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Deep learning detects premalignant
lesions in the Fallopian tube
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Tubo-ovarian high-grade serous carcinoma is believed to originate in the fallopian tubes, arising from
precursor lesions like serous tubal intraepithelial carcinoma (STIC) and serous tubal intraepithelial
lesion (STIL). Adequate diagnosis of these precursors is important, but can be challenging for
pathologists. Here we present a deep-learning algorithm that could assist pathologists in detecting
STIC/STIL. A dataset of STIC/STIL (n = 323) and controls (n = 359) was collected and split into three
groups; training (n = 169), internal test set (n = 327), andexternal test set (n = 186). A referencestandard
was set for the training and internal test sets, by a panel review amongst 15 gynecologic pathologists.
The training set was used to train and validate a deep-learning algorithm (U-Net with resnet50
backbone) to differentiate STIC/STIL from benign tubal epithelium. The model’s performance was
evaluated on the internal and external test sets by ROC curve analysis, achieving an AUROC of 0.98
(95%CI: 0.96–0.99) on the internal test set, and0.95 (95%CI: 0.90–0.99) on the external test set. Visual
inspection of all cases confirmed the accurate detection of STIC/STIL in relation to the morphology,
immunohistochemistry, and the reference standard. This model’s output can aid pathologists in
screening for STIC, and can contribute towards a more reliable and reproducible diagnosis.

Tubo-ovarian high-grade serous carcinoma (HGSC) is the most com-
mon form of epithelial ovarian cancer (EOC)1,2. It is thought that HGSC
originates in the fallopian tube, where different precursor lesions of
HGSC have been identified, all harboring TP53 mutations3,4. The clini-
cally most relevant of these is serous tubal intraepithelial carcinoma
(STIC), which shows cytomorphological alterations comparable to
HGSC, in combination with a characteristic staining pattern in immu-
nohistochemistry (IHC), with aberrant p53 expression and an increased
Ki-67 proliferation index3,5,6. Lesions which resemble STIC but fail to

meet all diagnostic criteria, are referred to as serous tubal intraepithelial
lesions (STIL).

With the discovery that HGSC originates in the fallopian tube, new
preventive strategies to decrease EOC risk are being explored. For example,
womenundergoing abdominal surgery for benign indications can choose to
also have their fallopian tubes removed, even if there is no increased EOC
risk (opportunistic salpingectomy)7. Women who are at an increased risk
for developing HGSC, e.g., BRCA1/2 PV (pathogenic variant) carriers, are
counseled on risk-reducing salpingo-oophorectomy (RRSO), or in study
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settings, on risk-reducing salpingectomy (RRS) with delayed oophor-
ectomy. There are currently multiple prospective trials investigating the
safety of this alternative RRS approach, such as the SOROCK
(NCT04251053), PROTECTOR (ISRCTN25173360), and the TUBA-
WISPII (NCT04294927) studies8,9. A recent study showed that isolated
STIC in RRSO specimens is associated with a significantly increased risk of
developing peritoneal carcinomatosis and in the study setting of RRS,
diagnosis of a STIC is an indication to perform an oophorectomy without
delay8–10. Though further research is needed to better determine what
clinical implications regarding additional diagnostics or treatment is indi-
cated after a diagnosis of STIC, it will depend on a reliable and reproducible
diagnosis of these lesions, underlining the importance of an unequivocal
diagnosis. The clinical significance of STIL, and its exact role in the
pathogenesis of HGSC remains to be elucidated. Currently, STIL has no
clinical implications.

