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A digital solution framework for enabling electric vehicle
battery circularity based on an ecosystem value optimization
approach
Amit Kumar1✉, Pierre Huyn1 and Ravigopal Vennelakanti1

A circular economy for batteries is crucial for building a sustainable battery value chain, as end-of-life electric vehicle batteries can
be given a second life or valuable raw materials can be harvested to make new batteries. However, significant challenges remain in
forecasting availability, predicting remaining value, minimizing reverse logistics costs, and maximizing value recovery from end-of-
life batteries. Here we devise an ecosystem value optimization approach powered by a digital solution framework, consisting of
innovative analytical models and a trusted data platform, to optimize five key value drivers for battery circularity—safety, regulatory
compliance, carbon footprint reduction, quality, and financials. The envisioned solution can help reduce average transportation
costs of end-of-life batteries by 11% to 44% compared to current shipping practices, estimate battery health with error rates less
than 1%, and improve value recovery by 52% to 60% by routing batteries with good health to second-life application providers.
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INTRODUCTION
A circular, responsible, and just battery value chain is pivotal for
achieving the Paris Agreement target to stay below the 2 °C
scenario by enabling 30% of emission reductions in power and
transport sectors1. In 2021, global spending on electric vehicles
(EV) hovered around USD 280 billion, and the total number of EVs
on the world’s roads reached roughly 16.5 million2. Under current
policy plans reflected in the IEA Stated Policies Scenario (STEPS),
the global EV market can expand to 200 million vehicles in 20302.
While experts broadly agree that EVs are much better in terms of
the impact on climate in comparison with internal combustion
vehicles, EV batteries production and unsafe disposal can
adversely impact the environment and society. Millions of end-
of-life (EOL) batteries are forecasted to retire by 2040—triggering
serious waste management challenges. For example, EVs sold in
2019 alone would cause 500,000 tons of unprocessed battery pack
waste3. Moreover, current supply chains for battery cathode are
energy-intensive as materials move 50,000+ miles before they
reach a Lithium-ion batteries (LIBs) cell factory4. Moreover, lithium
and cobalt extraction are associated with high environmental and
social risks—cobalt mining in the Democratic Republic of the
Congo has been linked to human rights violations, and lithium
extraction requires large quantities of energy and water in regions
with scarce water resources5.
On the other hand, a typical EV battery can retain 70% to 80%

of its original capacity at the end of its usable first life. These EOL
EV batteries can be repurposed for second-life applications such
as stationary energy storage that require less frequent battery
cycling6. Moreover, with advancements in recycling methods,
raw materials can be recovered sustainably at scale. Researchers
at the Recell Center have compared the environmental impacts
to produce 1 kg of NMC111 from primary raw materials and
recycled pyro-metallurgically, hydro-metallurgically, and by
direct recycling. Direct recycling is shown to have the lowest
environmental impact—consumes 27% of energy, uses 31% of
water, and causes 32% of GHG emissions compared to the

production from primary raw materials7. As per a financial
viability study, recycling can be economically viable, with a net
value ranging from a loss of $21.43 per kWh to a profit of $21.91
per kWh which strongly depends on transport distances, wages,
pack design, and recycling method8.
Even though it is now technologically and economically feasible

to give EOL LIBs a second life or harvest valuable materials for
making new batteries, significant challenges (Fig. 1) remain in
forecasting and tracking EOL batteries, optimizing reverse logistics
costs, and maximizing value recovery from EOL batteries. Since
EOL Li-ion batteries are classified as hazardous materials,
environmental regulations and policies mandate proper handling,
transportation, and disposal of EOL LIBs. Although estimates for
transportation costs vary widely among various studies—repre-
senting, on average, 41% of the total cost of recycling9, high
transportation costs can make battery circularity cost prohibitive
for low-cobalt cathode-chemistry types. Hence, EOL battery
remaining value estimation and reverse logistics costs optimiza-
tion are important considerations for this industry.
EV battery circular economy is hindered by information silos, as

different companies generate or record new data at various stages
of the battery life cycle. Trusted information sharing among
relevant stakeholders can be a win-win model for all stakeholders.
For example, if an automotive dismantler acquires the used EV,
the dismantler will benefit from the EV manufacturer sharing safe
battery removal training videos and arranging for EOL battery
transportation. On the other hand, OEMs will benefit by knowing
the availability and health condition of LIBs to effectively estimate
remaining value and ship to the right repurposing or recycling
partner for value recovery maximization. Moreover, second-life
providers would need to know how the battery has been used in
its first life, dismantled, stored, and transported to its facility—
information will enable them to efficiently repurpose the EOL
batteries and effectively promote the repurposed product by
providing transparency in its product quality. EV makers and
battery manufacturers can use battery repurposing or recycling
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completion information in tracking carbon reduction due to reuse
or material recovery from their products. An effective multi-party
business collaboration is needed to increase the efficiencies of an
entire battery value chain and enable a circular economy for LIBs.

