Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wearable haptics for virtual reality and beyond

Abstract

Research has increasingly focused on wearable systems that provide informative haptic sensations to the hands, enhancing user interaction in virtual reality (VR) and augmented reality (AR) environments. Concurrently, the evolution of VR visors in terms of wearability, quality of the visual immersion and immediateness of bare-hand interaction poses both opportunities and challenges for haptic systems, which must match these visors in usability, hand-tracking compliance and quality of experience. Designing haptic devices involves trade-offs between the dimensions and quality of feedback, often falling short of the richness and complexity of natural haptic sensations. Recent studies have explored various actuating methods and haptic prototypes to enhance the wearability and feedback richness of haptic devices. Notably, the development of soft interfaces actuated by diverse principles has emerged as a key trend. Moreover, beyond simulating physical interaction, haptic technologies can provide high-level information for various applications, including posture correction, navigation and remote control of humanoid robots. In this Review, we provide an overview of wearable haptics for VR applications, introducing principles of haptic rendering and the relationship between stimulus modalities and actuating solutions. We discuss emerging actuating methods and wearable device designs, examining their experimental applications in innovative scenarios of VR and beyond.

Key points

  • Various haptic stimuli and mechanoreceptors are involved in the sense of touch and in natural interaction with physical objects. These can be mapped to different actuation modalities adopted by wearable device designs.

  • Haptic rendering in immersive virtual reality (VR) is a trade-off between the plurality of haptic stimuli and the constraint provided by physical wearable devices. Certain rendering principles can take advantage of those haptic features that humans are most sensitive to.

  • According to actuation principles and target applications, a plurality of haptic designs is proposed in the literature, covering different actuation methods and different body segments, from the finger pad to the limbs.

  • Although rendering in VR is a target application for wearable device design, innovative applications are proposed in several other fields, ranging from postural correction and navigation assistance to communication and remote control of humanoid robots.

  • Research in wearable haptics is rich in innovative actuators, devices and applications, but certain fundamental haptic features, such as the stick–slip condition and wearability of devices compared with rendered features, still represent an unmet need and a challenge to foster the use of wearable haptics in VR and in other innovative applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Application scenarios of wearable haptics.
Fig. 2: Typologies of mechanoreceptors.
Fig. 3: Connections between stimulus modalities and actuation principles.
Fig. 4: Typologies of fingertip haptic devices.
Fig. 5: Typologies of hand-worn haptic devices.
Fig. 6: Typologies of arm-worn haptic devices.
Fig. 7: Application of wearable haptics for neurorehabilitation in VR.

Similar content being viewed by others

References

  1. Lederman, S. J. & Klatzky, R. L. Haptic perception: a tutorial. Attention Perception Psychophys. 71, 1439–1459 (2009).

    Google Scholar 

  2. Robles-De-La-Torre, G. & Hayward, V. Force can overcome object geometry in the perception of shape through active touch. Nat. Mach. Intell. 412, 445–448 (2001).

    Google Scholar 

  3. Prattichizzo, D., Pacchierotti, C. & Rosati, G. Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Trans. Haptics 5, 289–300 (2012). This article discusses and develops the basic haptic rendering principles related to wearable haptic devices and their intrinsic physical rendering limits and opportunities.

    Google Scholar 

  4. Liu, Z. et al. Deep learning based brain tumor segmentation: a survey. Complex. Intell. Syst. 9, 1001–1026 (2023).

    Google Scholar 

  5. Kuchenbecker, K. J., Fiene, J. & Niemeyer, G. Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Computer Graph. 12, 219–230 (2006).

    Google Scholar 

  6. Choi, I., Zhao, Y., Gonzalez, E. J. & Follmer, S. Augmenting perceived softness of haptic proxy objects through transient vibration and visuo-haptic illusion in virtual reality. IEEE Trans. Vis. Computer Graph. 27, 4387–4400 (2020).

    Google Scholar 

  7. Tanacar, N. T., Mughrabi, M. H., Batmaz, A. U., Leonardis, D. & Sarac, M. The impact of haptic feedback during sudden, rapid virtual interactions. In Proc. 2023 IEEE WHC World Haptics Conf. (eds Wiertlewski, M. & Kappers, A.) 64–70 (IEEE, 2023).

