

https://doi.org/10.1038/s44296-024-00008-w

Microbial conversion of carbon dioxide into premium medium-chain fatty acids: the progress, challenges, and prospects

Check for updates

Kai-Kai Wu^{1,2}, Pian-Pian Xu¹, Lei Zhao¹ , Nan-Qi Ren^{1,3} & Yi-Feng Zhang²

The conversion of carbon dioxide to medium-chain fatty acids (CO₂-to-MCFAs) through microbial processes represents a valuable technology for sequestering and exploiting CO₂, generating superior biochemicals from the primary contributor to the greenhouse effect. However, a comprehensive overview and generalization of microbial CO₂-to-MCFAs are presently deficient. Based on this, the present review systematically summarizes the research progress, explicates the process mechanisms, analyses the key challenges and possible solutions, and anticipates forthcoming research perspectives and priorities for the first time. We proposed two original strategies, namely the synchronous strategy and integrated strategy, from current research into microbial CO₂-to-MCFAs. The synchronous strategy concurrently achieves hydrogen (H₂) and CO₂ assimilation, as well as MCFAs production, by employing a reactor that cocultivates predominant H₂/CO₂-utilizing microorganisms and chain elongation microorganisms. The integrated approaches involve CO₂-to-precursors (i.e., acetate and ethanol) and subsequent precursorsto-MCFAs, achieved through the use of two bioreactors for separately cultivating H₂/CO₂-utilizing microorganisms and chain elongation microorganisms. Mechanistic insights reveal that microbial CO₂-to-MCFAs predominantly encompasses two processes: H₂ and CO₂ assimilation into precursor and subsequent precursors chain elongation into MCFAs, through a Wood-Ljungdahl pathway and a tworound elongation, respectively. The analyses of key challenges and possible solutions for microbial CO₂to-MCFAs underscore the imperative to enhance efficiency and economy and to shed light on metabolic mechanisms. Furthermore, in order to improve the strategy application potential of microbial CO₂-to-MCFAs, future research perspectives and priorities, e.g. exploitation of functional pure bacteria, screening of functional pure bacteria, multi-omics analysis, genetic modification and enhancement, enhancement of bioreactor stability, specific MCFA production, development of coupled purification technology for MCFAs, and economic benefits and ecological environmental risks, are proposed and prospected. This work is expected to offer a thorough understanding of the microbial CO₂-to-MCFAs, guide and inspire researchers to address critical challenges in-depth and propel the development of CO₂-to-MCFAs.

With the development of human society, the global energy demand is growing rapidly, with more than 80% of the need being met by fossil fuels, e.g., coal, petroleum, natural gas, etc. However, the global carbon dioxide (CO_2) released from fossil fuel combustion is now approximately 36.8 billion tons yearly¹. If the current uptrend continues, the CO_2 fossil-fuelrelated emissions load is likely to double by mid-century, which will cause global warming of about 2 $^{\circ}C^{2,3}$. This trajectory of climate change entails an array of potential risks associated with climate destabilization, encompassing adverse natural phenomena, glacier melt, and intensified occurrences of extreme weather patterns. Confronted with the dual challenges of

Fig. 1 | Recycling and utilization of CO₂. CO_2 can undergo conversion through various means such as light, electricity, chemical reactions, biological processes, and other methodologies, yielding a diverse array of chemicals and fuels.

escalating energy demand and the exacerbation of greenhouse climate effect, CO_2 capture, utilization, and storage (CCUS) has garnered considerable attention in recent years due to its pivotal role in mitigating the impact of global warming⁴⁻⁶.

In comparison to CO₂ storage, the conversion and utilization of CO₂ represent a noteworthy renewable energy approach, holding the potential to alleviate CO₂ emissions and diminish reliance on fossil fuels, thereby contributing significantly to combating global warming. Presently, a growing number of CO₂ utilization technologies, including chemical catalysts^{7,8}, photochemical^{9,10}, electrochemical^{11,12}, as well as biogenic source such as photoautotrophic microalgae^{13,14} and chemoautotrophic CO₂-utilizing bacterium^{15,16}, are undergoing development and practical implementation. These technologies facilitate the conversion of CO₂ into a range of renewable energy sources, spanning bio-fuels, bio-chemicals, high-molecular compounds, and degradable plastics. As illustrated in Fig. 1, the bio-products based-CO₂ involve in methane (CH₄)¹⁷, alcohols¹⁸, carboxylates^{19,20}, biodiesel²¹, glucose²², polyhydroxybutyrate²³, and starch²⁴, single-cell protein²⁵, and analogous substances.

Among these bio-products derived from CO₂, carboxylates, consisting of short-chain fatty acids (SCFAs, with 1-5 carbon chain, e.g., acetate and propionate) and medium-chain fatty acids (MCFAs, with 6-12 carbon chain, e.g., caproate and heptylate), are an extremely versatile biochemicals. Notably, MCFAs, serving as high value-added platform compounds, can be directly used as feed additives, plant growth promoters, and antimicrobials or serve as precursors for a broad spectrum of commodities, such as aviation fuel, lubricants, fragrances, paint additives, and pharmaceuticals^{26,27}. Furthermore, MCFAs exhibit diminished dissolution properties (caproate of 93.1 mmol L⁻¹, heptylate of 18.5 mmol L⁻¹, caprylate of 4.9 mmol L⁻¹, pelargonate of 1.1 mmol L⁻¹, caprate, undecanoate and dodecanoate are almost insoluble in water, at 25 °C and 1.01 × 10⁵ Pa), allowing MCFAs much more straightforward to separate from liquid effluent. This inherent property of lower solubility gives MCFAs a significant advantage in lowering separation costs.

This review aims to present a comprehensive overview of chemoautotrophic CO_2 -utilizing bacterium for CO_2 conversion into MCFAs. Our focus is on summarizing the progress of microbial CO_2 -to-MCFAs and elucidating the underlying strategies and mechanisms involved. Additionally, the challenges and possible solutions in this process are addressed, and future perspectives and priorities in this field are discussed.

Progress of microbial CO₂-to-MCFAs

Current research into microbial CO₂-to-MCFAs predominantly employs hydrogen (H₂) or H₂ proton (H⁺) as an electron donor to assist CO₂ conversion. Additionally, a subset of studies explores the conversion of CO₂ into MCFAs by using co-electron donors and acceptors including short-chain alcohols (e.g., methanol and ethanol), carboxylate (e.g., acetate, propionate, butyrate), and lactate. As delineated in Tables 1–3, these studies on microbial CO₂-to-MCFAs can be systematically categorized into two principal strategies: the synchronous strategy and the integrated strategy.

