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The United Nations Sustainable Development Goals (SDGs) advocate for reducing preventable
Maternal, Newborn, and Child Health (MNCH) deaths and complications. However, many low- and
middle-income countries remain disproportionately affected by high rates of poor MNCH outcomes.
Progress towards the 2030 sustainable development targets for MNCH remains stagnated and
uneven within and across countries, particularly in sub-Saharan Africa. The current scenario is
exacerbated by a multitude of factors, including the COVID-19 pandemic’s impact on essential
services and food access, as well as conflict, economic shocks, and climate change.
Traditional approaches to improve MNCH outcomes have been bifurcated. On one side, domain
experts lean heavily on expert-driven analyses, often bypassing the advantages of data-driven
methodologies such asmachine learning. Conversely, computing researchers often employ complex
models without integrating essential domain knowledge, leading to solutions that might not be
pragmatically applicable or insightful to the community. In addition, low- andmiddle-incomecountries
are often either data-scarce or with data that is not readily structured, curated, or digitized in an easily
consumable way for data visualization and analytics, necessitating non-traditional approaches, data-
drivenanalyses, and insight generation. In this perspective,weprovidea framework andexamples that
bridge the divide by detailing our collaborative efforts between domain experts and machine learning
researchers. This synergy aims to extract actionable insights, leveraging the strengths of both
spheres. Our data-driven techniques are showcased through the following five applications: (1)
Understanding the limitation of MNCH data via automated quality assessment; (2) Leveraging data
sources that are available in silos for more informed insight extraction and decision-making; (3)
Identifying heterogeneous effects of MNCH interventions for broader understanding of the impact of
interventions; (4) Tracking temporal data distribution changes in MNCH trends; and (5) Improving the
interpretability of “black box”machine learning models for MNCH domain experts. Our case studies
emphasize the impactful outcomes possible through interdisciplinary collaboration. We advocate for
this joint collaborative research approach, believing it can accelerate the extraction of actionable
insights at scale. Ultimately, this will catalyse data-driven interventions and contribute towards
achieving SDG targets related to MNCH.
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The third agenda of the United Nation’s (UN’s) Sustainable Development
Goals (SDGs) stresses the need to ensure healthy lives and well-being at all
ages. Maternal, Newborn, and Child Health (MNCH) is a critical compo-
nent of this agenda, particularly in low-and middle-income settings, where
there is a significant gap in access and quality of health services1. In 2019, it
was reported that about five million deaths of under-five children and 112
million maternal complications and deaths occurred globally2. Unfortu-
nately, the situation was further exacerbated by the COVID-19 pandemic’s
impact on essential services and food access in addition to other challenges
such as climate change, disasters, and wars, which make it challenging to
achieve the apriori set SDG targets3,4.

Existing approaches to addressMNCHissues have beenbifurcated.On
one side, domain experts lean heavily on expert-driven analyses, such as
determinants for childmortality5–8.However, these approaches often bypass
the advantages of advanced data-driven methodologies such as machine
learning (ML), which can augment the capabilities of domain experts or
scale the analysis to large spatial and temporal dimensions. Moreover, such
automated techniques can be used to extract actionable insights efficiently
and contrast results across a large collection of health surveys fromdifferent
geographical locations. Conversely, computing researchers often employ
complexmodelswithout integrating essential domainknowledge, leading to
solutions that might not be pragmatically applicable9. This is partially a
result of concealed insights within health surveys, such as systematic
deviations, which necessitate domain-expert knowledge to enhance the
design of ML models10. Additionally, the synergistic collaboration between
these two divergent approaches augments their respective capabilities,
providing domain experts and/or policymakers with timely information.
Such collaborations culminate in the creation of a streamlined, scalable, and
efficient data analysis pipeline that (a) accommodates the ever-expanding
volume of health data, (b) synergizes exploratory (often ML-driven) and
confirmatory (often human-driven)methodologies, (c) uncovers concealed
patterns supported by the most substantial evidence, and (d) safeguards
against erroneous discoveries resulting from human bias or spurious out-
comes sometimes produced by ML models.