STIC can be a challenging diagnosis for pathologists. With an inci-
dence of 0.1% in the average risk population and 3% in the high-risk
population, STIC is a rare and therefore unfamiliar diagnosis for many
pathologists5,11. Screening for these lesions comes with a considerable
workload, as these lesions are often small. The use of the widely adopted
sectioning and extensively examining the fimbriated end (SEE-FIM)
grossing protocol, which dictates that the entire fallopian tube should be
embedded for microscopic examination, helps to maximize the accessible
tissue, yet results in numerous hematoxylin and eosin (H&E) stained slides,
which the pathologist has to carefully examine12. Another challenge in STIC
diagnosis is its moderate reproducibility amongst pathologists, with kappa
scores ranging between 0.33 and 0.396,13. Several clinical algorithms have
been proposed to aid the pathologists, using various morphological criteria
and IHC6,14,15. These algorithms have been a valuable addition and have led
to an improvement in reproducibility6. Still, in a recent Delphi study it was
found that opinions regarding relevantfindings for a diagnosis of STIC vary
largely, even among subspecialized gynecologic pathologists5.

With the recent advancements in digital pathology, new possibilities to
support pathologists in their diagnosis are emerging. Machine learning
approaches, mostly based on deep learning (DL), have been shown to
increase accuracy, reproducibility, and efficiency in histopathologic
assessment, and have proven their benefit for both screening and classifi-
cation in various pathology related tasks16. Therefore, we hypothesize that a
DL algorithm can assist pathologists with diagnosing STIC. In this study we
developed such an algorithm, capable of fully automated analysis of digi-
talized H&E-stained slides of fallopian tube specimens to detect regions of
aberrant epithelium.

Results
Reference standard
The resulting labels from the expert panel are presented in supplementary
figure 2. A total of 571 images were reviewed. A label was assigned when
three out offivepathologists agreed on the diagnosis. Therewere 282 images
labeled as ‘STIC’ or ‘suspicious for STIC’. 14 images did not receive a final
classification as there was no majority vote. The remaining samples were
labeled as ‘STIL’ (n = 42), ‘HGSC’ (n = 20), ‘p53 signature’ (n = 17) and
‘normal’ (n = 196). Kappa values between individual participants ranged
between 0.35 and 0.64, with a median of 0.53 (Table 1), corresponding to a
moderate level of agreement17.When grouping all aberrant entities together,
i.e., only making a distinction between normal epithelium and aberrant
epithelium, thekappavalues rangedbetween0.87 and0.97,with amedianof
0.86, corresponding to a strong level of agreement17.

Model evaluation
The model to detect aberrant epithelium reached an AUROC of 0.98
(95% CI, 0.96–0.99) on the internal test set, and an AUROC of 0.95
(95% CI, 0.90–0.99) on the external test set. The ROC curves for both
test sets are presented in Fig. 1. In order to transform the model’s
segmentation output into class predictions, a threshold needed to be

Table 1 | Kappa values for the reference standard

Readers Full set of diagnoses Aberrant vs. non aberrant

Group A

Reader 1 Reader 2 0.56, 95% CI (0.48–0.64) 0.87, 95% CI (0.80–0.94)

Reader 1 Reader 3 0.55, 95% CI (0.48–0.62) 0.93, 95% CI (0.88–0.98)

Reader 2 Reader 3 0.54, 95% CI (0.46–0.62) 0.90, 95% CI (0.83–0.96)

Group B

Reader 4 Reader 5 0.51, 95% CI (0.42–0.60) 0.86, 95% CI (0.78–0.93)

Group C

Reader 6 reader 7 0.64, 95% CI (0.56–0.72) 0.87, 95% CI (0.80–0.94)

Reader 6 reader 8 0.35, 95% CI (0.28–0.43) 0.81, 95% CI (0.73–0.90)

Reader 7 reader 8 0.46, 95% CI (0.38–0.53) 0.92, 95% CI (0.86–0.98)

Group D

Reader 9 reader 10 0.55, 95% CI (0.47–0.63) 0.93, 95% CI (0.88–0.99)

Group E

Reader 11 reader 12 0.52, 95% CI (0.44–0.61) 0.81, 95% CI 0.72–0.90)

Reader 11 reader 13 0.42, 95% CI (0.34–0.50) 0.83, 95% CI (0.75–0.91)

Reader 12 reader 13 0.40, 95% CI (0.32–0.47) 0.86, 95% CI (0.78–0.94)

Group F

Reader 14 reader 15 0.61, 95% CI (0.54–0.69) 0.97 (95 CI 0.93–1.00)