Function microbial

The research into CO2-to-MCFAs primarily encompasses two categories of functional microorganisms: H₂/CO₂-utilizing microorganism (also known as Homoacetogen) and chain elongation microorganisms. The both microorganisms togetherly facilitate the efficient conversion of H₂ and CO₂ into MCFAs. In the mixed-culture bioreactors, H2/CO2-utilizing microorganism and chain elongation microorganisms play a dominant role in the microbial community. Meanwhile, numerous high-effective Homoacetogens, e.g., Acetobacterium woodii28, Clostridum ljungdahlii29, Clostridum ragsdalei $P11^{30}$, Clostridum autoethanogenum³¹, Clostridum carboxidivorans³², etc, along with a select number of chain elongation microorganisms, e.g., Clostridum kluyveri33, have been isolated and screened for their efficacy in converting CO2 to ethanol and acetate, as well as facilitating the chain elongation process for MCFAs production in the pureculture bioreactors.

H₂ roles and sources

It is widely believed that H₂ acts as electrons to drive the conversion of CO₂ into acetate and ethanol within H₂/CO₂-utilizing microorganisms. The sources of pure H₂ and H⁺ are derived from electrolytic water and anode of microbial electrolysis cells (MEC). The electric power is generated by surplus windmills or solar panels. In addition, the H₂ utilized for driving CO₂ conversion sources from syngas (a mixture of H₂, CO₂, CO), which has a huge capacity emanating from biomass gasification, steelmaking industry, and coke-oven plant^{34,35}. Among these H₂ supply means, MEC stands out as a low-input technology capable of overcoming the challenges associated with low-efficiency -H₂ gas-liquid mass transfer. The conversion of syngas into chemicals or fuel represents a noteworthy advancement in waste gas recycling technology.

CO₂ sources

The present investigation into microbial CO_2 -to-MCFAs showed that a predominant proportion of the CO_2 utilized for MCFAs production emanates from simulated captured CO_2 gas (Tables 1 and 2). The potential of CO_2 for MCFAs production is very large and abundant. Currently, there exist approximately 40 commercial capture facilities globally, with a total annual capture capacity exceeding 45 million tons of CO_2 (International Energy Agency, 2023). The capture of CO_2 predominantly originates from large point sources, including power generation or industrial facilities that use either fossil fuels or biomass for fuel. Alternatively, the CO_2 can be captured directly from the atmosphere. Some studies also use syngas to provide CO_2 for MCFAs production (Tables 1 and 2). Besides, biogas comprises 35–45% CO_2 , attains an annual production exceeding 70 billion cubic meters (bcm) and a global potential of up to 200 bcm per year³⁶. Biogas, therefore, can also afford a mass of CO_2 for MCFAs production³⁷. In fact, there are many more sources of CO_2 that can be used to produce MCFAs.

Two strategies for CO₂-to-MCFAs

The review introduces two innovative strategies in the current exploration of microbial CO_2 -to-MCFAs, as depicted in the schematic diagram presented in Fig. 2. The synchronous strategy employed a reactor primarily housing two collaborating microbes, namely CO_2 -utilizing microorganisms and

Table 1 Current research to synchrono	us strategy for m	nicrobial H ₂ /CO ₂ -to-	-MCFAs				
Synchronous strategy for H ₂ /CO ₂ -to-MCFAs							
Microbes	Bioreactors	CO ₂ source	H ₂ source	Other ED addition	Other EA addition	MCFAs yield	References
Mixed-culture	MEC	Pure CO ₂	MEC (H ⁺)	/	/	Caproate 3.6 mmol L ⁻¹	57
Mixed-culture	MEC	Pure CO ₂	MEC (H+)	/	/	Caproate 0.9 g L ⁻¹ d ⁻¹	58
Mixed-culture	MEC	Syngas (CO, CO ₂)	MEC (H+)	/	/	Caproate 15.4%	59
Mixed-culture	MEC	Pure CO ₂	MEC (H ⁺)	Ethanol	Formate	Trace levels	60
Mixed-culture	MEC	Dissolved CO ₂	MEC (H ⁺)	/	/	Trace levels	61
Mixed-culture	MEC	Dissolved CO ₂	MEC (H ⁺)	Ethanol and lactate	/	Caproate 1.6 g L^{-1}	38
Mixed-culture	MEC	Pure CO ₂	MEC (H ⁺)	Ethanol	/	Caproate 4.4 g L ^{-1}	62
Mixed-culture	MEC	Pure CO ₂	MEC (H ⁺)	Ethanol	/	Caproate 11.9 g L ⁻¹	63
Mixed-culture	MEC	Pure CO ₂	MEC (H+)	Ethanol and lactate	1	Caproate 8.0 g L ⁻¹	39
Mixed-culture	MEC	Pure CO ₂	MEC (H ⁺)	/	/	Caproate 7.5 g L ^{-1}	20
Co-culture of A. woodii and C. drakei	MEC	Pure CO ₂	MEC (H ⁺)	/	/	Caproate 1.6 g L ⁻¹	64
Co-culture of C. autoethanogenum and C. kluyveri	Anaerobic bottle	Syngas (CO, H ₂ , CO ₂)	Syngas (CO, H ₂ , CO ₂)	/	1	Caproate 2.5 mmol L ⁻¹ d ⁻¹	6 53
Mixed-culture	Minifors reactors	Syngas (CO, H ₂ , CO ₂)	Syngas (CO, H ₂ , CO ₂)	Lactate	1	Caproate	66
Mixed-culture	MBfR	Syngas (H ₂ , CO ₂)	Syngas (H ₂ , CO ₂)	/	/	Trace levels	67
Mixed-culture	MBfR	Syngas (H ₂ , CO ₂)	Syngas (H ₂ , CO ₂)	/	/	Caproate 5.7 g L^{-1}	34
Mixed-culture	MBfR	Syngas (H ₂ , CO ₂)	Syngas (H ₂ , CO ₂)	/	/	Caproate 0.9 g L $^{-1}$	68
Mixed-culture	dMBfR	Biogas (CO ₂ , CH ₄)	H_2	Ethanol	/	MCFAs 28 mmol $L^{-1}d^{-1}$	54
${\cal H}_2$ hydrogen, ${\cal CO}_2$ carbon dioxide, ${\cal CO}_2$ carbon monoxide, ${\cal CH}_4$	methane, MCFAs medium	-chain fatty acids, MEC microb	ial electrolysis cells, <i>ED</i> electron	donor, EA electron acceptor	, <i>MBfR</i> Membrane biofilm re	sactor, dMBfR dual-Membrane biofilm	reactor.