In this perspective, we provide a framework and exemplar case studies
that bridge the divide between MNCH domain experts and machine
learning researchers by detailing our collaborative efforts and experiences.
This synergy aims to extract actionable insights, leveraging the strengths of
both spheres using the following five distinct use-cases:
• Understanding the limitation of MNCH data via data-driven and

automated quality assessment
• Leveraging data sources that are available in silos for more informed

insight extraction and decision making
• Identifying heterogeneous effects of MNCH interventions for wider

impact understanding
• Tracking temporal data distribution changes in MNCH trends
• Improving the interpretability of “black box”machine learningmodels

for MNCH domain experts

Our case studies emphasize the potent outcomes possible through
interdisciplinary collaboration. We advocate for this joint approach,
believing it can accelerate the extraction of insights on a grand scale. Ulti-
mately, this will catalyse data-driven interventions and increase the prob-
ability of achieving SDG targets related to MNCH.

Understanding the limitation of MNCH data via data-
driven and automated quality assessment
Data-driven analytical approaches are significantly dependent on the quality
of thedataused for analysis11,12. This is best encapsulatedby the adage garbage
in, garbage out, meaning that if the quality of the data used for analysis is
substandard, the insights derived from the analysis are likely to be
questionable13,14. The issue of data quality is particularly pertinent in the
MNCHdomain,where publicly accessible data is primarily collected through
demographic surveys15. Health surveys such as the Demographic Health
Survey (DHS)16, Knowledge Integration (KI)17, andPerformanceMonitoring

for Action 2020 (PMA)18 can be analyzed to generate novel insights about
MNCH19.However, a commonpatternacross these surveys is themissingness
of key variables for a significant number of records20. In common data
analysis practices, recordswithmissing values are oftendiscardedor imputed
using mean or median values. However, it is key to uncover if there is a
systematic pattern for the missingness, e.g., individuals with limited knowl-
edge of the question or with privacy concernsmay opt-out from answering a
survey question. Furthermore, machine learning models often require well-
balanceddata across segments of thepopulationof interest. Practically, that is
hardly true as thedata collected showsa varyingdegree of skewness towards a
certain segment, e.g., due to proximity to data collection centers, cultural
barriers to participate in data collection, or divergent prevalence of the out-
come across regions. Thus, it is crucial to check the quality of health survey
datasets, e.g., collection irregularities or skewed representations, before the
survey is fed into ML models, which is also further supported by a growing
trend of data-centric approaches for impactful ML solutions21.

To this end, we aim to share how quality analysis is applied in evalu-
ating health data using the BetterBirth22 study as a use case. The BetterBirth
Studywas amatched-pair, cluster-randomized, controlled trial in 60pairs of
facilities across 24districts ofUttarPradesh, India, that studied the impactof
the WHO’s Safe Childbirth Checklist on adherence to evidence-based
practices by birth attendants and a composite health outcome of perinatal
and maternal deaths and serious complications22–24. Before investigating
heterogeneous treatment effects of the intervention in the BetterBirth study,
we first wanted to identify the subset of mothers who had the highest risk of
neonatal deaths, i.e.,motherswho experienced the death of a newbornwithin
28 days of delivery, in both the Control and Intervention arms (see Table 1).
The treatment arms in the BetterBirth study consisted of approximately
75,000 participants in the Control arm and 77,000 in the Intervention arm.
The average rate of neonatal deathwas 3.15% in the Control arm and 3.12%
in the Intervention arm. Thus, the task of discovering the subset of mothers
with the highest risk of neonatal deaths involved searching over the discrete/
discretized covariates in the BetterBirth study to identify the single subset
(stratum) that has the highest rate of neonatal death compared to the global
means in both treatment arms i.e., the most anomalous subset.