Median 0.53 0.86

Minimum 0.35 0.81

Maximum 0.64 0.97

The left column displays the groups and individual readers. The second column shows the Cohen’s Kappa values, for the ‘Full set of diagnoses’, whereby readers had to assign a label of: ‘Normal’; ‘STIC’;
‘Suspicious for STIC’; ‘STIL’; ‘p53 signature’; ‘HGSC’ or ‘other’. The third column shows Cohen’s Kappa values for ‘Aberrant vs. non aberrant’. Hereby ‘STIC’, ‘Suspicious for STIC’, ‘STIL’, ‘HGSC’, and
‘P53 signatures’ are grouped together, versus ‘normal’.
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determined along this ROC curve, for when the model predicts STIC/
STIL. When opting for the threshold with the highest F1-score, this
threshold would be at 0.35 in the internal test set. At this threshold, the
model would reach a sensitivity of 0.98 and a specificity of 0.93 and has,
at a slide level, three false negatives and thirteen false positives in a set

of 327 slides. The external test set, consisting of 186 slides, would then
have a sensitivity of 0.98 and a specificity of 0.67, with two false
negatives and 37 false positives. However, if we were to select a
threshold favoring sensitivity at 0.30, this would result in a sensitivity
of 1 and a specificity of 0.82, with 0 false negatives and 36 false positives

Fig. 1 |ROC curves for internal test set(yellow) and external test set (blue), with accompanying incremental threshold and corresponding numbers of false positives and false
negatives.
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in the internal test set. For the external test set, the sensitivity would be
0.98 and the specificity 0.55, with one false negative and 60 false
positives. A table with incremental threshold to illustrate the effect on
the number of false positives, false negatives, precision rate, recall rate,
and F1 score is presented in Fig. 1.

The algorithms segmentation output can be visualized as an overlay
image, projected on top of the H&E image. This allows visual inspection of
the detected objects, so that the pathologists can assess based on what areas
STIC/STIL is predicted.Absence of color therebymeans that themodel does
not predict STIC/STIL. Green indicates that themodel predicts STIC/STIL,
with a relatively low level of certainty, and red indicates that themodel has a
high level of certainty that STIC/STIL is present. An overall good alignment
was observed between the morphologically aberrant areas, IHC, and the
model’s predictions (Fig. 2). The cases resulting in false negative predictions
under the 0.35 threshold are shown in Fig. 3. Upon visual inspection, the
algorithmdidpickupon these lesions, however theprobability didnot reach
the required threshold. In the internal test set, the false negatives consisted of
two cases of STIL, and one case of STICwith concomitantHGSC,where the
model did detect theHGSC component. The external test set contained two
false negatives, that did not reach the 0.35 threshold. One of these cases had
been a point of discussion during the case review, whereby there was doubt
whether the specimen contained reactive epithelium or STIC. The presence
of concomitant HGSC, eventually led the reviewers to classify the lesion as

STIC. TheHGSC component in this case was again detected. False positives
were, amongst other things, observed in areas with increased numbers of
lymphocytes, detachments of surface epithelium, or artifacts. A selection of
examples is presented in Fig. 4.

Discussion
This study introduces a deep learning (DL)model designed to automatically
detect regions of aberrant epithelium (STIC/STIL) in digitalized H&E-
stained whole slide images of fallopian tube specimens. To our knowledge,
this is the first DL model developed for this application. Through com-
prehensive testing on two independent test sets, we demonstrate the robust
performance and discriminative ability of our algorithm in distinguishing
between slides with aberrant epithelium and control slides, achieving high
sensitivity and specificity.