. (ġ 2 . . . ŝ

npj	Materials	Sustainability	(2024)2:4

https://doi.org/10.1038/s44296-024-00008-w

Table 2 Current research to synchrono	ous strategy for micro	bial CO ₂ -to-MCFAs v	without H ₂ assistance			
Synchronous strategy for CO ₂ -to-MCFAs without I	H ₂ assistance					
Microbes	Bioreactors	CO ₂ source	Other ED addition	Other EA addition	MCFAs yield	References
B. methylotrophicum	Anaerobic bottle	Pure CO ₂	Methanol	/	Trace levels	69
Mixed-culture	Anaerobic bottle	Pure CO ₂	Ethanol	Acetate	Heptanoate 118 mg L ⁻¹	40
Mixed-culture	Anaerobic bottle	Pure CO ₂	Ethanol	Propionate	Caproate 10.8 g·L ⁻¹ d ⁻¹	20
Mixed-culture	Up-flow reactor	Pure CO ₂	Ethanol	Acetate	57.4 g MCFA L ⁻¹ d ⁻¹	56
Mixed-culture	Anaerobic reactor	Pure CO ₂	Ethanol	Acetate	Caproate 1.9 g COD·L ⁻¹ d ⁻¹	14
Mixed-culture	Anaerobic bottle	Pure CO ₂	Ethanol	Acetate	Caproate 17.6 g COD·L ⁻¹	72
Mixed-culture	Anaerobic bottle	Pure CO ₂	Ethanol	Acetate	Caproate 21.5 g COD·L⁻¹	73
Co-culture of C. carboxidivorans and C. kluyveri	Stirred-tank bioreactor	Syngas (CO, CO ₂)	Ethanol	Acetate	Hexanoate 0.3 g L ⁻¹	9
H_2 hydrogen, CO_2 carbon dioxide, CO_2 carbon monoxide, MCF_2	⁻ As medium-chain fatty acids, ED	electron donor, EA electron acce	ptor, COD Chemical Oxygen Demar	d.		
1						
Table 3 Current research to integrated	strategy for microbia	al CO ₂ -to-MCFAs				
CO ₂ -to-precursors		Precu	irsors-to-MCFAs			References

CO ₂ -to-precursors			Precursors-to-MCFAs			References
Microbes	CO ₂ and H ₂ sources	To-precursors	Microbes	Precursors-to	MCFAs yield	
Mixed cultures	Pure CO ₂ and MEC	Ethanol and acetate	Mixed cultures	Ethanol and acetate	Caproate 144 mmol carbon	74
Mixed cultures	Syngas (H_2 , CO ₂)	Ethanol and SCFAs	Mixed cultures	Ethanol and SCFAs	Caproate 6,157 mg L $^{-1}$	52
Mixed cultures	Syngas (CO, H_2 , CO ₂)	Ethanol and acetate	Mixed cultures	Ethanol and acetate	Caprylate 68.3 mmol L ⁻¹ d ⁻¹	75
Mixed cultures	Syngas (CO, H_2 , CO ₂)	Ethanol and acetate	Mixed cultures	Ethanol and acetate	Caproate and caprylate	46
C. Ijungdahlii	Syngas (CO, H_2 , CO $_2$)	Ethanol and acetate	Mixed cultures	Ethanol and acetate	Caproate 1.0 g L ^{_1}	53
Mixed cultures	Syngas (CO, H_2 , CO ₂)	Ethanol and acetate	C. kluyveri	Ethanol and acetate	Caproate 40 mmol L ⁻¹ d ⁻¹	76
Mixed cultures	Syngas (CO, H_2 , CO ₂)	Ethanol and acetate	C. kluyveri	Ethanol and acetate	Caproate 121.9 mmol L ⁻¹	17
H_{a} hydroden CO_{a} carbon monos	xide MCFAs medium-chain fatty acids SCF+	4s short-chain fatty acids MEC microbial et	ectrolysis cells			

Fig. 2 | The schematic diagram of synchronous strategy and integrated strategy for microbial CO₂-to-MCFAs. The synchronous strategy involved a reactor designed to host two symbiotic microbial populations, namely carbon CO_2 -utilizing microorganisms and chain elongation microorganisms, with the aim of enabling concurrent processes of CO_2 assimilation and chain elongation. The integrated strategy employs two distinct bioreactors. In the initial reactor, H₂ and CO_2 are assimilated into precursors (acetate and ethanol) by microorganisms specialized in H₂ and CO_2 utilization. In the secondary bioreactor, dominant chain elongation microorganisms facilitate the elongation of acetate and ethanol into MCFAs.

chain elongation microorganisms, to facilitate simultaneous CO_2 assimilation and chain elongation. In the presence of H_2 , H_2/CO_2 -utilizing microorganisms and chain elongation microorganisms dominate the microbiome of a mixed-culture bioreactor, allowing for the concurrent assimilation of H_2 and CO_2 into acetate and ethanol and chain elongation of endogenous acetate and ethanol into MCFAs. Moreover, an accompanying strategy for H_2/CO_2 -to-MCFAs involves the co-cultivate of pure Homoacetogen and chain elongation microorganisms (e.g., co-culture of *Clostridum autoethanogenum* and *Clostridum kluyveri*) to achieve synchronous H_2/CO_2 assimilation and chain elongation (Table 1). Furthermore, in the synchronous strategy for H_2/CO_2 -to-MCFAs, external addition of electron donors (e.g., ethanol) and acceptors (e.g., acetate and propionate) are often implemented to facilitate chain elongation^{38,39}.

In addition, in the synchronous strategy for CO₂-to-MCFAs, certain studies have showed the feasibility of elongating CO₂ into MCFAs without H₂ assistance. In such cases, electron donors (e.g., methanol and ethanol) and acceptors (e.g., acetate and propionate) play a crucial role in the elongation process, as indicated in Table 2. Additionally, research reported that CO₂ can promote the elongation of acetate and ethanol into MCFAs⁴⁰. However, the underlying mechanism of converting CO₂ and elongating electron donors (e.g., methanol and ethanol) and acceptors (e.g., acetate and propionate) into MCFAs remains unclear. In short, the synchronous strategy synchronously enables concurrent CO₂ conversion and MCFAs production under with H₂ assistance or without H₂ assistance. The primary advantage of the synchronous strategy lies in its cost-effectiveness due to lower equipment investment. However, the synchronous implementation of both processes in a single reactor may lead to mutual inhibition, potentially causing reduced efficiency.

