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Evolutionary trajectory of SARS-CoV-2 genome shifts during
widespread vaccination and emergence of Omicron variant
Kaitlyn Gayvert1, Sheldon McKay1, Wei Keat Lim1, Alina Baum1, Christos Kyratsous1, Richard Copin1✉ and Gurinder S. Atwal1✉

Understanding the adaptation of SARS-CoV-2 is critical for the development of effective treatments against this exceptionally
successful human pathogen. To predict the emergence of new variants that may escape host immunity or increase virulence, it is
important to characterize the biological forces driving its evolution. We conducted a comprehensive population genetic study of
over thirteen million SARS-CoV-2 genome sequences, collected over a timeframe of ~3 years, to investigate these forces. Our
analysis revealed that during the first year of the pandemic (2020 to 2021), the SARS-CoV-2 genome was subject to strong
conservation, with only 3.6% of sites under diversifying pressure in the receptor binding domain (RBD) of the Spike protein.
However, we observed a sharp increase in the diversification of the RBD during 2021 (8.1% of sites under diversifying pressure up to
2022), indicating selective pressures that promote the accumulation of mutations. This period coincided with broad viral infection
and adoption of vaccination worldwide, and we observed the acquisition of mutations that later defined the Omicron lineages in
independent SARS-CoV-2 strains, suggesting that diversifying selection at these sites could have led to their fixation in Omicron
lineages by convergent evolution. Since the emergence of Omicron, we observed a further decrease in the conservation of
structural genes, including M, N, and the spike proteins (13.1% of RBD sites under diversifying pressure up to 2023), and identified
new sites defining future potential emerging strains. Our results exhibit that ongoing rapid antigenic evolution continues to
produce new high-frequency functional variants. Sites under selection are critical for virus fitness, and currently known T cell
epitope sequences are highly conserved. Altogether, our study provides a comprehensive dynamic map of sites under selection
and conservation across the entirety of the SARS-CoV-2 genome.
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INTRODUCTION
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the etiologic agent of the coronavirus disease 2019 (COVID-19)
global pandemic, has prompted an extensive effort to understand
its adaptation mechanisms. Scientists and medical professionals
worldwide have sequenced the SARS-CoV-2 genome from patient
isolates, and their findings have been rapidly disseminated
through curated data repositories such as the global initiative on
sharing all influenza data (GISAID, https://www.gisaid.org)1,2. This
unprecedented level of data sharing has provided a unique dataset
critical to determine transmission patterns and identify variants
that may be associated with virulence and disease severity.
The biological forces driving the conservation and diversity of

SARS-COV-2 genome are currently not well understood. In the
past, understanding these forces has been critical to inform
treatment development against other life-threatening infec-
tions3–7. While mutations emerge randomly in the genome, the
accumulation and loss of mutations can be driven by changes
within the host environment. For example, vaccination or
emergence of a new variant can lead to sequence diversity or
conservation of circulating viral genomes. During infection,
pressure to escape recognition by antigen-targeting immune
factors such as antibodies and T lymphocytes can lead to
diversifying selection of viral antigens, while emergence of a
dominant lineage in the viral population can reduce the diversity
of the viral quasispecies and increase genome conservation.
Characterizing which regions in the genome are conserved or

diverse with an emphasis on antigenic targets has critical
implications for immune surveillance, drug development and

resistance. To date, both B cell and T cell immune responses have
been reported to play critical roles in controlling SARS-CoV-2
infections8. B cells produce both anti-SARS-CoV-2 neutralizing and
non-neutralizing antibodies, which comprise the polyclonal
responses. Many of the most potently neutralizing anti-SARS-
CoV-2 antibodies target the receptor-binding domain (RBD) of the
viral spike protein, inhibiting the binding to the ACE2 cell host
receptor9–19. Antigen-specific T cells recognize short peptide
epitopes generated by proteolysis of pathogen proteins, bound to
HLA molecules on the surface of antigen-presenting cells. SARS-
CoV-2 reactive memory CD4+20 and CD8+21 T cells have also been
reported in unexposed individuals, suggesting that pre-existing
cross-reactive T cells could drive disease outcomes in infected
patients.
In this study, we leveraged 13,128,166 SARS-CoV-2 genome

sequences collected worldwide from the time of the first reported
sequence in late 2019 to October 2022 to assess and predict the
evolution of the virus and the future of the pandemic. First, we
highlighted amino acid mutations spreading in the community at
high frequency. We then established the evolutionary relationship
of SARS-CoV-2 isolates and employed population genetic analyses
to determine the selective forces driving genetic diversity in SARS-
CoV-2 at both protein and amino acid levels. To explore the
impact of broad infection, vaccination and emergence of Omicron
lineages on SARS-CoV-2 evolution, we generated a quarterly time
series dataset that revealed how evolution of the SARS-CoV-2
genome has changed across three defining time periods of the
pandemic, namely, the pre-vaccine era (2020), the post-vaccine
era (2021) and the emergence of omicron lineages (2022). Finally,
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we present a comprehensive genetic analysis of the currently
known SARS-CoV-2 B and T cell epitopes to determine whether all
SARS-CoV-2 antigens represent potential target of immune
escape.