To date, state-of-the-art solutions for enabling EV battery
circular economy revolve around the concept of the Battery
Passport originally proposed by the Global Battery Alliance (GBA).
GBA Battery Passport program provides a global reporting

Fig. 1 Challenges in battery circularity. Battery circularity challenges include remaining value estimation, transportation costs optimization,
non-uniform design, quality assurance and pricing of repurposed and recycled products, and lifecycle management.
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framework and a digital platform to collect, exchange, collate, and
report battery provenance, manufacturing history, and environ-
mental, social, and governance (ESG) performance data among all
authorized lifecycle stakeholders10. Germany’s Federal Ministry for
Economic Affairs and Climate Action (BMWK) recently announced
its “Battery Pass” project, a government-funded R&D global
project, and its 11 consortium members including automakers,
renewable energy providers, and digital companies11. Battery
passport systems may also help in certifying the provenance of
the batteries to satisfy the United States’ Inflation Reduction Act
(IRA) criteria for tax credits12. Although battery passport systems
have the potential to become valuable data sources in pursuing
circular economy initiatives, they have inadequate provisions to
support end-to-end management of EOL batteries.
To address gaps in the existing systems, we devise an

ecosystem value optimization approach powered by a digital
solution framework to manage five key value drivers for battery
circularity—safety, regulatory compliance, carbon footprint reduc-
tion, quality, and financials. While many non-financial value drivers
may not be fully quantified, we aim to use proxies for optimization
purposes.
The overview of our ecosystem value optimization approach

(Fig. 2a) is as follows:

1. Safe handling of lithium-ion batteries: During removal,
storage, transport, repurposing, and recycling, EOL batteries
must be handled with utmost care because they can cause
injury to workers and people around them. The number of
safety incidents that occurred anywhere in the reverse
supply chain can act as a key performance indicator for this
value driver. For proper handling of EOL batteries, the
envisioned solution enables trusted data sharing of battery
removal and handling instructions by automakers, tracking
battery health conditions and diagnostics data reported by
owners or service providers, and recording proof of safe
handling during transport.

2. Regulatory and industry protocol compliance: EOL lithium-
ion batteries are hazardous materials and hence subjected
to hazardous materials regulations of the US Department of
Transportation13. New regulatory proposals in Europe and
California introduce mandatory requirements for end-of-life
battery management putting the onus on automakers,
dismantlers, and fleet owners. As per Underwriters’ Labora-
tories (UL) standards, each EOL battery needs to be
evaluated individually before repurposing because each
battery may have been exposed to different charging and
discharging conditions during its use in a vehicle. The
envisioned solution enables end-to-end tracking and tracing
of EOL LIBs by all authorized stakeholders—thus ensuring
regulatory and industry protocols compliance.

3. Carbon footprint reduction: Several automakers have
pledged to reduce the carbon footprint of their products.
Repurposing and recycling EOL LIBs can help in their carbon
reduction goals since the carbon footprint of the raw
materials obtained by recycling electric car batteries can be
38% smaller than that of primary raw materials14. Moreover,
the carbon footprint of LIBs recycled after their second life
can be reduced by 8% to 17% compared to directly
recycling LIBs after their electric vehicle use15. The
envisioned solution approach uses estimated CO2 reduction
for each EOL LIB as one of the factors in recommending
optimal repurposing vs. recycling decisions. Also, through
this solution, recyclers and repurposing companies can
share actual recovery and yield information with respective
automakers to record and track carbon footprint reduction.

4. Repurposed product or recycled material quality: A recent
surge of electric bike fires in New York City has increased
scrutiny of repurposed LIBs16. Moreover, battery

manufacturers and automakers have concerns about the
quality of recycled materials, potentially leading to the
suboptimal performance of batteries. After analyzing
stakeholder biases, effective intervention strategies can be
designed to increase collection rates of EOL batteries and
promote repurposed products. Consumer biases and mis-
perceptions regarding the quality and desired attributes of
refurbished and repurposed battery products can encumber
the growth of second-life applications. In the envisioned
solution framework, we also leverage our past work on
behavioral economics to promote energy storage products
made of repurposed EV battery cells17.

5. Financials—revenue and costs: For an effective circular
economy of EV LIBs, repurposing and recycling must be
profitable, even for low-cobalt battery chemistry types. High
reverse logistics costs, insufficient LIB volumes, and non-
uniform battery designs are key challenges in scaling up
repurposing and recycling operations. The envisioned
solution approach can help simulate various reverse logistics
network scenarios, aggregate EOL LIBs from service
providers (dismantlers, independent repair shops, and
dealers), and recommend which batteries should be
shipped to which recycler or repurposing provider to
maximize value recovery.