The uniqueness of this study lies in its pioneering attempt to improve
STIC diagnostics through the application of DL. For this, we developed a
U-Net model. U-Net is a widely used and provenmethod for segmentation
tasks in computational pathology, and can be considered the current
baseline method. This study stands out as a broad-based study, establishing
a largenetworkof international collaboration involving 12 centers from four
countries. Despite the rarity of STIC lesions, our study successfully assem-
bled a sizable dataset. To ensure a strong reference standard, we established
an international expert group comprising 15 experienced gynecologic

Fig. 2 | Examples of true positives.CasesA–C are from the internal test set. A1- C1:
regions of aberrant epithelium, classified as STIC. A2- C2: model’s prediction, using
a color-coded probability map. The absence of color means that the model does not
predict STIC/STIL. Green indicates a low certainty in STIC/STIL prediction, and red

indicates a high certainty in STIC/STIL prediction. A3-C3: accompanying p53
immunohistochemical stain. A4–C4: accompanying Ki-67 immunohistochemical
stain. Cases D–G are from the external test set. D1-G1: regions of aberrant epithe-
lium, classified as STIC. D2-G2: model’s prediction.
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pathologists from participating centers who assessed the samples. The
resultingDLmodel exhibiteda robust andhigh-performanceoutcome,with
an AUROC of 0.98 (95% CI, 0.96–0.99) for the internal test set and 0.95
(95% CI, 0.90–0.99) for the external test set.

The limitations of this study are largely associated with the rarity
and moderate reproducibility of STIC/STIL. Though the dataset is
large, considering the rarity of this lesion, it remains modest in size for
developing aDL algorithm and specifically, the number of isolated STIL
is low. The input data for training and testing were collected from eight
different data sources, encompassing multiple laboratories, staining
protocols, and slide scanners. Evenwith such variability in scanners and
staining protocols, our algorithm demonstrated consistent and robust
performance on the test sets. Nevertheless, further validation studies on
additional datasets, encompassing various staining and sampling
methods, will be needed to confirm the generalizability of the model,
before this model can be applied in clinical practice. Another challenge
is found in the reproducibility of STIC, whereby we know that the
diagnosis is prone to interobserver variability6,13. Our expert panel
exhibited a strong level of agreement when distinguishing between
aberrant and normal epithelium (median k of 0.86), yet agreement
levels decreased when differentiating between normal epithelium, high-

grade serous carcinoma (HGSC), and various precursor lesions (med-
ian k of 0.53), illustrating that the exact boundaries between the various
precursor lesions and early HGSC remains challenging even for gyne-
cologic pathologists. Our aim was for this DL model to detect all pre-
cursor lesions and not miss any potential STIC. Because the
interobserver variability in differentiating STIL and STIC among
pathologists ismoderate, we chose to include STIL in this detection task.
This model, in its current form is thus a detection model and not a
classification model. It is not intended to replace the pathologist, but is
an additional tool to support the pathologist in this challenging
diagnostic task.

The sensitivity and specificity of our model are dependent upon the
selected operating threshold. While aiming for the highest F1-score, the
optimal operating point was found to be at 0.35.However, in the envisioned
setting where pathologists screen for a rare entity, it may be preferable to
prioritizehigh sensitivity (to avoidmissing relevant lesions) at the expenseof
reduced specificity, leading to more false positives that require visual
inspection by pathologists.We could thus change the threshold tomake the
model more sensitive. At a threshold of 0.30, the two missed STIL lesions
under thefirst threshold in the internal test setwould be detected, albeitwith
an additional 23 false positives (out of 327 slides).

Fig. 3 | False negatives under the 0.35 operating threshold.CasesA–C are from the
internal test set. A1–B1: regions of aberrant epithelium, classified as STIL. A3:
regions of aberrant epithelium, classified as STIC with concomitant HGSC. A2- C2:
model’s prediction, using a color coded probability map. Green indicates a low
certainty in STIC/STIL prediction, and red indicates a high certainty in STIC/STIL
prediction. A3-C3: accompanying p53 IHC. A4-C4: accompanying Ki-67 IHC.

