
regression models, with the best model having the lowest values.
Pearson correlation coefficient was calculated to assess the
correlation between the risk score and slide number.
The variance inflation factor (VIF) was utilized to assess the

multicollinearity level between the GG, novel grading, and tumor
stage. Here, we built two logistic regression models for 10-year
BCR and cancer-specific death prediction. VIF below 2 indicates a
negligible multicollinearity between these prediction variables.
To ensure the robustness, reliability, and adequate sample size

of our study, we conducted a power calculation for Cox
proportional hazards regression. Specifically, we evaluated the
statistical power of our analysis considering GG and risk score
groups to prognose BCR or cancer-specific mortality using
powerSurvEpi72.

Human interpretability
The first external validation set (CPCBN) core images were grouped
according to their risk classification. Five experienced genitourinary
pathologists with over 10 years of expertise were asked to review and
sort randomly labeled image groups based on tumor differentiation.
Furthermore, these senior pathologists had to explain their decision in
sorting the image groups while no specific instruction on how to
explain their decision was given. Pathologists were blinded to the
corresponding clinicopathological and follow-up information to
mitigate the recall bias and survivorship bias. Each pathologist was
individually approached via email to perform the assigned task while
the image groups were randomly sorted before sharing them with
each pathologist; no communication between pathologists specific to
this task was permitted to avoid the confirmation bias. Time limitation
was not set to execute the task. To assess the inter-rater agreement
between a pathologist and our novel risk groups, we utilized a
percent agreement based on the proportion of correctly labeled risk
groups out of the total number of risk groups under the assumption
that the probability for a random agreement in sorting the entire
grouped images between a single pathologist and the novel risk
classification model is <5% and therefore negligible.

Software
Model development and analyses were performed with Albu-
mentations73, Keras 2.674, TensorFlow 2.675, Python™ 3.8, SPSS® 23,
and the R statistical package system (R Foundation for Statistical
Computing, Vienna, Austria).
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