We designed a digital solution framework (Fig. 2b) for the
battery ecosystem that will provide real-time visibility into the
battery value chain operations, generate critical insights to
optimize costs, and enable circular economy business models.
Our design objectives are as follows:

1. Enable traceability and transparency in the battery value
chain: Through a blockchain-based platform, connect and
share business data amongst relevant stakeholders such as
OEM, service partners, reverse logistics providers, and Re*
partners. We use the term “Re*” as a short form for
“Recycling, Repurposing, and Refurbishing”. Blockchain
technology, such as smart contracts and shared ledgers
hold all components of a transaction accountable18. By
recording each step of a transaction between different
companies, the entire value chain gains the required
transparency, and trust in the shared information. While
battery passport systems are valuable data sources for
tracking battery origin and usage, our solution approach
extends these capabilities on collection, transport, repurpos-
ing, and recycling side of the ecosystem by tracking EOL
battery availability, status in-transit, and repurposing/recy-
cling completion. Moreover, business decisions such as EOL
LIB acquisition and sales offers, repurposing or recycling
decisions, and shipping requests can be automated via
smart contracts.

2. Provide data-driven insights to increase operational effi-
ciency in the ecosystem and promote circularity: Leveraging
predictive and prescriptive analytics on the shared data
combined with stakeholders’ private data can help forecast
EOL battery availability, enable data-driven decisions for Re*
operation, plan collection routes, optimize transportation
costs, maximize value recovery from EOL batteries, and track
emissions savings. We leverage machine learning methods
that are increasingly used for evidence-based decision-
making across many walks of life19. Moreover, behavioral
economics models have been designed to increase collec-
tion rates of EOL batteries and promote sales of repurposed
or refurbished batteries.

Further details of our digital solution framework have been
provided in the Methods section. A representative use case and
analytical models to enable battery circularity has been described
in the Results section.
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Fig. 2 Ecosystem value optimization approach powered by a digital solution framework. a Ecosystem value optimization approach.
b Digital solution framework.
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RESULTS
Representative use case
Our work is driven by a real use case (Fig. 3), where EV OEMs
collect their EOL batteries from service partners (dealers,
independent repair shops, and dismantlers), transport these EOL
LIBs to OEM warehouses, and then ship the EOL LIBs to their Re*
partners for repurposing, refurbishing, recycling based on battery
chemistries and conditions. The current practice of bringing LIBs
from service partners to OEM warehouses and shipping to Re*
partners from OEM warehouses lead to very high shipping and
handling costs. Although the current annual volume of EOL
batteries ranges from 2000 to 10,000 at these OEMs, EOL battery
availability is expected to increase by multiple orders of
magnitude in the next five to ten years. Tracking and collecting
EOL batteries from the long tail of independent repair shops and
dismantlers can be a daunting task. Our solution framework
enables trusted information flow among relevant stakeholders
and helps simulate various shipping scenarios and recommends
optimal shipping policies, replacing current practices of double
handling and transport.
To demonstrate the potential benefits of our solution approach,

we have simulated data for a major automaker that aims to ramp
up global sales of existing and new EV models. For privacy

reasons, we cannot give the exact name of the company, so we
will simply refer to it as “the OEM” throughout this paper.

Forecasting EOL batteries availability
Based on the EV registration data from external sources such as
California open data portal20 and the OEM’s EV sales data, EOL
battery availability can be forecasted for the next 5 years as per
the following steps:
Step 1: For each EV (make and model), we determine the

probability distribution of EOL battery return at different ages. The
number of battery-returns in the year y is modeled as a discrete
random variable that follows the binomial distribution:

Di kð Þ ¼ Prðk;ny�i ; piÞ (1)

where pi is the probability a EOL battery is returned at age i; ny�i is
the number of new EVs sold at year y � i; and k ¼ 0; 1; ¼ ; ny�i .
This age distribution can be learned from historical data

collected with actual EOL battery-returns. Otherwise, we can
assume a normal distribution centered around the warranty
period of these batteries.
Step 2: To estimate the distribution of the total number of

batteries returned at year y, we merge all these distributions Di .
For any two independent count variables X and Y with discrete
probabilities PrXðxÞ and PrYðyÞ, the distribution for their sum Z ¼

Fig. 3 A representative use case for battery circularity. EV OEMs assign their logistics providers to collect their EOL batteries from service
partners (dealers, independent repair shops, and dismantlers), transport these EOL LIBs to OEM warehouses, and then ship the EOL LIBs to
their Re* partners for repurposing, refurbishing, recycling based on battery chemistries and conditions.
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X þ Y can be simply written as:

PrZ zð Þ ¼
X
xþy¼z

PrXðxÞ ´ PrYðyÞ (2)

Using the distribution obtained this way for the total count, we
can derive its means and standard deviation. For each year in the
5-year forecast horizon, we use this approach to estimate the
number of EOL batteries returned that year with a 95% prediction
interval.