We found that all mothers with no living children experienced a
neonatal death at the timeof the study inboth treatment arms, i.e., the subset
ofmotherswith no living children consistedof 589participants in the control
arm and 642 participants in the treatment arm, all of whom experienced a
neonatal death. This finding in the data was further investigated and
attributed to a data collection irregularity corresponding to the question in
the survey, i.e., howmany living childrendoes thepregnantmotherhave?As
a result, this information is discarded from our subsequent analysis. We
then further analyzed the vulnerable subset of mothers with neonatal death
outcomes after the variable with quality was removed. The finding shows
that low birth-weight a high-risk factor, which is validated by the domain
experts. These two findings demonstrate the power of complementary and
collaborative work between domain experts and data scientists that led to
the discovery of hidden data quality issues and the validation of domain-
expert insights with data-driven results.

Leveraging data sources that are available in silos for
more informed insight extraction and decision making
Health surveys, such as the DHS, KI, and PMA, are conducted for different
reasons and can be used to help understand several aspects of MNCH19.
Such a processmay involve a range of research questions, such as predicting
the likelihood of the outcome, detection of vulnerable groups, and identi-
fication ofmain determinants5–8,25. Though these existing surveys have been
employed to derive actionable insights, e.g., for devising the new interven-
tions or policies, more could be done to facilitate their effective utilization,
especially considering the significant resources (human capital, time,
money, etc.) incurred to collect, process, store, and maintain these surveys.

In practice, a critical challenge is the siloed analysis of single survey
data. Often there are multiple MNCH-related surveys even in a single
country. These surveys might differ in study samples, the information
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collected, and the time periods in which the surveys were conducted.
Moreover, the variations across health surveys pose a challenge for the
integrated use of the different data sources. Variations include but are not
limited to specific research questions being addressed using the survey, the
entities funding the research project or data collection, the proprietors of the
data, and the stipulations and willingness surrounding data access. Fur-
thermore, the extraction of estimates and insights from single surveys is
often insufficient, particularly when the surveys suffer from data scarcity
challenges such as small sample sizes and data imbalance (i.e., a rare
occurrence of an outcome). Thus, despite huge investments and efforts to
collect single independent surveys, they often do not meet the increasing
information demand for policy- and decision-making. Consequently, there
is an established need for combiningmultiple independent surveys in order
to capture distinct characteristics available across these surveys and
potentially result in more practical insights.

Next, we illustrate the potential benefits of harmonizing different
health surveys related to childmortality. By aggregating these disparate data
sets, we can create a more comprehensive and insightful repository of
information that can significantly enhance our understanding and ability to
improve child mortality outcomes. To this end, we demonstrated a data-
driven approach to integrateDHS16, PMA18, andKI17 survey datasets19. DHS
contains representative data on population, health, HIV, and nutrition
through more than 300 surveys in over 90 different countries. These
nationally representative surveys are designed to collect data onmonitoring
and impact evaluation indicators important for individual countries and
cross-country comparisons. PMA comprises surveys related to households,
service delivery points, and GPS of the area, collected using innovative
mobile technology. In addition to the household, individual-level data were
collected for each eligible female-identified in the household roster. KI
consists of different studies some of which are controlled trials on the child
growth effect of different interventions. We particularly used the Alliance
for Maternal and Newborn Health Improvement surveys, particularly
(AMANHI-1) and (AMANHI-2), which focus on child mortality19.

Our approach to linking different surveys begins with projecting these
surveys into equal-dimensional covariate representations so that samples in
these surveys can be compared directly19.We employ different techniques to
reduce the original covariate dimensions in the surveys to be combined.
These techniques include using common covariates among the surveys,
dimensionality reduction using principal component analysis, dimension-
ality reduction using denoising autoencoders, and feature importance
rankings. Subsequently, the similarity of samples across disjoint surveys is
computedusing adistancemetric, fromwhich closeneighbors are extracted.
Next, unique covariates of close neighbors are aggregated and combined
with the original study, thereby augmenting the covariate representation of
the original survey for better predictive performance19. This linking
approach is straight forward, and it provides data-level integration of

different surveys, which can minimize resource utilization compared to
extra data collection or more sophisticated post-model linkage practices.