RESULTS
Comprehensive analysis of sequence variation in SARS-CoV-2
Since the first SARS-CoV-2 genome sequence was reported in early
January 2020, there have been over thirteen million sequences
deposited to GISAID (https://www.gisaid.org/)1,2. Each genome
sequence is associated with comprehensive patient-related
metadata that can be used to determine the time of infection
and the geographical origin of the virus isolates (Fig. 1A). We
compared the identity of all coding sequences retrieved from
13,128,166 curated genomes. We found that 26% of all mutations
were identified in only one given isolate (singleton). However,
there were 1154 high frequency mutations (HFM) that were
shared across at least 10,000 isolates occurring at 10% of total
sites genome-wide (1016 out of a total 9726 sites) (Supplementary
Table S1). A disproportionate number of HFM were found in
ORF7a (39%; 47 out of a total 122 sites within the gene), ORF8
(31%; 38 / 122 sites), and ORF3a (29%; 79 / 276 sites).

The spike protein exhibited enrichment of sequence diversity
(14%; 175/1274 sites) compared to the entire genome sequence.
HFM identified within the spike protein were found to be
accumulating within the N-terminal domain (NTD) (24%; 71/
291 sites) (Fig. 1B), while the RBD had a similar number of HFM
(13%; 28/223 sites) when compared to the full spike protein and
more HFM compared to the genome as a whole.

SARS-CoV-2 diversity across phylogenetic lineages
Detailed phylogenetic analysis of a data set on the order of
millions of genome samples is computationally challenging due to
the combinatorial complexity of evaluating relationships between
all samples. To obtain a computationally feasible data set, we
developed a down-sampling method to select a subset of 10,000
representative genomes (see Methods)22,23. Genome-based phy-
logenetic analysis resolved relationships among samples and the
evolution of the virus in relation to geographic distribution. Many
lineages contained SARS-CoV-2 isolates from several continents,
indicating limited or no apparent restrictions between lineages
and local populations (Fig. 1C, D). Comparison of the diversity of
individual genomes by lineage allowed identification of mutations
following a pattern of convergent evolution (Fig. 1E). These
mutations included N501Y and L452R, which were identified
independently in genomes from at least 6 and 7 major lineages,

Fig. 1 SARS-CoV-2 diversity across geographic regions and phylogenetic lineages. A Cumulative count of SARS-CoV-2 genome sequences
in GISAID by collection date and continent of sample origin as of November 1, 2022. B Distribution of high frequency mutations (HFM) in the
spike protein sequence. The RBD and NTD domains are highlighted in orange and yellow, respectively. Mutations in the RBD are indicated in
red. Amino acid change of mutations identified in at least a million GSAID sequences are shown. For residues with high deviation from the
wild type sequence (eg. 417, 452, 484, 501, 614), the most common amino acid change is indicated. C SARS-CoV-2 maximum-likelihood
phylogeny of high-diversity 1000-genome subset. The tree is outgroup rooted with the related bat CoV genome RATG13. The root branch
length is truncated to emphasize relationships amongst SARS-CoV-2 genomes. Distribution of haplotypes of the six previous and current
variants of concern (Alpha, Beta, Gamma, Delta, Omicron, Omicron BA.4/5), mapped onto the phylogeny. D The geographic origin of each of
the sequences is denoted by branch color. E Distribution of mutations under convergent evolution (L452R, N501Y), mapped onto the
phylogeny.
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respectively (Table 1). This suggests emergence of both mutations
occurred as a result of similar selective forces in independent
individuals rather than linear transmission. Since phylogeny-
defining mutations can be critical to understand virus biology,
we further examined diversifying and purifying selection and
functional studies of how mutations may impact SARS-CoV-2
biology.

Selective landscape of the SARS-CoV-2 genome
Bayesian estimates of the SARS-CoV-2 genome mutation rate are
in the order of 10−3–10−4 nucleotide substitutions per site per
year24–26, with reported fluctuations over time26,27. This rate is low
compared to other human coronaviruses and RNA viruses25,
suggesting that purifying selection substantially shapes the SARS-
CoV-2 genome. To characterize the selective forces driving SARS-
CoV-2 gene sequence diversity, we identified sites evolving under
natural selection by applying a Bayesian codon model, FUBAR23.
Codon substitution models are used to identify sites that are
evolving significantly faster (diversifying selection) or slower
(purifying selection) than expected. Quickly spreading mutations
under positive selection, especially those that arise independently
across multiple lineages via convergent evolution, can be
identified through these approaches by their elevated nonsynon-
ymous (dN) versus synonymous (dS) substitution rates. Similarly,
sites where the reference alleles are conserved and mutations fall
exclusively on shallow branches of the phylogeny are typically
under purifying selection, as evidenced by low dN/dS ratios (≪1),
and are more likely to negatively impact the fitness of the virus28.
Overall, a gene-based measure of selection confirmed strong