  8. Basdogan, C. & Srinivasan, M. A. in Handbook of Virtual Environments 157–174 (CRC Press, 2002).

  9. Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N. & Tachi, S. Gravity grabber: wearable haptic display to present virtual mass sensation. In Proc. ACM SIGGRAPH 2007 Emerging Technologies (eds. Ryall, K. & Sibert, J.) 8-es (ACM, 2007).

  10. Choi, I., Culbertson, H., Miller, M. R., Olwal, A. & Follmer, S. Grabity: A wearable haptic interface for simulating weight and grasping in virtual reality. In Proc. 30th Annual ACM Symp. User Interface Software and Technology (UIST ‘17) (eds Gajos, K., Mankoff, J. & Harrison, C.) 119–130 (ACM, 2017).

  11. Leonardis, D., Solazzi, M., Bortone, I. & Frisoli, A. A 3-RSR haptic wearable device for rendering fingertip contact forces. IEEE Trans. Haptics 10, 305–316 (2016).

    Google Scholar 

  12. Johansson, R. S. & Westling, G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp. Brain Res. 66, 141–154 (1987).

    Google Scholar 

  13. Cole, K. J. & Abbs, J. H. Grip force adjustments evoked by load force perturbations of a grasped object. J. Neurophysiol. 60, 1513–1522 (1988).

    Google Scholar 

  14. Bergamasco, M., Avizzano, C. A., Frisoli, A., Ruffaldi, E. & Marcheschi, S. Design and validation of a complete haptic system for manipulative tasks. Adv. Robot. 20, 367–389 (2006).

    Google Scholar 

  15. Yau, J. M., Olenczak, J. B., Dammann, J. F. & Bensmaia, S. J. Temporal frequency channels are linked across audition and touch. Curr. Biol. 19, 561–566 (2009).

    Google Scholar 

  16. Wiertlewski, M., Lozada, J. & Hayward, V. The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27, 461–472 (2011). This article investigates and discusses the main principles of virtual texture rendering through cutaneous haptic feedback.

    Google Scholar 

  17. Culbertson, H., Unwin, J. & Kuchenbecker, K. J. Modeling and rendering realistic textures from unconstrained tool–surface interactions. IEEE Trans. Haptics 7, 381–393 (2014). This article develops relevant tools and methods for encoding and real-time rendering of virtual textures.

    Google Scholar 

  18. Gabardi, M., Solazzi, M., Leonardis, D. & Frisoli, A. A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In Proc. 2016 IEEE Haptics Symp. (HAPTICS) (eds Choi, S. & Kuchenbecker, K.) 140–146 (IEEE, 2016).

  19. Spagnoletti, G. et al. in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 691–692 (IEEE).

  20. Provancher, W. R., Cutkosky, M. R., Kuchenbecker, K. J. & Niemeyer, G. Contact location display for haptic perception of curvature and object motion. Int. J. Robot. Res. 24, 691–702 (2005).

    Google Scholar 

  21. Frisoli, A., Solazzi, M., Salsedo, F. & Bergamasco, M. A fingertip haptic display for improving curvature discrimination. Presence: Teleoperators Virtual Environ. 17, 550–561 (2008). This article presents a relevant investigation on curvature perception, disentangling kinaesthetic and cutaneous tactile feedback through a dedicated haptic rendering device.

    Google Scholar 

  22. Wijntjes, M. W., Sato, A., Hayward, V. & Kappers, A. M. Local surface orientation dominates haptic curvature discrimination. IEEE Trans. Haptics 2, 94–102 (2009). This article investigates the principles and dominant haptic stimuli underlying the perception of shape and surface orientation.

    Google Scholar 

  23. Chinello, F., Pacchierotti, C., Malvezzi, M. & Prattichizzo, D. A three revolute–revolute–spherical wearable fingertip cutaneous device for stiffness rendering. IEEE Trans. Haptics 11, 39–50 (2017).

    Google Scholar 

  24. Perez, A. G. et al. Optimization-based wearable tactile rendering. IEEE Trans. Haptics 10, 254–264 (2016).

    Google Scholar 

  25. Gallo, S., Son, C., Lee, H. J., Bleuler, H. & Cho, I.-J. A flexible multimodal tactile display for delivering shape and material information. Sens. Actuators A: Phys. 236, 180–189 (2015).

    Google Scholar 

  26. Gabardi, M., Leonardis, D., Solazzi, M. & Frisoli, A. Development of a miniaturized thermal module designed for integration in a wearable haptic device. In Proc. 2018 IEEE Haptics Symp. (HAPTICS) (eds Kuchenbecker, K. & Gerling, G.) 100–105 (IEEE, 2018).