We validated our data linkage approach by comparing it against ran-
dom linkages19. First, we separately linked disjoint datasets obtained from
DHS data from Burkina Faso, Nigeria, and Ghana. Next, we separately
trainedmodels forpredicting childmortality using the linkeddatasets. Lastly,
we assessed the performance of the trainedmodels using area under receiver
operating characteristic.We found that themodels trainedon the data linked
by our approach significantly outperformed the models train on the siloed
datasets or the randomly linked datasets19. Interestingly, across different
dimension reduction techniques evaluated, using auto-encoders provided
the largest improvement, suggesting the potential benefit of recent advances
in the machine learning and deep learning domain. Generally, the proposed
framework involves the utilization of multiple surveys to: (1) maximise the
efficiency of a particular study by incorporating discriminative and unique
covariates from another study; (2) improve prediction performance and
identify distinctively useful covariates across studies; and (3) provide domain
experts and policymakers with additional insights on existing studies and
further recommendations for future data collection efforts.

Identifying heterogeneous effects of MNCH
interventions
The MNCH domain is characterized by the application of different inter-
ventions aimed at reducing preventable maternal and newborn deaths and
complications across populations composed of varying characteristics.
Improving the quality of care in MNCH, therefore, requires a sound
understanding of the varying (heterogeneous) treatment effects of inter-
ventions across individuals or subgroups in an MNCH population. This
nuanced approach is crucial to activities such as targeted intervention
planning inMNCH.Unfortunately, however, intervention impact studies in
MNCH predominantly investigate the average treatment effects of inter-
ventions across studied populations23,24. Often times, this correctly leads to
wide acceptance and reuse of interventions proven to be impactful but
inadvertently results in theunderstudyingof less effective interventionswith
limited understanding of the potential reasons related to ineffectiveness.
They may also fail to evaluate how well the less-impactful intervention can
be expected to work for specific individuals or subgroups of a population24,
orwhy the intervention did notwork for the remaining studied population9.

Some of the key reasons why the analysis of heterogeneous treatment
effects is challenging include the lack of clarity regarding the goals of such
analyses and the lack of appropriate approaches to conduct, report, inter-
pret, and apply results from such studies26. For example, traditional
approaches for analyzing heterogeneous treatment effects typically rely on
manual stratification that is often limited to a handful of features selected a
priori by domain experts. Fortunately, recent advancements in data-driven
subgroup analysis methods enable scalable and unbiased heterogeneous
treatment effect analysis9. These novel analytic approaches could overcome
challenges associated with traditional methods for analyzing sub-
population level effects of interventions in MNCH.

By way of example, after we evaluated the data quality in the Better-
Birth study and discarded noisy variables, we proceeded further to uncover
potential heterogeneous treatment effects. Recall that the BetterBirth study
evaluated the impact of the WHO Safe Childbirth Checklist using a mat-
ched-pair, cluster-randomized, controlled trial in 120 government health
facilities across 24 districts in Uttar Pradesh India24. In this study, the
intervention arm population included mother-baby dyads registered for
labor and delivery in 60 health facilities that implemented the BetterBirth
program. The intervention was the implementation of the WHO Safe
Childbirth Checklist, a quality improvement tool that promotes systematic
adherence to 28 evidence-based practices associated with improved child-
birth outcomes and is primarily used by birth attendants during and after
the delivery and before discharge. The control arm was composed of
mother-baby dyads registered for labor and delivery in the remaining 60
health facilities that applied the existing standard of care. The primary
outcome of interest was a composite outcome of perinatal death, maternal

Table 1 | Our approach identified a data collection irregularity
in the BetterBirth study wheremothers with no living children
are found to be extremely risky to neonatal death9

Treatment arms

Control Intervention

Number of mothers in the whole treatment arm 75004 77103

Percentage of neonatal deaths in the
treatment arm

3.15% 3.12%

Identified vulnerable group in the treatment arm Mothers with no
living children

Motherswith no
living children

Number of identified mothers in the
identified group

589 642

Percentage of neonatal deaths in the
identified group

100% 100%

Collaborations with the domain experts proved the data collection irregularity for this particular
variable and hence it is removed from further analysis.
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death, or severe maternal complications occurring within the first 7 days
after delivery. The study enrolled and determined the outcomes of over
157,000 eligible participants across the intervention and comparison
groups. The study concluded that although adherence to good birth prac-
tices was higher in the intervention arm, maternal mortality, perinatal
mortality, and maternal morbidity did not differ significantly between the
treatment and control arms24.