Cases D–E images from the external test set. D1: region of aberrant epithelium,
classified as STIC. D2: model’s prediction. D3: accompanying P53 IHC. D4:
accompanying Ki67 IHC. E1: region of aberrant epithelium, classified as STIC. E2:
model’s prediction. E3: concomitant HGSC from the same slide. E4: model’s pre-
diction (HGSC adequately detected)
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Accurate diagnosis of STIC is critical because of the increased risk
of peritoneal carcinomatosis associated with isolated STIC lesions. To
ensure optimal patient care, it is important that women considering
risk-reducing surgeries, either RRSO or RRS with delayed oophor-
ectomy, have access to accurate histologic assessments. Nevertheless,
there are currently numerous unresolved issues surrounding STIC.
The diagnosis remains challenging and prone to interobserver
variability6,13. Crucial research questions regarding the precise role of
STIC in the etiology of HGSC and peritoneal carcinomatosis, as well as
the potential identification of subtypes within STIC, based on mole-
cular or immunohistochemical profiles, remain unanswered. Finally,
there is a lack of sufficient data to guide treatment recommendations,
such as the role of follow-up, staging surgery, and chemotherapy in
patient management. To address these issues, the development of a
reliable and reproducible method for the diagnosis of STIC is of
utmost importance.

Deep learning holds immense potential in addressing the diagnostic
challenges for STIC. As the digitalization of pathology continues to evolve,
DL algorithms can be seamlessly integrated into digital workflows, offering
valuable additional screening aids16,18. This workflow augmentation can
benefit the analysis of fallopian tube specimens, providing a promising way
for STIC detection. Even when adopting a high sensitivity operating point,
thereby accepting a more moderate specificity, DLmay significantly reduce
the time pathologists spend on negative samples. Our study’s DL model
exhibited robust performance on two independent test sets, encompassing
samples frommultiple institutions, suggesting its compatibilitywith varying
institutional setups. However, large-scale multicenter validation is essential
to confirm its performance across diverse settings. Furthermore, themodel’s
efficacy may be further improved through the collection of additional
datasets and ongoing technical refinements. While our study primarily
focused on detecting aberrant epithelium, we envision that with continued
international collaboration and a better understanding of the boundaries
between various precursor lesions and early invasive HGSC, DL could well
play a role in lesion classification.

In conclusion, our study presents an innovative deep learning
model capable of automatically detecting regions of STIC/STIL in
digitalized H&E-stained whole slide images of fallopian tubes. This DL
model illustrates the potential for deep-learning models, to assist
pathologists in reliably identifying regions of aberrant epithelium,
enabling them to prioritize their attention and time to the most
important samples.

Methods
Materials
A retrospective dataset was collected, comprised of cases of STIC/STIL
(n = 323) and benign controls (n = 359). This dataset was split into three
groups: a training set, an internal test set andanexternal test set.The training
set (118 STIC/STIL; 51 controls) and internal test set(131 STIC/STIL; 196
controls) were collected from, Radboudumc, the Dutch Nationwide Net-
work of Histopathology and Cytopathology database (PALGA); Kathleen
Cuningham Foundation Consortium for research into Familial Breast
cancer / Royal Women’s Hospital Melbourne; University of Pennsylvania;
Department of Defense (DoD) and Specialized Programs of Research
Excellence (SPORE) Ovarian Cancer Omics Consortium; the University of
Toronto; the Canisius Wilhelmina Hospital Nijmegen (CWZ), and Rijn-
state Hospital Arnhem. Immunohistochemical stains for p53 and Ki-67
were includedwhen available (n = 180). Pathologistsmay use these stains to
assist in differentiating between STIL and STIC. Isolated STIC/STIL, or
STIC/STIL with concomitant HGSC from 2011 to 2020 were included. A
single slide per patient was selected. Controls consisted of salpingectomy
specimens, removed for benign indications, in the age range between 30 and
70. Attention was given to include BRCA1/2 pv carriers amongst the con-
trols, though BRCA status could not be ascertained for all patients. The
training set was designated for training and validation, whereby 118 slides
(70%)wereused for training the algorithmand51 slides (30%)wereused for
validation. No samples from the internal test set were seen by the algorithm
during the training or validation phases. The external test set (74 cases; 112
controls), consisted of cases from the Johns Hopkins University and con-
trols from the Eurofins PAMM laboratory. Samples from neither of these
institutions had previously been seen by the algorithm. An overview of the
dataset is provided in Table 2.