Our forecast (Fig. 4) shows that more than 22,500 EV battery
packs of this OEM will be reaching the end of life by 2027 just in
California.
The method we propose to forecast EOL batteries availability is

based on current publicly available EV registration data and does
not rely on historical time series of returned EOL batteries which
may not be available. Alternatively, if these time series data are
available in sufficient volumes, we may consider traditional time
series forecasting methods leveraging for example ARIMA or LSTM
models (see21 for ARIMA and LSTM model comparison). Long
short-term memory (LSTM)22 is a deep learning network
architecture that excels at processing sequences of data points

Fig. 4 End-of-life battery availability forecasting. a EOL battery availability forecasts. b EOL returns probability as function of age (Yearly
registrations: n= 14). c EOL battery returns probability distribution (Forecast years: 2023 to 2027). Copyright 2023 by Hitachi America, Ltd.
Image used with permission from Hitachi America, Ltd.
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to predict outcomes that can be single data points or sequences
themselves. What makes LSTM networks so powerful at processing
sequence data is their ability to learn when to remember and when
to forget pertinent information, especially in long sequences. Since
meaningful benchmarking of our proposed method is not available,
our forecast method as described above is our best option as it is
based on actual EV cars currently in circulation. Going forward, we
need to collect data on returned EOL batteries and use it to test
accuracy of our forecasting method.

Reverse logistics network simulation and planning for EOL
batteries transportation
We have designed a multi-product dynamic model for the reverse
logistics–value recovery network interlinking collection points,
storage facilities, and value recovery plants with geographically
distributed supply and recovery locations.
In designing a reverse logistics network, many structural and

operational entities need to be considered, including:

● Supply of EOL batteries: arrival process (e.g., Poisson or other
non-parametric models), mixture of chemistries and batteries
with different health conditions.

● Physical location of dealerships, warehouses, and Re* partners:
these locations are needed to optimize transportation costs
which are a function of moving distance.

● Transportation costs and various trucking policies of logistics
partners: full-truck load vs. on-demand policies, weight-based
and distance-based costing methods.

● Batteries collection routing methods: clustering of battery
collection points.

● Warehousing costs: storage cost difference between dealer-
ships and warehouses affects optimal trucking policies.

● Battery chemistries and recovery value offered by Re*
partners: used to match batteries of specific chemistries with
specific Re* partners. The best match depends not only on the
values offered by these partners but also the costs to ship
batteries to their location.

The complexity of these models precludes using purely
analytical methods based on statistical analysis and queuing
networks to estimate business metrics to optimize such as net
profit. Our choice of using a stochastic-simulation-based approach
to solve the estimation problem is driven by its flexibility and
simplicity, the availability of easy-to-use software modeling and
simulation frameworks such as MESA23 and AnyLogic24, and the
fact that current crop of computing resources is powerful enough
to run large-scale simulations.
The financial value driver, NetProfit for reverse logistics of EOL

batteries is formulated as follows:

NetProfit ¼ max
Xn
i¼1

Revenuei;k � Costi;j;k;l
� �

(3)

where Revenuei;k is revenue from recycling or repurposing of
battery i at value recovery point (recycler or repurposing provider) k;
Costi;j;k;l is sum of EOL battery acquisition cost (ai;jÞ, storage

costs at collection point j and transportation cost of battery i from
collection point j to value recovery point k under truckload
condition l.
The above formula can be expanded as follows:

NetProfit ¼ max
Xn
i¼1

pi;kyi;k � d j; kð Þci;l � tjsi;j � ai;j
� �

(4)

where the revenue term, pi;kyi;k can be represented as unit price of
repurposed product or recycled material times yield from battery i
at value recovery point k;
the transportation cost term, d j; kð Þci;l can be represented as

distance, d j; kð Þ between collection point j and value recovery

point k times cost per unit distance, ci;l for battery i given the
truckload condition l;
the storage cost term, tjsi;j can be represented as number of

days, tj in storage times storage cost per day, si;j .
For the operational optimization of reverse logistics decisions,

we have leveraged an EOL battery availability forecast model to
train a reinforcement learning model25 to maximize business
outcomes over a given time horizon.
Based on the reverse logistics simulation (Fig. 5a) for the OEM’s EOL

battery management use case, there is potential to reduce
transportation costs of EOL batteries by 11% to 44% compared to
the baseline shipping scenario and improve value recovery by 52% to
60% by routing high-value EOL batteries to second-life application
providers. In this simulation, we have used 126 dealers from 5 states
and calculated costs and revenues for three different annual counts of
EOL battery returns (2000 in a year; 10,000 in a year; 20,000 in a year).

EOL battery health estimation
An EOL battery’s remaining economic value critically depends on
the battery state of health (SOH), a measurement that indicates
the level of degradation and remaining capacity of the battery. To
estimate SOH at the pack level, we use voltage time series
measured during the relaxation phase of a charge-discharge cycle.
These measurements are easy-to-collect because they can be
made using generic battery testers. Using these voltage time
series as input and the measured remaining capacities as output
can take a long time to complete. Inspired by the use of Long
short-term memory (LSTM) architectures in different application
areas such as image processing, manufacturing, or autonomous
systems26, we trained a bidirectional LSTM27 regression model for
predicting remaining capacities:

Bidirectional LSTM Regression: Relaxation Voltage Time Series →
Remaining Capacity. It turns out the shape of this battery
relaxation voltage time series is highly predictive of the remaining
capacity of the battery, and we can achieve prediction error rates
as low as 1%.
We have also considered an alternative machine learning

method to estimate a battery SOH using relaxation voltage time
series as input. In this method, we use the first 3 statistical
moments (maximum, variance, and skewness) of the input
voltages as features to predict battery SOH using SVR (Support
Vector Regression28) with a Gaussian kernel:

SV Regression: Relaxation Voltages Max, Variance, Skewness→
Remaining Capacity. This SVR method is simpler to implement
than the LSTM method that we recommend, but by using
statistical moments as predictors, we completely ignore sequence
information inherent in a time series. As a result, we expect the
LSTM method to be more accurate than the SVR method in
predicting SOH. Indeed, our empirical results show that we can
achieve prediction error rates around 0.93% under LSTM vs. 1.27%
under SVR (Fig. 5b, c). While both methods are extremely accurate,
the LSTM method is 36% better than the SVR method.
For the second-life applications, a repurposing provider may be

interested in estimating the number of good modules (for
example, module SOH ≥ 80%) based on pack SOH before they
decide to procure the EOL battery. Similarly, a refurbishing
provider would like to estimate the number of good cells
beforehand. We frame this problem as estimating a conditional
expected value for the number of good modules and the number
of good cells given the SOH of the pack. Formally, given a battery
pack Z and its SOH z, we would like to estimate:

EðNZ jZ ¼ zÞ (5)

where NZ is a random variable that represents the number of
good cells or modules in the pack, and Eð:Þ denotes expected
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value. We developed an efficient solution for this conditional
expectation problem. Also, for calculating prediction uncertainties,
we need to estimate statistical variance which can be written as:

EðNZ
2jZ ¼ zÞ � EðNZ jZ ¼ zð ÞÞ2 (6)

for which we also developed an efficient solution.
Having an accurate SOH estimation at not only the pack level

but also the module and cell levels allows us to precisely match

battery conditions with Re* providers’ specific requirements,
thereby maximizing the recovery value for the EOL battery.

Remaining value and offer price recommendation for EOL
battery purchase
A battery’s remaining value will be a function of the Re* providers
that satisfy the match and the recommended offer is based on not

Fig. 5 Reverse logistics simulation and State of Health (SOH) estimation. a Reverse logistics simulation. b SOH estimation using SVR. c SOH
estimation using BiLSTM. Copyright 2023 by Hitachi America, Ltd. Image used with permission from Hitachi America, Ltd.
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only the remaining economic value but also the cost to transport
the battery to the Re* provider’s location. Using historical
transaction or survey data collected under different pricing levels
and behavioral intervention strategies such as nudging, we build a
behavioral-economics-based pricing model that predicts the
likelihood of offer acceptance. Since different interventions have
associated costs, we recommend an optimal nudging strategy and
pricing level that minimize EOL battery acquisition costs.
When dealing with third parties outside a dealership network

that hold EOL EV batteries, an OEM creates an offer to purchase
these batteries from these third parties, we call battery owners.
There are two ways to incentivize an owner to sell a EOL battery to
the OEM: price and nudges29 which for example appeal to the
owner’s reputation to support sustainable energy solutions. While
the net battery acquisition cost is a function of both EOL battery
price and price of nudging, what really needs to be minimized is
the expected net acquisition cost which also depends on the
probabilities of offer acceptance:

Net Acquisition Cost � PrðOffer AcceptanceÞ (7)

To predict offer acceptance, we built a logistic regression model
that uses price, nudge, and their interaction term as predictors to
estimate the probabilities of offer acceptance:

PrðOffer AcceptanceÞ
¼ SigmoidðLinear combination of Price;Nudge and Price � NudgeÞ

(8)

This model can be trained using historical transaction data
between OEMs and battery owners. Then the best price and
nudge recommendation would minimize the expected net

acquisition cost that accounts for price of nudging:

argminprice;nudge Net Acquisition Cost � PrðOffer AcceptanceÞ (9)

Our work (Fig. 6) shows that the OEM can potentially make a
gross profit of $507 to $667 per EOL battery of small EVs (20kWh
to 30kWh size) by optimizing offer costs and routing EOL batteries
to the appropriate Re* provider. Today, many OEMs get zero or
negative returns from their EOL batteries’ collection and recycling.

Tracking EOL batteries through reverse logistics workflow
Using EOL battery tracking dashboard, OEMs (or their partner on
their behalf) can track availability of EOL batteries at dealer, repair
shops, and dismantler locations, make purchase and sales offers,
track status of Re* operations. The OEM can maintain an online
training library for safely removing EOL batteries from its EV
models. Dealers and dismantlers can notify VIN number of the
acquired EV to OEM through this system, and in return the OEM
provides battery removal instructions, offers a market-competitive
price to purchase EOL battery, and makes arrangements for
reverse logistics. For demonstration purposes (Fig. 7), we have
onboarded 2,100 EOL batteries in our solution, which can be
scaled up to process data for tens of thousands of EOL batteries.

Collection route recommendation
To minimize transportation costs, it is important to consider truck
payload mix and capacity utilization and travel route when
hopping from location to location to collect batteries. So given the
destination location of a given Re* provider and the locations
where EOL batteries are available to be collected, we compute the
shortest Hamiltonian path taken by a truck that minimizes
transportation costs that are a function of both weight and
distance traveled.