One can pose a few critical questions based on the BetterBirth study
findings:

Q1: though the intervention did not significantly reduce the primary
outcomes in the interventionarm (compared to the control arm),was there
a subset of mother-baby dyads who actually benefited from the
intervention?
Q2: if such a subset of mother-baby dyads that benefited from the inter-
vention exist, what are the characteristics of this subset?

We tried to answer these questions by looking for potential hetero-
geneous treatment effects in the BetterBirth study9. Procedurally, we first
trained a logistic regression model on the control arm data to predict the
likelihood of developing the binary primary composite outcome. Even
though logistic regression was employed due to its simplicity and ease of
interpretation, other classification algorithms, such as Gradient Boosting,
could also be used for this task. Next, we use the trained classificationmodel
to estimate the expected outcome for eachmother-babydyads records in the
intervention group. Finally, we applied subset scanning from the anomalous
pattern detection literature27 to identify the subset of mother-baby dyads in
the intervention arm that had the largest deviation between the actual
outcomes and expected outcomes. We found that mother-baby dyads
described by normal gestational age at birth, known parity, and unknown
number of abortions were found to benefit from the Checklist intervention
significantly (Odds Ratio: 0.70, 95%S Confidence Interval: 0.62–0.79, with
empiricalp-value < 0.001).However, it isworthnoting that such insights are
still hypothetical and confirmatory studies e.g., through adaptive
randomization28 are critical to verify such generated hypotheses.

Tracking temporal data distribution changes in
MNCH trends
Maternal, newborn, and child health is influenced by the ever-changing
demographics of thepopulationdue to factors such as interventions, climate
change, pandemics, and civil wars29–32. Therefore, it is crucial to recognize
and analyze these changes across various regions and administrative units
over time, as well as the prevalence of outcome changes over time.With this
in mind, our objective is to highlight the limitations of country-level
aggregatedor averaged reports of outcomes, suchasunder-5 childmortality,
whichmay not provide a comprehensive view of the situation. For example,
country-level reports do not reflect on regions or sub-populations that are
still lagging behind or the regions or sub-populations that are faring better
than the reported average. These aggregated reports can often obscure the
realities faced by subsets of the population that fall on the extreme ends of
the country-level average. By delving deeper and exploring these subsets, we
can gain a clearer understanding of the true scope and impact of maternal,
newborn, and child health challenges.

Our previous study demonstrated how temporal data distribution
changes, such as the concept drift in the statistical properties of a child
mortality across time33, which can also be used to investigate variability in
further outcomes inMNCH.We leveraged data-driven subgroup discovery
to identify the sub-populations of women that experience larger than
expected changes in under-5 mortality rates between two points in time,
approximately 10–15 years apart33. Procedurally, we begin by training and
calibrating a machine learning predictive model to predict the likelihood of
under-5 mortality using nationally representative DHS16 data from an
earlier time-point (T0). Second, we apply the predictivemodel to predict the
probability of under-5mortality at amore recent time-point (T1). Third, we
compute the change in the odds of the outcome between the two time steps
T0 andT1. Lastly, we apply subset scanning

27 to identify the sub-populations

in the T1 data whose outcomes differ the most from their predicted prob-
abilities based on the T0 model.

By applying this approach, we found several potentially interesting
findings. For example, this approach suggests that in Ethiopia, households
composed of singlemothers with 2 children reported the largest decrease in
under-5 mortality, i.e., from 47% (in 2000) to less than 7.5% (in 2016).
Similarly, in Nigeria, households residing in the South or South-West
regions experienced the largest decrease in under-5 mortality (from 14.8%
to 7.4%). Further work is still needed to study causal connections related to
observed sub-population-level changes in under-5 mortality trends.