The integrated strategy for CO2-to-MCFAs involves two separate bioreactors (Fig. 2). In the first reactor, the assimilation of H₂ and CO₂ into precursors (acetate and ethanol) occurs within the H2/CO2-to-precursors bioreactor. The microbiome of this bioreactor is primarily composed of H₂ and CO_2 -utilizing microorganisms (e.g., Clostridum ljungdahlii, Clostridum autoethanogenum). Subsequently, the H₂ and CO₂ fermentation effluent, containing the precursors (acetate and ethanol), is fed into the chain elongation bioreactor. In this second bioreactor, dominant chain elongation microorganisms, such as Clostridum kluyveri, facilitate the elongation of acetate and ethanol into MCFAs. In the integrated strategy, the sources of H₂ and CO₂ primarily originate from syngas, MEC, and simulated captured CO_2 gas (Table 3). The coupling approach effectively achieved the sequential objectives of CO2-to-precursors and subsequent precursors-to-MCFAs. Its primary advantage lies in separating CO₂ assimilation and MCFAs production processes into distinct reaction units, ensuring system stability and enhancing overall performance.

Mechanism of CO₂-to-MCFAs

Figure 3 illustrates the mechanisms of microbial CO₂-to-MCFAs. In the context of H_2 and CO₂ as the substrate for MCFAs, H_2/CO_2 -to-MCFAs mainly encompasses two key processes: the assimilation of H_2 and CO₂ into precursor (acetate and ethanol) and subsequent chain elongation of these precursors (acetate and ethanol) into MCFAs. In addition, some studies have reported a supplementary process wherein other electron donors (e.g., lactate) and electron acceptor (e.g., propionate) substrates are introduced to facilitate the production of MCFAs.

H₂ and CO₂-to-acetate and ethanol

Whether employing a synchronous strategy or an integration strategy for H₂/CO₂-to-MCFAs, the assimilation of H₂ and CO₂ into precursors (acetate and ethanol) stands as the primary process implemented by H2 and CO2utilizing microorganisms. The majority of H₂ and CO₂ -utilizing microorganisms convert H₂ and CO₂ into acetate and ethanol via a woodljungdahl pathway according to the equation 4H₂ + 2CO₂→CH₃COOH $\Delta G = -95 \text{kJ} \text{ mol}^{-1}$ and $6H_2 + 2CO_2 \rightarrow C_2H_5OH + 3H_2O$ $+2H_2O$ $\Delta G = -97 \text{ kJ mol}^{-1.36,41}$. These reactions are catalyzed by a series of microbial enzymes. As shown in Fig. 3 (CO2-to-acetate and ethanol), the assimilation of CO₂ involves two pathways (methyl and carbonyl pathways), in which acetyl-CoA (acetyl-coenzyme A) works as a pivotal intermediate for acetate and ethanol production. In the methyl pathway, CO2 is first converted into formate with the assistance of H2, which acts as an electron donor for reducing CO2. Subsequently, formate undergoes successive transformations into formyl-tetrahydrofolate (formyl-THF), methenyl-THF, methylene-THF, methyl-THF, and further methyl-corrinoid iron-sulfur protein (methyl-CoFeSP). In the carbonyl pathway, CO2 is first reduced into CO, followed by CO, and along with methyl-CoFeSP, it is transformed into acetyl-CoA. Acetyl-CoA is eventually transformed into acetate and ethanol. In addition to producing the main metabolites of acetate and ethanol, small amounts of C3-5 (with 3-5 carbon chain fatty acids, e.g., propionate, butyrate and valerate) are also generated by Homoacetogens^{29,42}. These by-products can also serve as precursors to be elongated into MCFAs.

Acetate and ethanol-to-MCFAs

The process of acetate and ethanol-to-MCFAs consists of two consecutive rounds of elongation implemented by chain elongation bacteria. The corresponding reaction equations are represented:as follows $4H_2 + 2CO_2 \rightarrow CH_3COOH + 2H_2O \ \Delta G = -95kJ \ mol^{-1}$ and $5C_2H_5OH + 5C_3H_7COOH \rightarrow C_5H_{11}COOH + 4H_2O + 2H_2 \ \Delta G = -183.5 \ kJ \ mol^{-1 43}$. Each round elongation is catalyzed by a series of microbial enzymes, and the process results in an increment oftwo carbon chains in each round. As shown in Fig. 3 (ethanol and acetate-to-butyrate and butyrate-to-MCFAs),

in the first-round elongation (ethanol and acetate-to-butyrate), ethanol from H₂ and CO₂ assimilation is first oxidized to acetaldehyde and then to acetyl-CoA. coupled to another acetyl-CoA, acetyl-CoA undergoes successive transformations into acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and further butyryl-CoA, which then is converted into acetyl-CoA and butyrate with acetate formed from H₂ and CO₂ assimilation. The acetyl-CoA continues to participate in the elongation of the first round, while concurrently initiating the second-round elongation by coupling with butytyl-CoA. In the second-round elongation (butyrate-to-MCFAs), acetyl-CoA and butytyl-CoA undergo successive conversions into ketohexanoyl-CoA, 3-hydroxyhexanoyl-CoA, hex-2-enoyl-CoA, and further hexanoyl-CoA. Hexanoyl-CoA is then converted into caproate along with the butyrate generated from the first-round elongation. Notably, H₂ is generated during both rounds of the elongation process. In the integration strategy of CO2-to-MCFAs, the H₂ release means that some energy will inevitably be lost. However, in the synchronous strategy of CO2-to-MCFAs, the H2 is recycled with CO₂ to produce acetate and ethanol, which prevents energy loss.

In addition, except for caproate, a few small quantities of heptylate and caprylate are also produced in the course of two consecutive rounds of elongation, the underlying mechanism of which remains to be conclusively established. In general, the elongation of first-round and second-round work in sync for acetate and ethanol-to-caproate within chain elongation bacteria. Consequently, both butyrate and caproate are produced simultaneously. However, the elongation processes of acetate, ethanol-to-heptylate, and caprylate may unfold successively within chain elongation bacteria. Upon achieving a specific yield of butyrate and caproate, the elongation into heptylate and caprylate is initiated, resulting in the production of heptylate and caprylate. Therefore, heptylate and caprylate are usually produced during the intermediate and later stages of chain elongation process⁴⁴.