Fig. 6 Remaining value estimation of the end-of-life battery and optimal offer price recommendation. Our work shows that the OEM can
potentially make a gross profit of $507 to $667 per EOL battery of small EVs (20kWh to 30kWh size) by optimizing offer costs and routing EOL
batteries to the appropriate Re* provider. Today, many OEMs get zero or negative returns from their EOL batteries’ collection and recycling.
Copyright 2023 by Hitachi America, Ltd. Image used with permission from Hitachi America, Ltd.
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The SHP (shortest Hamiltonian path) problem is a classic case of a
NP-hard (computationally very hard) problem and so far, the state-
of-the-art solution can be attributed to the Bellman-Held-Karp (BHK)
dynamic programming algorithm30,31 By contrast, our solution uses
a radically different approach by framing SHP as heuristic search32, a
class of problem-solving methods pioneered in the field of AI in the
late 60 s. By developing special heuristics tailored to the SHP
problem, our solution turns out to outperform BHK by almost 2
orders of magnitude (at least for problem sizes up to 16) and thus
allows larger route optimization problems to be solved exactly.
For demonstration purposes (Fig. 8), we have selected 11

service partner locations in Los Angeles County from where EOL
LIBs need to be collected and our solution recommends a shortest
collection route with a total distance of about 80 miles thus
minimizing transport costs and emissions.

DISCUSSION
In this paper, we have described an important end-of-life EV
batteries management use case. State of the art Battery Passport
Systems have inadequate features to support and optimize end-
to-end management of EOL batteries. We have devised an
ecosystem value optimization approach powered by a digital
solution framework to manage five key value drivers for battery
circularity—safety, regulatory compliance, carbon footprint reduc-
tion, quality, and financial. Leveraging this solution framework, we
have developed a comprehensive end-to-end management
solution that helps capture relevant data from associated
stakeholders through a trusted platform and leverage a set of
analytical methods providing data-driven insights to increase
operational efficiency in the ecosystem and promote circularity.
This ecosystem solution enables strong business collaboration
between all stakeholders in the OEM ecosystem and facilitates a
win-win model for all stakeholders—OEMs and its Re* partners
receive information about availability and health conditions of

EOL batteries, whereas dealers and dismantlers benefit from EV
model-specific training resources, market-competitive core pur-
chase offers, and reverse logistics arrangements.
As batteries account for significant embedded greenhouse gas

emissions in electric vehicle production, carbon footprint reduction
should be a key consideration for battery circularity strategy.
Extending battery life by reusing and repurposing in a second or
third-life application followed by recycling using a low energy-
intensive recycling technique can help automakers and fleet owners
towards their carbon reduction goals. Our solution approach
provides the ability to keep track of carbon footprint reduction
from each EOL battery using an estimated CO2 reduction factor for a
combination of battery pack types and recycling or repurposing
techniques. Moreover, repurposing providers, recycling partners,
and logistics providers can share energy consumption data during
the reverse logistics and value recovery processes to help
stakeholders obtain a better estimate of carbon footprint reduction.
We firmly believe our proposed solution has all the important

features necessary to truly accelerate the circular economy for
batteries. While we have developed the first set of analytical
models to prove our idea, we understand that each organization’s
use case is different and a one-size-fits-all approach will not work.
Hence, we have been developing a library of analytical models to
adapt for different scenarios. Further validation of our analytical
models has been planned with asset owners, OEMs, and recyclers.

METHODS
Ecosystem value optimization approach
To enable key value drivers for battery circularity, Ecosystem Value
Optimization function can be represented as follows:

NetValue ¼ f VSafeHandling; VCompliance; VCarbonReduction; VQuality ; VFinancial
� �

(10)

where VSafeHandling; VCompliance; VCarbonReduction; VQuality ; VFinancial are
value drivers for safe handling, regulatory compliance, carbon

Fig. 7 End-of-life battery tracking dashboard. For demonstration purposes, we have onboarded 2,100 EOL batteries in our solution, which
can be scaled up to process data for tens of thousands of EOL batteries. Copyright 2023 by Hitachi America, Ltd. Image used with permission
from Hitachi America, Ltd.
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footprint reduction, quality of repurposed products and recycled
materials, and financials respectively. The above equation can be
further expressed as

NetValue ¼ w1VSafeHandling þ w2VCompliance

þw3VCarbonReduction þ w4VQuality þ w5VFinancial
(11)

where w1;w2;w3;w4;w5 are relative weight for each value driver
as per stakeholder company policies. Moreover, VFinancial can be
expressed as:

VFinancial ¼ RevenueRealization � CostIncurred (12)

While it is difficult to quantify the non-financial value drivers, we
have tried to use different proxies for quantification. For example,
value of safe handling can be measured in economic value of life
and property; value of compliance can be measured in terms of
penalties, value of carbon reduction can be quantified as carbon
price per ton, and value of quality can be estimated based on
expected loss of sales and brand recognition. These values may be
different for different stakeholders.