purifying selection acting on the SARS-CoV-2 genome but also
identified a substantial number of sites under diversifying
selection in several genes (Fig. 2A). Amongst structural and
accessory protein-encoding genes, N, E, ORF3a, ORF8, and ORF10
genes showed an elevated number of sites under diversifying
selection, indicating that these genes were under distinct selective
forces when compared to the rest of the genome. Early stop
codons are amongst the most frequent HFM in ORF3a (Q57H) and
ORF8 (Q27*)29 and ORF10 is no longer treated as a protein-coding
gene30. Interestingly, most of these genes have been implicated in
the suppression of the innate immune response, particularly in the
suppression of type one interferon signaling (ORF8), blocking
autophagy (ORF3a31), and downregulation of antigen presentation
(ORF832).
When compared to other proteins within the SARS-CoV-2 genome,

the spike protein and its RBD region were under some of the highest

levels of purifying selection observed, along with the M, Nsp7-ORF1a,
and Nsp9-ORF1a proteins (Fig. 2B and Supplementary Fig. S1A).
While similar levels of HFM were present in the Spike protein and
RBD, we observed that the RBD was under elevated diversifying
selection (10%; 23/223 sites), including the seven of the most
frequently mutated sites (339, 417, 452, 477, 478, 484, 501)
(Supplementary Fig. S1B, C), which may be consistent with the
pressure imposed by the immune system on this domain. This
indicated that despite having a globally conserved genome,
evolutionary analysis at the single amino acid level revealed sites
with significant diversity. A comprehensive list of all sites under
selection is provided as a Supplementary Table S2.

Gene level selection over time
To better understand how levels of selection on SARS-CoV-2
genome have changed over time, we repeated our evolutionary
analysis to generate a quarterly time series dataset. These
timepoints span across three temporal windows, representative
of three milestones of the recent pandemic, i.e.,: (1) the pre-
vaccine era (2020), (2) the post-vaccine era (2021), and (3) the
emergence of Omicron lineages (2022) (see Methods). At the gene
level, we observed a sharp shift in the selective forces acting on
SARS-CoV-2 proteins. While initially, many genes underwent an
intensification of purifying selection over time (most notable for
the Spike, M, N, and ORF1b), this trend disappeared and often
reverted with the widespread utilization of vaccination worldwide
and emergence of Omicron lineages, respectively (Fig. 2C and
Supplementary Fig. S1D). Conversely, diversification of the Spike-
RBD continued to increase across the three time periods (Table 2),
indicating intensification of the selective pressures promoting
accumulation of mutations within this given region.
Notably, we observed that the diversifying selection acting on

sites of mutations that later would define Omicron lineages (417,
440, 446, 452, 501, and 484) increased at the onset of the post-
vaccine era. These sites remained under strong diversifying
selection even in the cases where the mutations disappeared
from circulation (417, 452, and 501) (Fig. 2D). This led to the
transient fixation of these mutations in independent SARS-CoV-2
lineages and ultimately to their fixation by convergent evolution
in Omicron lineages. Since the emergence of Omicron, new sites
under diversifying selection have appeared (445, 449, and 460),
indicating that the evolution of the virus is still ongoing and
should be vigilantly monitored (Fig. 2D and Supplementary
Fig. S2). A comprehensive table detailing how selective pressures

Table 1. RBD sites under convergent evolution.

Effect HFM Associated major variants Increased ACE2
binding affinity

Decreased
ACE2 binding
affinity

Reduced
neutralization by
convalescent sera

Reduced neutralization
by therapeutic
antibodies

Increased binding affinity
and reduced
neutralization

L452* delta, epsilon, iota, kappa,
lambda, delta, omicron

X X

Increased binding affinity N501Y alpha, beta, gamma, theta,
mu, omicron

X

T478K delta, omicron X

Reduced neutralization E484* beta, gamma, zeta, eta,
kappa, iota, theta, mu,
omicron

X X

K417* beta, gamma, delta,
omicron

X X X

R346* mu, omicron X

(*) refers to multiple amino acid changes at this site.

K. Gayvert et al.

3

npj Viruses (2023)     5 



at each site genome-wide have changed over time is provided as
Supplementary Table S3.