During the two successive rounds of elongation for acetate and ethanol-to-MCFAs, butyrate acts as an intermediate electron acceptor to produce MCFAs, while butyrate is also a significant by-product with a higher cumulative yield. For example, butyrate, acting as the only electron acceptor, along with ethanol, can also be elongated into MCFAs⁴⁵. Nevertheless, the elongating process of acetate and ethanol-to-MCFAs yields a higher butyrate output. This shows that the more butyrate is elongated into MCFAs, the higher yield of MCFAs is formed. However, a common phenomenon observed in numerous studies involves the substantial accumulation of butyrate without subsequent elongation into MCFAs^{33,46}. This butyrate accumulation reduces the yield of MCFAs. Therefore, the efficiency of butyrate-to-MCFAs is a limiting factor to MCFAs production. The aspect warrants meticulous consideration in future research endeavors.

Lactate or propionate-to-MCFAs

Lactate usually acts as an externally introduced electron donor for the production of MCFAs, and it can be oxidized either in conjunction with ethanol as a co-electron donor or as a standalone electron donor⁴⁷. As shown in Fig. 3 (lactate as ED), lactate is initially oxidized to pyruvate, subsequently progressing to further oxidation to form acetyl-CoA. Acetyl-CoA then enter the elongation process of the first and second rounds, ultimately yielding MCFAs. Notably, a portion of CO_2 is released accompanied by oxidization of pyruvate into acetyl-CoA, indicating a part loss of the carbon source when the lactate as an electron donor. In contrast, the synchronous strategy of CO_2 -to-MCFAs offers a distinctive advantage, as CO_2 is recycled with H₂ to generate acetate and ethanol, thereby preventing the loss of carbon sources. Conversely, the integration strategy of CO_2 -to-MCFAs lacks this particular advantage and is susceptible to carbon source loss.

Propionate typically serves as an externally added electron acceptor for MCFAs production. As shown in Fig. 3 (propionate as EA), the process involves the initial elongation of propionate, which, when coupled with acetyl-CoA, progresses to form valerate. Subsequently, valerate, in conjunction with acetyl-CoA, undergoes further elongation to produce heptylate. Consequently, propionate and valerate can function as either co-electron acceptors or distinct electron acceptors in the production of MCFAs, resulting in the generation of MCFAs with uneven carbon chains.

Key challenges and possible solutions for CO₂to-MCFAs

The key challenges for CO_2 -to-MCFAs primarily revolve around the low microbial conversion efficiency, resulting in an insufficient yield of MCFAs. Additionally, the economic viability of the strategy is a matter of contention, and certain aspects of the process mechanisms remain inadequately elucidated (Fig. 4). These formidable challenges have considerably impeded the

seamless transition of the strategy from laboratory research to practical application.

Efficiency improvement

As shown in Tables 1-3, whether employing a synchronous or integrated strategy for H₂/CO₂-to-MCFAs, numerous studies supplied H₂ and CO₂ in the form of gases, alongside MEC providing H₂ protons. However, it is essential to note that H2 and CO2 gases exhibit a lower dissolution of 0.8 mmol L^{-1} and 33.9 mmol L^{-1} under 25 °C and 1.01×10^5 Pa. Moreover, H₂ and CO₂ can be captured and converted by Homoacetogenes before being dissolved into the liquid phase. Therefore, the lower gas-liquid mass transfers of H₂ and CO₂ are a crucial limiting condition to microbial conversion efficiency in H2 and CO2-to-acetate and ethanol processes, ultimately resulting in the lower production of MCFAs. As shown in Fig. 4, to address this challenge of suboptimal H2 and CO2 gas-liquid mass transfers, all kinds of advanced reactor designs, such as hollow-fiber membrane aerated biofilm reactors and MEC48, should be developed to enhance H2 and CO2 gas-liquid mass transfer. Meanwhile, the advanced bioreactors must be capable of trapping more microbes and facilitating the timely dissociation of MCFAs. The increased retention of microbes within bioreactors is a direct and effective approach to augment the performance of CO₂-to-MCFAs. Concurrently, the prompt dissociation of MCFAs is pivotal in mitigating the toxicity of MCFAs to microorganisms.

In addition, the low efficiency observed in microbial transformation of CO_2 -to-MCFAs in current studies is due to the inherently low metabolic activity of microorganisms. Employing bio-augmentations and powerful engineered bacteria may be effective solutions to improve the efficiency of microbial transformation for CO_2 -to-MCFAs. Some studies have demonstrated the effectiveness of bio-augmentations, e.g., the addition of zerovalent nano-iron (ZVNI), biochar, and activated carbon, in bolstering microbial transformation efficiency by maintaining the system stability and enhancing microbial metabolic activity^{49,50}. Furthermore, using robust pure bacteria or genetically modified engineering bacteria have been proved to be effective means to improve the efficiency of H₂ and CO₂ assimilation and ethanol and acetate chain elongation^{29,51}.

Economy improvement

While microbial approaches for CO_2 -to-MCFAs are gaining increasing popularity, concerns have been raised regarding their economic viability. As shown in Fig. 4, various coupled resource recovery technologies, e.g., syngasto-biofuel, biogas upgrading, acetate and ethanol of wastewater recycling, and the like, with microbial approaches of CO_2 -to-MCFAs, presents a promising avenue to enhance economic feasibility. Notably, syngas-tocoupling techniques involving biogas upgrading and recycling from acetate and ethanol wastewater with CO₂-to-MCFAs have also been demonstrated in previous studies^{52,53}. For instance, synchronous biogas upgrading and MCFAs production respectively achieve greater than 96% CH₄ purity and 24 mmol L⁻¹d⁻¹ MCFAs production rate^{54,55}. Another study reports a feasible approach of concurrently recycling of liquor-making wastewater and yielding the high output of MCFAs⁴⁷. Moreover, the utilization of cheaper mixture gases of H₂ or CO₂ instead of pure H₂ and CO₂ can contribute to reducing costs. In addition, with the rapid development of CO₂ capture technology worldwide and the growing environmental benefits of CO₂ reduction in response to climate change, the associated costs are expected to decrease.

biofuel has been extensively documented. Additionally, the successful

Process in-depth analysis

The lack of elucidation in certain the mechanisms governing CO_2 -to-MCFAs represents a significant challenge, impeding its practical application. As mentioned above, the mechanism involved in converting CO_2 and the elongating of electron electrons (e.g., methanol and ethanol) and acceptors (e.g., acetate and propionate) into MCFAs remains unclear. While some studies have posited that the conversion of CO_2 -to-MCFAs is caused by the H₂ gas assistance produced by the chain elongation of ethanol and acetate⁵⁶, the explicit mechanism lacks definitive confirmation. In addition, a comprehensive analysis of the mechanism governing butyrate-to-MCFAs is warranted to enhance its transformation efficiency. The large accumulation of butyrate and failure to elongate into MCFAs are also important reasons for lower yield of MCFAs.