Reference standard
A reference standard was established for the images in the training set and
internal test set. Regions of interest from all cases (n = 249), previously
diagnosed as (potential) STIC/STIL and a random sample from the controls
(n = 247) were selected, based onmorphology and immunohistochemistry.
A total of 571 still images of these regions were made at 20 times magnifi-
cation (pixel size 0.5um/pixel). The images were presented to a panel of
fifteen experienced gynecologic pathologists, from four different countries
and 12 different institutions, using an online pathology viewing platform
(grand-challenge.org). Thepathologistswere randomly split into six groups,
consisting of two or three pathologists per group. Each image was reviewed

Fig. 4 | Examples of false positives. A–C are from the internal test set. A1: region of
benign epithelium. B1: epithelium with reactive changes in the background of
inflammation. C1: region with artifact (mechanically damaged benign epithelium).
A2–C2: model’s prediction, using a color coded probability map. Green indicates a

low certainty in STIC/STIL prediction, and red indicates a high certainty in STIC/
STIL prediction.D–E are from the external test set. D1: region of benign epithelium.
E1: partially destained region (artifact) of benign epithelium. D2–E2: model’s
prediction.
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by two groups, with overlap between the groups. Thus, each image was
reviewed by five pathologists (supplementary figure 1). Participants were
blinded to the original diagnosis. They reviewed the H&E image and, when
available, corresponding IHC stains. The pathologists were asked to assign a
label to each image, classifying them as either ‘normal/reactive’, ‘STIC’,
‘STIL’, ‘p53 signature’, ‘HGSC’, ‘Suspicious for STIC’, or ‘other’. Though the
term ‘suspicious for STIC’ is discouraged for use in diagnostic practice, the
term was included in this study setting, to provide an additional option, in
case pathologists felt uncomfortable diagnosing STIC, solely based onH&E,
when IHC was not available.

The reference standard for the external test set consisted of the original
diagnosis at the time of clinical review, which was confirmed by a pathol-
ogist and a pathology resident at Radboudumc (MSi and JBo). No dis-
crepancies in this set were identified.

Deep-learning model development
Annotations. Annotations were made in the digitalized whole slide
images, using the in-house developed open-source software ASAP
(https://github.com/computationalpathologygroup/ASAP). Regions of
STIC and STIL were annotated exhaustively, in accordance with the
labels that resulted from the reference standard. Other regions, such as
invasive cancer, normal epithelium, cystic epithelium, and non-epithelial
tissuewere annotated sparsely. Nohand drawn annotationsweremade in
the control slides.

Deep-learning model development. The development of the deep-
learning algorithm consisted of two phases. Phase one focused on the
segmentation of all epithelium; differentiating this fromall non-epithelial
tissue. For this, a U-Net model with a mobilenet-v2 backbone was
trained19–21. Themobilenet-v2 backbone is a lightweight backbone, which
suffices for the task of epithelium segmentation. In phase two, we

enhanced the course annotations of aberrant epithelial regions using the
epithelial segmentation results fromphase one. This process created clear
demarcations between these areas and background tissue. We subse-
quently trained another U-Net segmentation model to differentiate the
lesions of interest (regions of aberrant epithelium, classified as STIC or
STIL) from normal epithelium, HGSC, and non-epithelial regions. To
handle this more complex task, we replaced the Mobilenet-v2 backbone
with the larger ResNet50 backbone19,20,22. A graphic representation of the
entire training pipeline is shown in Fig. 5.