Impact of selective forces on SARS-CoV-2 infectivity and
antibody neutralization
To further characterize how sites under selection within the RBD
may relate to the pressures of the host environment, we first
determined the impact of mutations under selection on infectivity.
We assessed the functional constraints of ACE2 binding using
previously published deep mutational screens that measured the
impact of mutations on affinity for ACE2 binding and protein
folding stability, as estimated by RBD expression33. Substitutions
at sites under purifying selection (88.4%) had the strongest
negative impact on ACE2 binding affinity and protein stability
(Fig. 3A and Supplementary Fig. S3A). Conversely, sites under
diversifying selection had less effect on binding and stability
(61.1% of sites) (Fig. 3A). Since this screen was limited at

estimating increased binding affinity due to global epistasis
estimation, N501Y was the only HFM in the RBD that demon-
strated a substantial increase ACE2 binding affinity in this analysis.
However, additional HFM have been reported to enhance binding
affinity (N440K34, L452R35,36, S477N37, S477I38, T478K39, and
S494P40), and these changes have been linked to increased
infectivity and transmissibility35–37,41.
We next looked to assess how sites under selection impacted

antibody neutralization. We compared how the site-level esti-
mates of selection related to the four major classes (binding
regions) of SARS-CoV-2 neutralizing antibodies. Each class varies in
its ability to block ACE2 (class 1, 2) and its binding configuration to
the RBD (class 1, 4: “up”-only; class 2, 3: “up” and “down”)42. While
purifying selection applied to epitopes from all antibody classes, it
had the strongest impact on epitopes from class 1 and class 4
antibodies (p= 0.0169) (Fig. 3B) and the lowest impact on
epitopes from class 3 antibodies. Overall, we observed that
diversifying selection acting on class 3 antibody epitopes

Fig. 2 Amino acid sites under natural selection in SARS-CoV-2 genome. A Gene length normalized counts (counts per kb) of sites under
significant purifying selection (light blue bars) and diversifying selection (red bars). B Scatterplot of percent of sites under purifying selection
vs percent of sites under diversifying selection in each protein. While overall the genome was under strong purifying selection, a substantial
number of sites were identified as under diversifying selection in certain regions (eg. ORF3a, ORF10, N). C Percentage of sites under purifying
(top panel) and diversifying (bottom panel) selection per gene across the three defining time periods of the pandemic: (1) the pre-vaccine era,
(2) the post-vaccine era, and (3) the emergence of omicron lineages. D Level of evidence (1—probability of selection) (black lines and points)
and global frequency of mutations (red lines and points) at selected sites under diversifying selection in spike across the three defining time
periods of the pandemic: (1) the pre-vaccine era, (2) the post-vaccine era, and (3) the emergence of omicron lineages. alpha: synonymous
mutation rate; beta: non-synonymous mutation rate; Prob[alpha ≥ beta]: 1—probability of diversifying selection at the site.

K. Gayvert et al.

4

npj Viruses (2023)     5 



increased during the post-vaccine era (Fig. 3B). However, epitopes
from each of these classes contained at least one site under strong
diversifying selection which have been shown to impact
therapeutic antibodies (Fig. 3C). Indeed, class 1 (e.g., casirivimab,
etesevimab), class 2 (e.g., bamlanivimab) and class 3 antibodies
(e.g., C110) have been reported to be negatively impacted by
mutations at the 41743–46, 48443–47, and 45243,48–50 sites respec-
tively. The sites under diversifying selection significantly
decreased antibody neutralization when compared to both sites
under purifying (p= 2.5 × 10−4) and neutral selection
(p= 6.2 × 10−5) (Fig. 3D and Supplementary Fig. S3B)43,49–54.
Finally, we analyzed the impact of RBD HFM at sites under

diversifying selection and found that many of these mutations
have an impact on ACE2 binding affinity (e.g., N501Y55), antibody
neutralization (e.g., E484K/Q), or both (L452R/Q35,36,49). Interest-
ingly, we found that many of these mutations have arisen at the
same sites (R346, K417, L452, T478, E484, and N501) indepen-
dently across multiple lineages (Table 1)56, indicating a common
selective pressure acting on independent isolates. We also found
that mutations at site 417 (K417N/Beta+Omicron; K417T/Gamma)
and 501 were physically linked in 77% of isolates (5,658,304/
7,338,018). Because mutations at site 417 reduced antibody
neutralization at a cost of ACE2 binding, and N501Y increased
ACE2 affinity, the data suggested that some mutations can
combine to alleviate the detrimental effect of individual
mutations.

Each of the currently characterized major variants contain at least
one of the RBD HFM that are associated with increased infectivity.
Additionally, all except Alpha also include a mutation that reduces
antibody neutralization. The impact of the K417N/T and E484K on
convalescent sera may have enabled the Beta and Gamma variants
to spread in South Africa57 and Brazil58 despite high levels of
seroprevalence in the late 2020 to early 2021 periods. To further
investigate this, we annotated each isolate collected in 2020 with the
incident rate (cases per 100,000) estimated from the geographic
region and month from which the sample was collected, which we
found to be a strong correlate with seroprevalence in the pre-vaccine
era (Supplementary Fig. S4). We observed that the mutations that
reduced antibody neutralization were found in areas with signifi-
cantly higher seroprevalence (Fig. 3E). The Beta and Gamma, and
later Omicron, variants have led to the loss of efficacy of both
therapeutic antibodies (eg. bamlanivimab, etesevimab)59 and specific
vaccines (e.g. ChAdOx1)60. Altogether, this suggests that the
mutations associated with reduced neutralization have serious
implications for public health.