Forecasting spent batteries availability
Below is additional information about our method for forecasting
spent batteries availability:

● Car registration data can be downloaded from CA EV
registration website20

● Python SciPy open-source library, version 1.10.1 was used to
compute the Binomial distribution.

● Custom code was used for adding independent random count
variables.

● For 95% prediction intervals for a given distribution,
Mean± Standard Deviation was used as an approximation.

Reverse logistics network simulation and planning for EOL
batteries transport
Below is additional information about our method for reverse
logistics simulation:

● Simulation-based analysis of reverse logistics was performed
using Mesa v1.2.1, an open-source agent-based modeling
library in Python. To analyze and compare multiple reverse
logistics scenarios using stochastic simulation, the same
randomly drawn data sample was used as simulation input
across all scenarios to ensure a fair comparison. EOL batteries’
arrival process was modeled using a Poisson distribution.
Proportions of EOL LIB battery chemistries and health
conditions are randomly generated using multinomial dis-
tributions. These statistical distributions were computed using
the Python SciPy library v1.10.1.

● Transport routing optimization uses distance estimates
between various (long, lat) locations. These distances are
computed using the PyPI geopy open-source library v2.3.0
which provides popular geocoding services.

● The total annual number of EOL EV batteries received by US
dealers are distributed among the largest counties among the
largest states based on the number of EV registrations by
county.

EOL battery health estimation
Below is additional information about our method for EOL battery
health estimation:

● Relaxation voltage data that we downloaded was reformatted
to a usable form using custom code.

● The BiLSTM model was trained using Tensorflow Keras library
v2.8.0 with input sequences of 14 relaxation voltage values.

Fig. 8 End-of-life battery collection route optimization. For demonstration purposes, we have selected 11 service partner locations in Los
Angeles County from where EOL LIBs need to be collected and our solution recommends a shortest collection route with a total distance of
about 80 miles thus minimizing transport costs and emissions. Copyright 2023 by Hitachi America, Ltd. Image used with permission from
Hitachi America, Ltd.
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Support Vector Machines regression model was trained using
Python open-source library scikit-learn v1.2.2 with input of the
first 3 statistical moments over the 14 voltage values namely,
maximum, variance, and skewness. Training set consists of
21,117 voltage sequences and the test set has
1,113 sequences.

● Prior probability distributions of cells or modules are needed
to compute conditional estimates of pack-level SOH, but
specific distributions are not required in our methods. The
most conservative choice is to use a uniform distribution.

● Estimation of good modules and good cells counts, condi-
tioned on pack-level SOH, was computed using custom code.

Remaining value and offer price recommendation for EOL
battery purchase
Below is additional information about our method for offer price
recommendation:

● A prior survey response data was used as the proxy for
introducing the effect of nudge in the EOL battery purchase
offer acceptance model. This online survey was conducted
through SurveyMonkey using two cohorts of 200 paid
participants—the first cohort was given a questionnaire
without nudge, and the second cohort was given the same
questionnaire with nudge. Survey was designed to analyze
participants’ attitude towards repurposed batteries compared
to new batteries and effect of nudge—environmental and
economic benefits of battery repurposing was highlighted
for nudge.

● For EOL battery purchase offer acceptance, we built a logistic
regression model using offer price, nudge, and price*nudge
interaction term as predictors, and offer acceptance as
outcome. Model was implemented using custom code.

Collection route recommendation
Below is additional information about our method for collection
route recommendation:

● Transport routing optimization uses distance estimates
between various locations specified as longitude and latitude.
These distances are computed using the PyPI geopy open-
source library v2.3.0 which provides popular geocoding
services. To find the best routes, exact shortest Hamiltonian
paths were computed using custom code.

● Truck payloads mix that maximizes capacity utilization was
computed using custom code.

● We used OEM Los Angeles County dealership location data to
simulate where EOL EV batteries are returned and available to
be collected.

Digital solution framework
Considering the complexity of end-of-life battery management, a
digital solution framework (Fig. 2b) has been designed comprising
the following components:

● Permissioned blockchain network: A permissioned blockchain
network has been designed based on the Hyperledger Fabric
platform—a modular and extensible open-source system33

that supports pluggable consensus protocols and pluggable
identity management protocols, and provisions channel
architecture to enable privacy and confidentiality of business
transactions. Permissioned blockchain comes with an extra
layer of privilege to choose who can take part in the
transactions within the network, with the identity of every
member known to all members34. By utilizing the network
infrastructure of Hyperledger, a large number of businesses

including supply chain partners and downstream companies
(often new and transient organizations such as repair shops)
can be onboarded to the OEM’s business network thus
enabling effective and trusted information sharing.

● Off-chain databases and document repository: Non-
transactional data and private date can be stored in off-
chain database systems such as MySQL and CouchDB
respectively. For document sharing such as training videos,
storage services such as AWS S3 can be utilized.

● Data interfaces with IoT and Enterprise systems: Since there
are diverse data sources - enterprise and IoT (e.g., sensor-
based tracking of battery condition), a scalable and extensible
data integration platform such as Apache airflow35 is needed
to programmatically author, schedule, and monitor data
workflows. Hardware or software-based root of trust mechan-
isms such as a Trusted Platform Module (TPM) should be used
to establish trust in IOT computing36.