Improving the interpretability of “black box”machine
learning models for MNCH domain experts
Whereas mostMLmodels are good at prediction and classification, they are
often not readily trusted and adopted by MNCH stakeholders due to their
“black box” nature. For ideal use in decision-making and intervention
planning,MNCHstakeholders andpolicymakers requiremodels that arenot
only accurate but also interpretable and able to generate actionable insights.
Consequently, machine learning practitioners and adopters must develop
and use methods for inspecting “black box” models to generate actionable
insights and improve the trustworthiness of their proposed solutions.

By way of example, we conducted a study that aimed at identifying the
factors associated with neonatal mortality by analyzing the DHS16 survey
datasets from 10 Sub-Saharan countries25. For each survey dataset, we
trained an ensemble gradient boosting classifier that was used to identify
mothers who experienced a neonatal death within 5 years prior to partici-
pating in the survey. To improve explainability and identify new insights, we
visualized the feature importance and partial dependence of features in the
model. Herein, feature importance refers to the ranked list of the most
important features contributing to the prediction in the ensemble model.
Partial dependence refers to the relationship between a single feature and an
outcome of interest, holding other features constant, i.e., how, on average,
changing the values of a given feature while holding the values of all other
features affects the risk of a given outcome.

Interestingly, through these “black box”model inspection techniques,
we confirmed the positive correlation between birth spacing and risk of
neonatal mortality and identified a plausible negative correlation between
household size and risk of neonatal mortality25. We also established that
mothers living in smaller households have a higher risk of neonatal mor-
tality than mothers living in larger households.

Discussions and future directions
MNCH in low-and middle-income settings, often in the Global South, has
been the primary focus of a number of United Nation’s Sustainable
Development Goals (SDGs), particularly SDG-3 - Ensure healthy lives and
promote well-being for all at all ages. Though encouraging improvements
have been reported over recent years4, partly due to a number of successful
interventions, many countries are still lagging behind the SDG targets
pertaining to MNCH. Challenges, such as COVID-19 pandemic, climate
change, natural disasters and civil wars29–32, further complicate the current
MNCH situation, e.g., with adverse impacts on health facilities. Fortunately,
we have witnessed an astonishing rise of data-driven capabilities, such as
machine learning, over recent years that could be employed to help
understand MNCH challenges from a plethora of different data sources.
Domain experts, such as public health professionals, are often at the fore-
front of studies conducted in the MNCH domain due to their accumulated
knowledge facilitated by long-term on-ground experiences. On the other
hand, recent advances in data-driven approaches demonstrate capabilities
for analyzing data and extracting actionable insights for domain experts in
an efficient and scalable way9,25,33. Thus, it is critical for these two commu-
nities to collaborate and complement each other in a bid to solve theMNCH
challenges and accelerate the progress toward achieving SDG targets related
toMNCH. Furthermore, an intersectional approach, which brings different
stakeholders and their perspectives, is key to better understanding the
fundamental MNCH challenges. The intersectional approach should
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encompass all the steps, starting from problem formulation, data collection
design, and collection to analysis of the data collected and driving actionable
insights. The stakeholder group may involve community health workers,
mid-level and national-level health system administrators, non-profit orga-
nizations, and policymakers. The data-driven approach has a tremendous
opportunity to facilitate communications among these diverse groups by
providing insights that are intrinsic and understandable to these groups.