Selective pressures within candidate variable T cell epitopes
In order to determine if SARS-CoV-2 mutations occur in regions
targeted by the human immune system, we examined the
distribution of amino acid mutations across 142 previously reported
putative memory CD4+ T cell epitopes from SARS-CoV-2-naïve
individuals20 and 637 previously reported candidate memory CD8+ T
cell epitopes from both SARS-CoV-2-naïve individuals and recovered
COVID patients21. For each peptide, we determined all amino acid
mutations observed in SARS-CoV-2 genomes present in GISAID.
While all peptides had each amino acid position mutated in at least
one SARS-CoV-2 isolate, the vast majority of epitopes had very little
overlap with HFM (Fig. 4A, B and Supplementary Fig. S5A, B).
Interestingly, the exception to this was ORF3a, which overlapped
with HFM in 92% (12 / 13) of peptides.
To determine whether these putative T cell epitope sequences in

SARS-CoV-2 strains were under selective pressure, we compared the
number of sites under selection in the peptide sequences to
background genome-wide levels of selection. Overall, we found that
T cell epitope sequences were significantly enriched for sites under
elevated purifying selection (p= 0.01), with a single epitope
sequence on average containing 3% (n= 0–1) of their sites under
diversifying selection and 20% (n= 2–3) of their sites under purifying
selection (Fig. 4C–F). Notably, there were no significant differences in
patterns of selection between either CD4 and CD8 epitopes nor
between SARS-CoV-2-naïve and recovered COVID patients (Supple-
mentary Fig. S5C–G). In addition to the absence of diversifying
mutations, the spike, ORF1a, and N epitope sequences were
significantly enriched for sites under purifying selection compared
to the full genome (spike: p= 1.3 × 10−12, ORF1b: p= 0.04, N:
p= 0.005) (Supplementary Fig. S6). Overall, the data indicates that T
cell epitope sequences are under strong purifying selective pressures.

DISCUSSION
The Omicron variant is the most successful SARS-CoV-2 lineage to
date as demonstrated by its rapid spread and dominance across
the world, starting at the end of 2021. Its success was explained by
the accumulation of RBD mutations in the binding footprint of the
virus’s main entry host receptor (ACE2). Presence of such
mutations within the RBD are known to potentially provide an
evolutionary advantage by strengthening the virus infectivity, or
by avoiding detection by neutralizing antibodies. One year
following Omicron emergence, its origin remains unclear.
Phylogenetic analysis has not identified any intermediary
sequences between Omicron and its closest relatives and it did
not reveal any straightforward evolutionary exit (frameshift or
mutational profile) that could suggest that it descends from the

Table 2. RBD sites under diversifying selection over time.

Spike Site Pre-Vaccine Post-Vaccine Post-Omicron

339 Neutral Neutral Diversifying

346 Neutral Neutral Diversifying

367 Diversifying Diversifying Diversifying

371 Purifying Neutral Diversifying

376 Neutral Neutral Diversifying

384 Neutral Diversifying Diversifying

405 Neutral Neutral Diversifying

408 Neutral Neutral Diversifying

414 Neutral Diversifying Diversifying

417 Neutral Diversifying Diversifying

439 Diversifying Diversifying Neutral

440 Neutral Diversifying Diversifying

445 Neutral Purifying Diversifying

446 Diversifying Diversifying Diversifying

449 Neutral Diversifying Diversifying

450 Neutral Neutral Diversifying

452 Neutral Diversifying Diversifying

460 Neutral Neutral Diversifying

477 Diversifying Diversifying Diversifying

478 Neutral Diversifying Diversifying

484 Diversifying Diversifying Diversifying

486 Neutral Neutral Diversifying

490 Neutral Diversifying Diversifying

493 Neutral Diversifying Diversifying

494 Diversifying Diversifying Diversifying

496 Neutral Neutral Diversifying

498 Neutral Diversifying Diversifying

501 Diversifying Diversifying Diversifying

505 Neutral Neutral Diversifying

522 Diversifying Diversifying Diversifying
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Alpha, Beta, Delta or Gamma variants. However, defining
mutations in Omicron lineages have been identified indepen-
dently in strains early on during the pandemic. In our study, we
showed that the majority of these mutations targeted sites that
quickly became under diversifying selection months before the
emergence of Omicron (sites: 417, 440, 446, 452, 501, and 484).
More specifically, we found that diversifying forces acting on these
sites intensified during the early utilization of vaccination world-
wide, consistent with other reports61,62. Importantly, this demon-
strates that sites identified under selective forces represent early
clues to predict the genome makeup of the next wave of
emerging SARS-COV-2 strains. With that in mind, our analysis
showed that in addition to an accumulation of RBD sites
remaining under strong diversifying selection, new RBD sites
have also recently been targeted by newly arising diversifying
selection (including 445, 449, and 460), indicating that the virus
evolution is not slowing down and suggesting that it will lead to
new SARS-CoV-2 variants.
The SARS-CoV-2 RBD is both the region mediating viral entry