Future perspectives

The synchronous and integrated strategy for microbial CO₂-to-MCFAs holds a promising potential for CO₂ recycling and MCFAs production. MCFAs, as renewable bioenergy sources, derived from waste CO₂, offer an opportunity to reduce the dependence on fossil fuels and contribute to the mitigation of CO₂ emissions, thereby being conducive to tackling global climate change and energy supply shortage. However, the technology of microbial CO₂-to-MCFAs has yet to transition from laboratory research to practical engineering applications. As the escalation of global CO₂ emissions and the increasing severity of climate change, the technology, although slow to start, is developing rapidly.

Fig. 5 shows future research perspectives and priorities aimed at boosting the application potential of CO_2 -to-MCFAs. The exploitation of functional pure bacteria is a the cornerstone for high-efficiency CO_2 -to-MCFAs. In particular, screening vital functional pure bacteria serves as a

Research perspectives and priorities

Fig. 5 | The future research perspectives and priorities for boosting application potential of CO₂-to-MCFAs. The forthcoming research outlook and focal points encompass the utilization of functionally pure bacteria, screening of such strains, elucidation of metabolic pathways, genetic modification for enhanced performance, bolstering bioreactor stability, tailored production of specific MCFAs, advancement of coupled purification techniques, and comprehensive assessment of economic viability and ecological ramifications.

catalyst for technological advancement. The application of multi-omics, e.g., metagenome, metabolome, transcriptome, proteome, etc., is crucial for a comprehensive understanding of the metabolic pathways and transformation processes of microbial CO2-to-MCFAs. This knowledge, in turn, will pave the way for genetic modification and enhancement. With the rapid development of biotechnology, the trend in future research and development is expected to focus on genetically modified and enhanced engineered bacteria. The stability of bioreactor is paramount for practical applications, vet ensuring their prolonged stability and efficient operation remains an urgent challenge. Notably, current studies predominantly yield mixed MCFAs, including caproate, heptylate, and caprylate. However, achieving product separation and generating a specific MCFA suitable for targeted product formation presents a complex challenge. Meanwhile, the promotion of the synchronous CO2-to-MCFAs and MCFAs purification is advocated. This approach aims to achieve the simultaneous production and purification of MCFAs,, mitigating the toxic effects of MCFAs on microorganisms and stimulating the production of MCFAs. Furthermore, before practical engineering application, a meticulous assessment of economic benefits and ecological environmental risks is imperative.

In addition, future research will center on coupled resource recovery technologies, e.g., coupled syngas utilization and CO₂-to-MCFAs, coupled biogas upgrading and CO₂-to-MCFAs, and coupled acetate and ethanol recycle from wastewater and CO₂-to-MCFAs, among others. These coupled resource recovery technologies offer a dual advantage: enhancing economic viability while simultaneously integrating and synergizing diverse process chains to achieve the production of energy products entirely from waste.

Conclusion

This review first comprehensively summarizes current research progress to microbial CO₂-to-MCFAs, proposing two innovative strategies for microbial CO₂-to-MCFAs, namely, synchronous strategy and integrated strategy. Then, the underlying mechanisms of the two original strategies are interpreted in detail. Moreover, a thorough analysis of the key challenges and possible solutions in microbial CO₂-to-MCFAs is presented. Furthermore, future research perspectives and priorities of microbial CO₂-to-MCFAs are prospected and discussed, aiming to enhance the strategy application potential. In a word, the microbial CO₂-to-MCFAs emerge as a favored technology for high-value CO₂ resource recovery, presenting an opportunity to reduce the dependence on fossil fuels and mitigate CO₂ emissions, thus helping address global climate change and energy unsustainability.

Data availability

No datasets were generated or analysed during the current study.

Received: 10 December 2023; Accepted: 26 January 2024; Published online: 26 March 2024

References

- 1. Cheng, W., Dan, L., Deng, X. et al. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. *Sci. Data* **9**, 83 (2022)
- Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. *Nature* 572, 373–377 (2019).
- 3. Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 °C world. *Nature* **597**, 230–234 (2021).
- Zhang, Z. et al. Emerging trends in sustainable CO₂-management materials. *Adv. Mater.* 34, e2201547 (2022).
- Gao, W. et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges. *Chem. Soc. Rev.* 49, 8584–8686 (2020).
- Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. & Maroto-Valer, M. M. A review of mineral carbonation technologies to sequester CO₂. *Chem. Soc. Rev.* 43, 8049–8080 (2014).
- Zhang, L., Zhao, Z. J., Wang, T. & Gong, J. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. *Chem. Soc. Rev.* 47, 5423–5443 (2018).
- Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. *Nat. Commun.* 7, 13869 (2016).
- 9. Ulmer, U. et al. Fundamentals and applications of photocatalytic CO(2) methanation. *Nat. Commun.* **10**, 3169 (2019).
- Fawzi, T., Rani, S., Roy, S. C. & Lee, H. Photocatalytic carbon dioxide conversion by structurally and materially modified titanium dioxide nanostructures. *Int. J. Mol. Sci.* 23, https://doi.org/10.3390/ijms23158143 (2022).
- Lee, C. W., Cho, N. H., Nam, K. T., Hwang, Y. J. & Min, B. K. Cyclic twostep electrolysis for stable electrochemical conversion of carbon dioxide to formate. *Nat. Commun.* **10**, 3919 (2019).
- De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? *Science* 364, https://doi.org/10.1126/science.aav3506 (2019).
- Ma, Z. et al. Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. *Trends Biotechnol.* 40, 1439–1453 (2022).
- Judd, S., van den Broeke, L. J., Shurair, M., Kuti, Y. & Znad, H. Algal remediation of CO₂ and nutrient discharges: A review. *Water Res.* 87, 356–366 (2015).
- Yu, H. & Liao, J. C. A modified serine cycle in Escherichia coli coverts methanol and CO₂ to two-carbon compounds. *Nat. Commun.* 9, 3992 (2018).
- Tyne, R. L. et al. Rapid microbial methanogenesis during CO₂ storage in hydrocarbon reservoirs. *Nature* 600, 670–674 (2021).
- Aryal, N., Odde, M., Bogeholdt Petersen, C., Ditlev Morck Ottosen, L. & Vedel Wegener Kofoed, M. Methane production from syngas using a trickle-bed reactor setup. *Bioresour. Technol.* 333, 125183 (2021).
- Biswal, T., Shadangi, K. P., Sarangi, P. K. & Srivastava, R. K. Conversion of carbon dioxide to methanol: A comprehensive review. *Chemosphere* 298, 134299 (2022).
- Song, H. et al. Simultaneous production of methane and acetate by thermophilic mixed culture from carbon dioxide in bioelectrochemical system. *Bioresour. Technol.* 281, 474–479 (2019).
- Wu, P. et al. Deciphering the role and mechanism of nano zero-valent iron on medium chain fatty acids production from CO₂ via chain elongation in microbial electrosynthesis. *Sci. Total Environ.* 863, 160898 (2023).