Particularly, we foresee wider adoptions of similar data-driven tech-
nologies that aim to utilize multitude of MNCH data sources that are often
collected and used in silos across differentMNCHchallenges. In addition to
DHS16, KI17, and PMA18, there are other MNCH data sources that could be
utilized in future data-driven solutions for MNCH. Examples include the
Multiple Indicator Cluster Survey (MICS)34, which provide a wide range of
indicators including those on the health, nutritional status, and education of
children and women. Moreover, MICS surveys have been collected in
subsequent rounds (https://mics.unicef.org/) providing more frequently
collected data in cost effective manner, which makes it suitable for long-
itudinal studies, e.g., tracking SDGs. District Health Information Software
(DHIS2)35 is another data source that could be considered for similar tasks,
e.g., themalnutrition data being collected at the health facility level inKenya
could be utilized to further forecast acute malnutrition hot-spots in the
future. In addition, complementary data sources, other than health surveys,
need to be evaluated and used in data-driven approaches to further
strengthening the understanding of machine learning models towards
complex problems. These complimentary data sources include satellite
imagery, which are often freely available from multiple providers. These
remotely sensed images provide recent changes on the ground (e.g.,
expansion of population settlement) and to understand the impact of cli-
mate change and disasters (e.g., flood and drought)36,37.

Recently, Large Language Models (LLMs), which are specific type of
models for natural language processing, are demonstrated to possess a
higher degree of capability, e.g., as conversational agents38. Similar tech-
nologies could also be used to democratize access to technologies, e.g., by
providing personalized nutrition recommendations during pregnancy39.
However, there are potential risks that could be associated with these
technologies, e.g., hallucination of nonfactual information and mis-
information. Thus, we argue that such systems need to demonstrate a level
of trustworthiness, e.g., fairness across various segments of the population,
reliability and safety, explainability, andprotectionprivacy10,14.Moreover, as
with any technology, the regulations of such systems are critical to have a
standardized adoption of these approaches across borders.

Conclusions
In this perspective, we aim to encourage collaborations among experts from
different domains by sharing a diverse set of our prior works on data science
and machine learning for MNCH that involved successful collaborations
with MNCH experts. Specifically, we highlighted how data-driven techni-
ques shed light on a number of MNCH challenges, such as data-quality,
health surveys that are often available in silos, heterogeneous treatment
effects, understanding spatio-temporal data distribution shifts, and adding
up to the explainability of MNCH models via inspection of machine
learning models, which are often treated as ’black box’.

Evidence-based policy-making and intervention designs can strongly
benefit from similar data-driven techniques discussed in this paper. How-
ever, assessing the quality of data available is a priority before the data is used
for decision-making, particularly for MNCH surveys that are prone to a
numberof quality issuesdue to thenature of the collectionprocess and/or the
number of personals involved in the process. Furthermore, MNCH domain
is mostly characterized by the availability of multiple data sources, such as
DHS16, PMA18,KI17,MICS34,DHIS235, but in siloswithnoefficientutilization
of their aggregated form. Thus, we demonstrated how aggregation of these
data sources, by linking records, helped to improve predictive capabilities of
child mortality in a number of Sub-Saharan African countries. While
interventions played a significant role in reducing deaths and complications
related to mothers, children, and newborns, there is a significant gap in the

literature to investigate interventions that are less impactful in the average
population but might have benefited a particular segment of the population.

To this end, we shared that our data-driven methods could auto-
matically identify and characterize sub-populations that have significantly
benefited from the interventions using the BetterBirth study as a use case.
Similarly, the country-aggregated reports often shared to reflect the
improvement ofMNCH(e.g., reduction of childmortality rate in a country)
are limited to show the whole picture. For example, the regions or sub-
populations that lag behind the reported-average are not well studied. To
this end,wehighlightedhow those sub-populationswithworse than average
child mortality rates are identified in the DHS data by detecting spatio-
temporal datadistribution changes.Additionally, the perceptionofmachine
learning models as ’black boxes’ is one of the reasons that restrict the wider
adoption of machine learning models by the MNCH domain experts and
policymakers. Thus, we have highlighted our work on adding an extra layer
of explainability by investigating models designed to predict neonatal
mortality. Note that similar approaches described in this perspective could
be employed in other domains that are extensions toMNCH. For example,
we collaborated with domain experts in family planning and contraception,
to extract insights about contraceptive use from the DHS surveys, such as
discriminating contraceptive use patterns under different discontinuation
reasons, contraceptive uptake distributions, and transition information
across contraceptive types40,41.
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