into the cell and the main target of most potent neutralizing anti-
spike antibodies63,64. We showed that RBD sites under strong
levels of diversification were often associated with increased ACE2
binding and infectivity, as well as reduced antibody neutralization
consistent with selective pressure imposed by the immune system
on this domain. We also observed that fixation of such mutations
come at a fitness cost for the virus which can be compensated for
by compensatory neutral mutations. For instance, while K417N/T
mutations in the RBD increased immune escape43,52, it occurred at
the fitness cost of reduced ACE2 binding affinity. Interestingly, we
found that mutations at this site have not been successful in
spreading without the addition of the compensatory mutation
N501Y. Experimental studies have confirmed that while K417N
alone results in a significant drop in ACE2 binding affinity, its
combination with N501Y resulted in 3-fold stronger binding than
wild-type (although still 2-fold less compared to N501Y alone)65.

Neutralizing monoclonal antibodies have also been isolated
that target non-RBD epitopes16,66. For example, antibodies 4A866

and 1–6816 have been reported to neutralize SARS-CoV-2 by
targeting the NTD67, which was characterized by elevated levels of
diversifying selection. Genomic polymorphisms, including the 144
deletion found in the Alpha variant, the 242–244 deletions in the
Beta variant, and multiple NTD mutations found in the Delta
variant, have demonstrated reduced sensitivity to anti-NTD
neutralizing antibodies68.
Another significant finding of the present study is the

identification of a substantial number of sites under diversifying
and purifying selection outside of the spike protein. We found
elevated and intensified levels of diversification in the N, ORF3a,
ORF7a, ORF8, and ORF10 genes. This can be explained by the roles
these genes have been described to play in interacting with the
immune system to block the innate immune response. Addition-
ally, the N R203M mutation initially associated with the Delta
variant was described to significantly increase mRNA production
and delivery in to host cells and thus explain the increased
transmissibility of this successful variant69. In our analysis, R203M
mutation site was identified as being under selection, demon-
strating that identification of sites under selection and subsequent
phenotypic characterization of mutations occurring at these sites
can help better understand the keys of SARS-CoV-2 success.
Altogether, this suggests that the pressures outside of the spike
are also important for fitness and warrant closer examination.
We also examined experimentally verified peptide epitopes

derived from unexposed donors20,21 and recovered COVID
patients21 for sequence mutations in SARS-CoV-2 and found that
the vast majority were under strong conservation and did not
accumulate sites under diversifying selection. In uninfected
donors, SARS-CoV-2-reactive T cells can exhibit different patterns
of immunodominance and frequently target ORF1a coding
sequence, nsp78. In the present study, we showed that nsp7 is
hyper-conserved and has very few sites actively under diversifying

Fig. 3 Impact of selective forces on SARS-CoV-2 infectivity and antibody neutralization. A For each possible amino acid substitution within
the RBD, the effect of the mutation on RBD expression (x-axis) and ACE2 binding (y-axis). Each substitution is colored according to whether its
associated site is under diversifying (red), purifying (blue), or neutral (gray) selection. B Levels of diversifying and purifying selection of each
antibody epitope class site during the pre-vaccine and current post-Omicron eras. C Sites detected to be under purifying selection (blue) or
diversifying selection (red) within the RBD of the S protein. Overlayed are the sites associated with class 1 (green), 2 (orange), 3 (navy blue),
and 4 (yellow) antibody epitopes. D Deep mutational scan site total escape from convalescent plasma values for sites under diversifying (red),
purifying (blue), or neutral (gray) selection. E Boxplot of the incident rates (cases per 100,000) for each sample in the pre-vaccination era
(collected in 2020), grouped by whether that sample contained a mutation that reduced neutralization (G446V or mutations at sites L452,
E484, or K417), increased ACE2 binding without any impact on neutralization (T478K or mutations at sites N501 or S477), or had no effect on
neutralization and binding (A520S or mutations at site A522).
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selection. This observation is coherent with the high level of
identity between orthologous sequences of nsp7 across multiple
coronaviruses70 and helps explain why nsp7-specific T cells are
detected and often dominant in unexposed donors as they may
derive from exposure to other coronaviruses. Overall, data show
that CD8+ and CD4+ T cell epitopes are still unaffected in Omicron
genomes, suggesting that Omicron does not appear to escape T
cell responses.
To understand the future burden of COVID-19, it is imperative to

carefully monitor the mechanisms generating highly antigenically
divergent variants and the circumstances underlying their
emergence. New dominating variants impose a relentless burden
on our immune system which in turn imposes pressure on the
virus to select the next variant, which we predict will be as
antigenically different from previous variants as possible to
overcome host immunity. Our study informs patterns of antigenic
evolution in infected and vaccinated individuals and gives us the
tools to more reliably identify the currently forming variants that
may yet emerge.