- Ma, Y., Gao, Z., Wang, Q. & Liu, Y. Biodiesels from microbial oils: Opportunity and challenges. *Bioresour. Technol.* 263, 631–641 (2018).
- Wang, X. et al. Direct conversion of carbon dioxide to glucose using metabolically engineered Cupriavidus necator. *Bioresour. Technol.* 362, 127806 (2022).
- 23. Grignard, B., Gennen, S., Jerome, C., Kleij, A. W. & Detrembleur, C. Advances in the use of CO_2 as a renewable feedstock for the synthesis of polymers. *Chem. Soc. Rev.* **48**, 4466–4514 (2019).
- 24. Tao Cai, H. S. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. *Science* **373**, 1523–1527 (2021).
- Van Peteghem, L. et al. Towards new carbon-neutral food systems: Combining carbon capture and utilization with microbial protein production. *Bioresour. Technol.* **349**, 126853 (2022).
- Chen, W. S., Strik, D., Buisman, C. J. N. & Kroeze, C. Production of caproic acid from mixed organic waste: An environmental life cycle perspective. *Environ. Sci. Technol.* **51**, 7159–7168 (2017).
- Ho Ahn, J. et al. Recent advances in microbial production of medium chain fatty acid from renewable carbon resources: A comprehensive review. *Bioresour. Technol.* **381**, 129147 (2023).
- Cotton, C. A., Claassens, N. J., Benito-Vaquerizo, S. & Bar-Even, A. Renewable methanol and formate as microbial feedstocks. *Curr. Opin. Biotechnol.* 62, 168–180 (2020).
- Jones, S. W. et al. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. *Nat. Commun.* 7, 12800 (2016).
- Zhao, L. et al. Improving biogas upgrading and liquid chemicals production simultaneously by a membrane biofilm reactor. *Bioresour. Technol.* 313, 123693 (2020).
- Baumler, M., Schneider, M., Ehrenreich, A., Liebl, W. & Weuster-Botz, D. Synthetic co-culture of autotrophic Clostridium carboxidivorans and chain elongating Clostridium kluyveri monitored by flow cytometry. *Microb. Biotechnol.* **15**, 1471–1485 (2022).
- Cheng, C. et al. Electricity-enhanced anaerobic, non-photosynthetic mixotrophy by Clostridium carboxidivorans with increased carbon efficiency and alcohol production. *Energy Conv. Manag.* 252, https:// doi.org/10.1016/j.enconman.2021.115118 (2022).
- Zagrodnik, R., Duber, A., Łężyk, M. & Oleskowicz-Popiel, P. Enrichment versus bioaugmentation – microbiological production of caproate from mixed carbon sources by mixed bacterial culture and clostridium kluyveri. *Environ. Sci. Technol.* 54, 5864–5873 (2020).
- Yang, Y. et al. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. *Environ. Chem. Lett.* 19, 2127–2140 (2021).
- Molino, A., Chianese, S. & Musmarra, D. Biomass gasification technology: The state of the art overview. *J. Energy Chem.* 25, 10–25 (2016).
- Lai, C. Y., Zhou, L., Yuan, Z. & Guo, J. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. *Water Res.* 197, 117120 (2021).
- Naresh Kumar, A. et al. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy. *Sci. Total Environ.* **806**, 150312 (2022).
- Zhang, K., Qiu, Z., Luo, D., Song, T. & Xie, J. Hybrid electron donors of ethanol and lactate stimulation chain elongation in microbial electrosynthesis with different inoculants. *Renewable Energy* 202, 942–951 (2023).
- Zhao, J. et al. Conversion of liquor brewing wastewater into medium chain fatty acids by microbial electrosynthesis: Effect of cathode potential and CO₂ supply. *Fuel* **332**, https://doi.org/10. 1016/j.fuel.2022.126046 (2023).
- de Leeuw, K. D., Ahrens, T., Buisman, C. J. N. & Strik, D. Open culture ethanol-based chain elongation to form medium chain branched carboxylates and alcohols. *Front. Bioeng. Biotechnol.* 9, 697439 (2021).

- Latif, H., Zeidan, A. A., Nielsen, A. T. & Zengler, K. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. *Curr. Opin. Biotechnol.* 27, 79–87 (2014).
- Amulya, K. & Venkata Mohan, S. Augmenting succinic acid production by bioelectrochemical synthesis: Influence of applied potential and CO₂ availability. *Chem. Eng. J.* **411**, https://doi.org/10.1016/j.cej.2020.128377 (2021).
- Wu, Q. et al. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. *Biotechnol. Adv.* 37, 599–615 (2019).
- Wu, Q., Ren, W., Guo, W. & Ren, N. Effect of substrate structure on medium chain fatty acids production and reactor microbiome. *Environ. Res.* 204, https://doi.org/10.1016/j.envres.2021.111947 (2022).
- de Leeuw, K. D., Buisman, C. J. N. & Strik, D. Branched medium chain fatty acids: iso-caproate formation from iso-butyrate broadens the product spectrum for microbial chain elongation. *Environ. Sci. Technol.* 53, 7704–7713 (2019).
- Spirito, C. M., Marzilli, A. M. & Angenent, L. T. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction. *Environ. Sci. Technol.* 52, 13438–13447 (2018).
- 47. Wu, Q. et al. Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest. *Water Res.* **145**, 650–659 (2018).
- Wu, K. K. et al. Recovery of methane and acetate during ex-situ biogas upgrading via novel dual-membrane aerated biofilm reactor. *Bioresour. Technol.*, 129181, https://doi.org/10.1016/j.biortech.2023.129181 (2023).
- Wu, K. K. et al. Synergistic effect of hydrogen and nanoscale zerovalent iron on ex-situ biogas upgrading and acetate recovery. *Sci. Total Environ.* 856, 159100 (2022).
- Wu, S.-L. et al. Revealing the mechanism of biochar enhancing the production of medium chain fatty acids from waste activated sludge alkaline fermentation liquor. ACS ES&T Water 1, 1014–1024 (2021).
- Zheng, T. et al. Upcycling CO₂ into energy-rich long-chain compounds via electrochemical and metabolic engineering. *Nature Catalysis* 5, 388–396 (2022).
- González-Tenorio, D., Muñoz-Páez, K. M., Buitrón, G. & Valdez-Vazquez, I. Fermentation of organic wastes and CO₂ + H₂ off-gas by microbiotas provides short-chain fatty acids and ethanol for n-caproate production. *J. CO₂ Utiliz.* 42, https://doi.org/10.1016/j. jcou.2020.101314 (2020).
- Vasudevan, D., Richter, H. & Angenent, L. T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. *Bioresour. Technol.* 151, 378–382 (2014).
- Wu, K.-K. et al. Simultaneous biogas upgrading and medium-chain fatty acids production using a dual membrane biofilm reactor. *Water Res.* 249, https://doi.org/10.1016/j.watres.2023.120915 (2024).
- Wu, K. K. et al. Integrated biogas upgrading and medium-chain fatty acids production for more efficient resource recovery. *Bioresour. Technol.* 394, 130236 (2023).
- Grootscholten, T. I., Steinbusch, K. J., Hamelers, H. V. & Buisman, C. J. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. *Bioresour. Technol.* **136**, 735–738 (2013).
- Cabau-Peinado, O., Straathof, A. J. J. & Jourdin, L. A general model for biofilm-driven microbial electrosynthesis of carboxylates from CO₂. *Front. Microbiol.* **12**, 669218 (2021).
- Jourdin, L., Raes, S. M. T., Buisman, C. J. N. & Strik, D. P. B. T. B. Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. *Front. Energy Res.* 6, https://doi.org/ 10.3389/fenrg.2018.00007 (2018).