Training parameters. The input for both U-Net models was a RGB
patch of 512 × 512px, with a pixel spacing of 1.0 um/pixel. Patches were
randomly sampled from the annotated regions. Care was taken to
ensure a balanced set of training patches containing aberrant epithe-
lium and healthy tissue, meaning that half of the mini batch contained
aberrant epithelium and the other half healthy tissue. During training,
random flipping, rotation, elastic deformation, blurring, brightness
(random gamma), color, and contrast changes augmentations were
used, in order to improve generalizability. The learning rate was initially
set to 1e-4 and multiplied by a factor of 0.5 after every 25 epochs if no
increase in performance was observed on the validation set. The net-
works were initialized with pre-trained weights, trained on ImageNet
data. The networks were trained for amaximumof 150 epochs, with 500
iterations per epoch. The mini-batch size was set to 10 per batch,
resulting in the network seeing 5000 patches per epoch. Training of the
networks was stopped when no improvement of the validation loss was
found for 50 epochs. The output of all networks is in the form of C
likelihood maps. Pytorch 1.9 in Python 3.8 was used for the develop-
ment of the algorithm.

Manual hard-negative mining (HNM) was performed during training
of both themodel fromphase one andphase two.At the end of each training

Table 2 | Overview of the dataset

Dataset

Training set

Source N IHC Cases/controls Scanner Resolution

Radboudumc 23 23 Cases 3DHistech P1000 0.24

UPENN 8 0 Cases Aperio 0.50

DoD/SPORE 76 19 Cases Aperio AT2 0.50

kConFab/RWH 11 0 Cases 3DHistech P150 0.17

Radboudumc 51 0 Controls 3DHistech P1000 0.24

Total 169 42

Internal test set

Source N IHC Cases/controls Scanner Resolution

Radboudumc 55 55 Cases 3DHistech P1000 0.24

Mt. Sinai, Toronto 24 11 Cases Aperio AT2 0.50

PALGA 52 52 Cases 3DHistech P1000 0.24

Radboudumc 141 20 Controls 3DHistech P1000 0.24

CWZ 25 0 Controls 3DHistech P1000 0.24

Rijnstate 30 0 Controls 3DHistech P1000 0.24

Total 327 138

External test set

Source N IHC Cases/controls Scanner Resolution

Eurofins PAMM 112 0 controls 3DHistech P1000 0.24

Johns Hopkins 74 35 cases Hamamatsu NanoZoomer S60 0.22

Total 186 35

The left column displays the various sub groups (training set, internal test set and external test set) and the various data sources. ‘N’ stands for the number of specimens from the data source. A single H&E
stained slide per specimen was used. ‘IHC’ stands for the number of specimens for which immunohistochemistry was available.
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session, themodel was applied to the full training set at whole-slide level. All
regions that were incorrectly segmented were manually annotated as diffi-
cult regions for the appropriate class. During the next training session these
regions were sampled twice as often, in comparison to the less challenging
regions, to allow the model to focus on these difficult regions. While
training, we monitored the performance of the model on a validation set
using the DICE coefficient. We experimentally noted that after five HNM
iterations, no further increase in segmentation performance was observed
on the validation set.

Model evaluation
Output of phase one, segmenting all epithelium, was inspected visually,
without additional quantitative evaluation. Output of phase two was
evaluated by assessing the slide level predictions. To obtain a slide level
prediction, we first identified connected components of segmented
regions, with a STIC/STIL probability. The average probability of such
regions was assigned as the object probability. The highest object
probability was thereafter used as the slide level prediction. We sub-
sequently created a receiver operating characteristics curve (ROC-
curve) and calculated the corresponding area under the receiver oper-
ating characteristics curve (AUROC), using sklearn (scikit-learn.org) in
python 3.8. To obtain a confidence interval we performed boot-
strapping with 1000 iterations, using Numpy 1.21 and Scipy 1.7.1 in
python 3.8. Finally, slides were checked visually to compare the objects
that the model detected as aberrant regions, with corresponding mor-
phology and IHC.

Statistics. Kappa values for the reference standard were calculated using
IBM SPSS statistics version 27.

Data availability
Images are subject to various data transfer agreements. These images can be
requested at the respective pathology institutions. Source codes to train and
assess the deep learning model and data from the reference standard are
available from the corresponding author on reasonable request. The deep-
learningmodel will be made freely accessible for research purposes and can
be accessed on-line (grand-challenge.org), after this manuscript is accepted
for publication.
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