METHODS
Sequence analysis, filtering, and alignment
There were approximately 13 million complete genome
sequences deposited in GISAID1,2 as of November 12, 2022, which
were downloaded along with their mutation calls and accom-
panying metadata. In order to reduce the number of genomes to a
computationally tractable size, a two-stage down-sampling
algorithm was developed to reduce the number of sequences to
2 million (Supplementary Table S4A). The first step in this process

was collecting 100 randomly sampled accessions for each for each
pango lineage. In cases where there less than 100 sequences for a
lineage, all available sequences were used. The balance of the 2
million sequences were composed of randomly sampled
sequences, irrespective of lineage, with sampling dates normal-
ized by using 1000 sampled accessions for each month, where
available, between December 2019 and October 2022. After the
date-based sampling, the resulting subset was topped up to 2
million by randomly selecting the remaining accessions with no
lineage or date constraints. The 2 million sequences were then
filtered to meet the following quality control (QC) criteria:
complete accession metadata (no missing location or sample
collection date); less than 5% ambiguous DNA (N) nucleotide or
translated amino (X) sequences; no runs of 6 or more consecutive
Ns in the DNA or Xs in the protein sequence; the entire set of the
canonical gene-based open reading frames (ORFs) for the coding
genome with full length BLAST hits when searched against the
reference genome; no ORFs truncated by premature stop codons.
The premature stop codon constraint was relaxed for ORF8, which
has a stop codon at amino acid position 27 in several lineages29,30.
820,056 sequences met all QC filters, which were used as the
population sampled for downstream analysis steps. Intergenic
regions were excluded.
For selection analysis, more computationally feasible subsets of

~10,000 genomes were further down-sampled (Supplementary Table
S4B). The rapid spread of emerging variants of concern resulted in
the majority of sampled genomes being from a dominant VOC
lineage at any point in time. The sampling date distribution was
simulated for the 10,000 sequence data sets by fitting the randomly
sampled, QC-passed sequence count for each month of the
pandemic to a log curve, favoring more recently samples genomes.

Fig. 4 Selective pressures within candidate variable T cell epitopes. Distribution of the number of sequence high frequency mutations
(found in 10,000+ isolates) observed in (A) putative memory CD8+ T cell epitope sequences from recovered COVID patients, and (B) epitopes
from spike RBD and non-RBD regions. Number of putative memory CD8+ T cell epitope sequences from recovered COVID patients that
contain sites under (C) diversifying and (D) purifying selection per gene. E Distribution of the number of sites under selection in epitopes,
broken down by diversifying and negative selection in spike peptides. F Distribution of the number of sites under purifying selection in
peptides (blue) and genome-wide (gray) 15-mers.
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Prior to this step, at least one randomly sampled representative of
each lineage was preserved, with the balance of sequences
composed of the date log curve-fitted random subsample. Using
this method, up to 10,000 sequence sets were selected for
timepoints. In some cases, sequences for a particular date range
numbered less than 10, 000 and all were retained. For time points
with greater than 10,000 QC-passed sequences available, the data
were down-sampled to approximately 10,000 sequences. The
following timepoints were used: 2020-03-31, 2020-06-30, 2020-09-
30, 2020-12-31, 2021-03-31, 2021-06-30, 2021-09-30, 2021-12-31,
2022-03-31, 2022-06-30, 2022-09-30 (Supplementary Table S4B). Each
timepoint represents the end of a 3-month quarter. Accessions
sampled prior beginning of the first quarter were included in the
2020-03-30 subset. Available samples collected later than 2022-09-30
but available in the 2022-11-12 GISAID download were included in
the 2022-09-30 subset. Six replicate down-sampled 10,000 sequence
sets (Supplementary Table S4B) were generated for the final
timepoint to evaluate reproducibility of selection analysis of the
sequences sets resulting from our down-sampling methodology. For
each of the timepoints, coding sequences of each full-length gene-
based open reading frame were aligned with the codon-aware
multiple sequence aligner virulign71. The aligned ORF sequences
were then assembled into a full-length coding genomes.

Phylogenetics
To guide the selection analysis (described below) for each of the
timepoint data subsets, a whole-genome phylogenetic tree was
inferred using fasttree72 with arguments -noml -nome –fastest,
which was selected in order to optimize the tradeoff between
accuracy and speed. To create the phylogeny annotated in Fig. 1, a
smaller subset of 2000 QC-passed sequences (Supplementary Table
S4B) was generated with unconstrained random sampling, except
for preservation of at least one sequence of each lineage in the
data subset. A more rigorous maximum-likelihood phylogenetic
tree was inferred using fasttree72 for the 2000 genomes set. The
tree was outgroup rooted using a GISAID accession EPI_ISL_402125
from December 2019. The maximum-likelihood tree was annotated
with geographic, variant and mutation metadata using the ETE3
Python toolkit71. Images of annotated phylogenetic trees were
rendered using the Python API to iTOL, the interactive Tree of
Life73.