- 59. Chu, N. et al. Waste C1 gases as alternatives to pure CO₂ improved the microbial electrosynthesis of C4 and C6 carboxylates. *ACS Sust. Chem. Eng.* **8**, 8773–8782 (2020).
- Izadi, P., Fontmorin, J.-M., Virdis, B., Head, I. M. & Yu, E. H. The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis. *Appl. Energy* 283, https://doi. org/10.1016/j.apenergy.2020.116310 (2021).
- Izadi, P., Fontmorin, J. M., Lim, S. S., Head, I. M. & Yu, E. H. Enhanced bio-production from CO₂ by microbial electrosynthesis (MES) with continuous operational mode. *Faraday Discuss.* 230, 344–359 (2021).
- Jiang, Y., Chu, N., Qian, D. K. & Jianxiong Zeng, R. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide. *Bioresour. Technol.* **295**, 122266 (2020).
- 63. Li, Z. et al. Efficient production of medium chain fatty acids in microbial electrosynthesis with simultaneous bio-utilization of carbon dioxide and ethanol. *Bioresour. Technol.* **352**, 127101 (2022).
- Herzog, J., Mook, A., Utesch, T., Bengelsdorf, F. R. & Zeng, A. P. Lactate based caproate production with Clostridium drakei and process control of Acetobacterium woodii via lactate dependent in situ electrolysis. *Front. Bioeng. Biotechnol.* **11**, 1212044 (2023).
- Diender, M., Stams, A. J. & Sousa, D. Z. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. *Biotechnol. Biofuels* 9, 82 (2016).
- Baleeiro, F. C. F., Raab, J., Kleinsteuber, S., Neumann, A. & Strauber, H. Mixotrophic chain elongation with syngas and lactate as electron donors. *Microb. Biotechnol.* **16**, 322–336 (2023).
- Chen, X. & Ni, B.-J. Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach. *Chem. Eng. J.* **306**, 1092–1098 (2016).
- Zhang, F. et al. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. *Water Res.* 47, 6122–6129 (2013).
- Jonathan, R. et al. Establishing butyribacterium methylotrophicum as a platform organism for the production of biocommodities from liquid C1 metabolites. *Appl. Environ. Microbiol.* 88, https://doi.org/10. 1128/aem.02393-21 (2022).
- Roghair, M. et al. Controlling ethanol use in chain elongation by CO₂ loading rate. *Environ. Sci. Technol.* 52, 1496–1505 (2018).
- Huo, W., Ye, R., Hu, T. & Lu, W. CO₂ uptake in ethanol-driven chain elongation system: Microbial metabolic mechanisms. *Water Res.* 247, 120810 (2023).
- Huo, W., Ye, R., Shao, Y., Wang, H. & Lu, W. Insight into the mechanism of CO₂ to initiate and regulate ethanol-driven chain elongation by microbial community and metabolic analysis. *J. Environ. Chem. Eng.* **11**, https://doi.org/10.1016/j.jece.2023.110537 (2023).
- Huo, W. et al. Enhanced ethanol-driven carboxylate chain elongation by Pt@C in simulated sequencing batch reactors: Process and mechanism. *Bioresour. Technol.* 384, 129310 (2023).
- Romans-Casas, M., Blasco-Gómez, R., Colprim, J., Balaguer, M. D. & Puig, S. Bio-electro CO₂ recycling platform based on two separated steps. *J. Environ. Chem. Eng.* 9, https://doi.org/10.1016/j.jece.2021. 105909 (2021).
- Kucek, L. A., Xu, J., Nguyen, M. & Angenent, L. T. Waste conversion into n-caprylate and n-caproate: resource recovery from wine lees using anaerobic reactor microbiomes and in-line extraction. *Front. Microbiol.* 7, https://doi.org/10.3389/fmicb.2016.01892 (2016).

- Gildemyn, S. et al. Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation. *Biotechnol. Biofuels* 10, 83 (2017).
- Ghysels, S., Buffel, S., Rabaey, K., Ronsse, F. & Ganigue, R. Biochar and activated carbon enhance ethanol conversion and selectivity to caproic acid by Clostridium kluyveri. *Bioresour. Technol.* **319**, 124236 (2021).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U22A20443, No. 52076063); the Fundamental Research Funds for the Central Universities (No.HIT. OCEF.2023014, No.HIT. OCEF.2021031); the Heilongjiang Provincial Natural Science Foundation of Excellent Young Scholars (Grant No. YQ2023C031); Open Project of Key Laboratory of Environmental Biotechnology, CAS (Grant No kf2020009); Heilongjiang Touyan Innovation Team Program; and the Fundamental Research Funds for the Central Universities (HIT. DZJJ.2023058); State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (2023DX04).

Author contributions

Kai-Kai Wu: Investigation, Methodology, Validation, Writing – original draft. Pian-Pian Xu: Resources. Lei Zhao: Supervision, Writing – review & editing. Nan-Qi Ren: Supervision, writing-review & editing. Yi-Feng Zhang: Conceptualization, Supervision, Resources, Funding acquisition, Writing – review & editing.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Lei Zhao or Yi-Feng Zhang.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024