● Analytics services: To derive predictive and prescriptive
insights, machine learning frameworks such as TensorFlow37

and scalable reinforcement learning framework such as RLlib25

have been used.
● Micro-apps: Our micro apps approach at the front-end layer

allows the development of complex apps by assembling
highly focused small apps rather than building a big
application from scratch. A suite of micro-apps has been
designed for each stakeholder in the ecosystem.

Blockchain network design for the representative use case
For this use case demonstration purposes, we consider 13
organizations—3 service partners (a dealer, an independent repair
shop, and a dismantler) each serving an asset owner (EV owner or
fleet company), 3 Re* partners (a repurposing, a refurbishing, and
a recycling provider), 3 reverse logistics companies (transports EOL
batteries from service partners to chosen Re* partners).
In the representative workflow for end-of-life battery manage-

ment (Fig. 9), EV Fleet owners initiate EOL battery Re* request
(typically when a battery is replaced by dealers or repair shops, or
used EV is sold to dismantlers) and share battery purchase
information, and battery health and usage anomalies (recorded in
owner’s IT system) with the respective service partner. The Service
partner removes, inspects, and stores the EOL battery, notifies
OEM regarding the EOL battery, and shares service diagnostics
with OEM. For each EOL battery, OEM selects relevant Re* partner
and Logistics provider. For the EOL battery, OEM makes a
purchase offer to the Dealer (or it could be a core exchange
process) and a sales offer to the chosen Re* partner. Upon
acceptance of these offers, OEM submits a shipping request to a
logistics provider which in turn provides a quote. The logistics
provider transports EOL batteries from dealers to Re* partners
(shipments can be batched to optimize transportation costs).
Upon completion of Re* operation (repurpose, refurbish, or
recycle), the Re* partner notifies OEM, and then OEM, Service
partner, and Asset Owner records EOL battery Re* request
completion for regulatory purposes.
For the representative use case involving an EV OEM, 3 service

partners, 3 asset owners, 3 logistics providers, and 3 Re* partners,
a blockchain network has been set up using Hyperledger Fabric
v2.2 LTS. The partner organizations have two peers each and are
onboarded into a private blockchain network for the EV
ecosystem value chain. Peer nodes in the blockchain network
are configured for RAFT Ordering Service. Hyperledger fabric
framework offers channel concepts for conducting private and
confidential transactions between two or more specific network
members38. A channel design (Fig. 10) has been created as
follows:
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● 3 Service Channels: Each service channel has been created
between OEM, a service partner, and an asset owner. Service
Channels are used for initiating EOL service requests by asset
owners and inspection by service partners. Once a Re*
decision is made by OEM, and the logistics organization and
Re* partner have been selected, all relevant records are posted
to the respective EOL channel.

● 9 EOL Channels: Each EOL channel has been created between
the OEM, a service partner, an asset owner, a logistics
provider, and a Re* partner. Additional data shared on EOL
channels includes shipping request by OEM, shipping status
by logistics provider, Re* completion status by Re* partner.

In the Hyperledger Fabric framework, Private Data Collections
(PDC) are used to manage confidential data that two or more
organizations on a single channel want to keep private from other
organizations on that channel. For the OEM’s EOL Battery
management use case, relevant PDCs have been created in each
EOL channel. For example, on each EOL channel joined by
multiple network members (the OEM, a service partner, an asset
owner, a logistics provider, and a Re* partner), EOL battery
purchase offers can be privately shared between the OEM, and the
service partner using PDC1, whereas shipping quotes can be
shared privately between the OEM and the logistics provider using

Fig. 10 Blockchain network design for the representative use case. For the representative use case involving an EV OEM, 3 service partners,
3 asset owners, 3 logistics providers, and 3 Re* partners, a blockchain network has been set up using Hyperledger Fabric v2.2 LTS.

Fig. 9 Representative workflow for end-of-life battery management. A representative workflow for end-to-end management of end-of-life
batteries involving all stakeholders including EV fleet owners, service providers (dealers/repair shops/dismantlers), OEM, logistics providers,
and recycling/repurposing providers.
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PDC2. Similarly, EOL battery sales offers can be shared privately
between OEM and its Re* partner using PDC3.
We confirm that this work is original and has not been

published elsewhere, nor is it currently under consideration for
publication elsewhere. Our study is not subject to dual use
research of concern. Online survey participants gave their
informed consent for inclusion before they participated in the
survey.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Car registration data is accessible from the California open data portal20, providing
vehicle counts broken down by ZIP code, model year, fuel type, make and duty (light/
heavy) of registered vehicles. OEM North America dealership location data can be
purchased from commercial data services. State-level EV registration data can be
downloaded from Atlas EV Hub39. SOH prediction models were trained and tested
using relaxation voltage data downloaded from Zenodo40. The OEM related data are
not publicly available due to them containing business sensitive information but are
available from the corresponding author on reasonable request.

CODE AVAILABILITY
Code is copyrighted as per our company policies, however code snippets can be
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