Natural selection analysis
The selection test was performed using Fast Unconstrained
Bayesian AppRoximation (FUBAR) method23 from the hypothesis
testing using phylogenies (HyPhy) Suite (https://
stevenweaver.github.io/hyphy-site). The analysis was conducted
for each single gene. The prepared alignment and corresponding
whole-genome phylogenies described above were inputted into
FUBAR to infer nonsynonymous (dN) and synonymous substitution
(dS) rates at a per-site basis and test whether dN was significantly
different from dS. Probabilities that sites were under purifying or
diversifying selection were reported separately, and sites with
probability values >0.9 were considered to be under non-neutral
(either purifying or diversifying) selection. This was repeated at the
historical time points to understand the changes over time. For the
purposes of interpretation, the historical quarters were binned into
pre-vaccine (2020-03-31, 2020-06-30, 2020-09-30, 2020-12-31),
post-vaccine (2021-03-31, 2021-06-30, 2021-09-30, 2021-12-31)
and post-Omicron (2022-03-31, 2022-06-30, 2022-09-30) periods.
To assess whether the genome subsets were representative of

the larger data set and that any results would be robust and
reproducible, this analysis was repeated across six different
replicates of the above-described down-sampling procedure.
The consistency of the results was assessed using Pearson
correlation of the log(1—probabilities) of diversifying and purify-
ing selection across the full SARS-CoV-2 genome. There was a high

degree of concordance among replicates (Supplementary Fig. S7),
suggesting that these down-sampled subsets were sufficiently
representative of the larger dataset and could be used to further
investigate the evolution of the SARS-CoV-2 genome.

Analysis of deep mutation scan data
Data from deep mutational scans were downloaded from the
following sources:
single_mut_effects.csv file from https://github.com/jbloomlab/

SARS-CoV-2-RBD_DMS (RBD binding, expression constraints),
final_variant_scores.csv from https://github.com/jbloomlab/SARS-
CoV-2-RBD_DMS_Omicron (RBD binding, expression constraints),
and the escape_data.csv file from https://github.com/jbloomlab/
SARS2_RBD_Ab_escape_maps (escape maps). The escape value
was taken to be the average of “site_total_escape” across all
convalescent plasma samples.

Seroprevalence analysis
CDC seroprevalence estimates were downloaded from https://
covid.cdc.gov/covid-data-tracker/#serology-surveillance. The John
Hopkins daily incident rate estimates were downloaded from
https://github.com/CSSEGISandData/COVID-19. For each US state,
the relationship between seroprevalence estimates and incident
rates was evaluated using Pearson’s correlation coefficient. Since
these were highly correlated (R= 0.8), the incident rate was used
as a proxy for seroprevalence. For each sample in GISAID, the
incident rate at the month (Collection Date) and highest-
resolution place (county when available, otherwise state/country)
was annotated. The incident rates were used to compare trends
where different sets of mutations were spreading. This analysis
was restricted to the pre-vaccination era of sequences, as defined
by the samples collected between June 2020 (when incident rates
became reliable) and December 31, 2020 (when vaccinations
began to ramp up in the United States).

Analysis of CD4+ and CD8 + T cell epitope sequences
The list of 142 previously published memory CD4+ T cell epitope
sequences and genome coordinates was downloaded from
Supplementary Table 1 of ref. 20. The list of 637 previously
published CD8+ T cell epitope sequences were downloaded from
Supplementary Tables 4 and 7 of ref. 21 and each peptide
sequence was aligned against the reference sequence using
BLAST (accession: MN908947.3) to determine genome
coordinates.
For each gene, we counted the total numbers of unique sites

that were covered by epitope sequences and under diversifying/
purifying selection. Significance was assessed using a fisher’s exact
test comparing the number of sites under selection within sites
targeted by candidate epitopes to genome-wide levels of
selection. The number of sites under diversifying/purifying
selection were computed for all 15-mers genome-wide and
compared to epitope sequences using the one-sided Wilcoxon
rank-sum test for each gene. The number of sites under
diversifying/purifying selection were also computed for all 15-
mers genome-wide and compared to epitope sequences using
the one-sided Wilcoxon rank-sum test for each gene.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Sequences downloaded from the GISAID EpiCoV database are not available due to
data-sharing restrictions, however, accession IDs for the sequences used in the analyses
are provided in Supplementary Table S4. Data from deep mutational scans was
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downloaded from https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS_Omicron (RBD
binding, expression constraints) and https://github.com/jbloomlab/
SARS2_RBD_Ab_escape_maps (escape maps). CDC seroprevalence estimates were
downloaded from https://covid.cdc.gov/covid-data-tracker/#serology-surveillance. The
John Hopkins daily incident rate estimates were downloaded from https://github.com/
CSSEGISandData/COVID-19. Previously published T cell epitope sequences were
downloaded from Supplementary Table 1 of ref. 20 and Supplementary Tables 4 and
7 of ref. 21.

CODE AVAILABILITY
Code will be made available at: https://github.com/regeneron-mpds/SARS-CoV-
2_evolution.
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