  27. Craig, A. & Bushnell, M. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994).

    Google Scholar 

  28. Lederman, S. J. & Jones, L. A. Tactile and haptic illusions. IEEE Trans. Haptics 4, 273–294 (2011). This article discusses the principles underlying the sense of touch through different haptic illusions.

    Google Scholar 

  29. Ujitoko, Y. & Ban, Y. Survey of pseudo-haptics: haptic feedback design and application proposals. IEEE Trans. Haptics 14, 699–711 (2021).

    Google Scholar 

  30. Pezent, E., Macklin, A., Yau, J. M., Colonnese, N. & O’Malley, M. K. Multisensory pseudo‐haptics for rendering manual interactions with virtual objects. Adv. Int. Systems 5, 2200303 (2023).

    Google Scholar 

  31. Salazar, S. V., Pacchierotti, C., de Tinguy, X., Maciel, A. & Marchal, M. Altering the stiffness, friction, and shape perception of tangible objects in virtual reality using wearable haptics. IEEE Trans. Haptics 13, 167–174 (2020).

    Google Scholar 

  32. Uramune, R. et al. HaPouch: a miniaturized, soft, and wearable haptic display device using a liquid-to-gas phase change actuator. IEEE Access. 10, 16830–16842 (2022).

    Google Scholar 

  33. Park, M. et al. Skin-integrated systems for power efficient, programmable thermal sensations across large body areas. Proc. Natl Acad. Sci. USA 120, e2217828120 (2023).

    Google Scholar 

  34. Sîrbu, I. D., et al. in Proc. SPIE Elect. Pol. Act. and Dev. (EAPAD 2019) (ed. Bar-Cohen, Y.) XXI 10966 334–339 (SPIE, 2019).

  35. Chen, S., Chen, Y., Yang, J., Han, T. & Yao, S. Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human–machine interactions. Flex. Electron. 7, 1 (2023).

    Google Scholar 

  36. Hartcher-O’Brien, J., et al. in Proc. 2023 IEEE WHC World Haptics Conf. (eds Wiertlewski, M. & Kappers, A.) 299–305 (IEEE, 2023).

  37. Leroy, E. & Shea, H. Hydraulically amplified electrostatic taxels (HAXELs) for full body haptics. Adv. Mat. Tech. 8, 2300242 (2023).

    Google Scholar 

  38. Hinchet, R., Vechev, V., Shea, H. & Hilliges, O. in Proc. 31st Annual ACM Symp. User Interface Software and Technology (UIST ‘18) 901–912 (2018).

  39. Xiong, Q. et al. So-EAGlove: VR haptic glove rendering softness sensation with force-tunable electrostatic adhesive brakes. IEEE Trans. Robot. 38, 3450–3462 (2022).

    Google Scholar 

  40. Zhang, Y., Wang, D., Wang, Z., Zhang, Y. & Xiao, J. Passive force-feedback gloves with joint-based variable impedance using layer jamming. IEEE Trans. Haptics 12, 269–280 (2019).

    Google Scholar 

  41. Wang, Z. et al. MateJam: multi-material teeth-clutching layer jamming actuation for soft haptic glove. IEEE Trans. Haptics 16, 276–286 (2023).

    Google Scholar 

  42. Mun, S. et al. Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans. Haptics 11, 15–21 (2018).

    Google Scholar 

  43. Zhao, H. et al. A wearable soft haptic communicator based on dielectric elastomer actuators. Soft Robot. 7, 451–461 (2020).

    Google Scholar 

  44. Youn, J.-H., Mun, H. & Kyung, K.-U. A wearable soft tactile actuator with high output force for fingertip interaction. IEEE Access. 9, 30206–30215 (2021).

    Google Scholar 

  45. Fino, N., Jumet, B., Zook, Z. A., Preston, D. J. & O’Malley, M. K. Mechanofluidic instability-driven wearable textile vibrotactor. IEEE Trans. Haptics 16, 530–535 (2023).

    Google Scholar 

  46. Jumet, B. et al. Fluidically programmed wearable haptic textiles. Device 1, 100059 (2023).

    Google Scholar 

  47. Yang, B. et al. Wearable 3D shape display for dynamic interfaces rendering. In Proc. 2023 IEEE WHC World Haptics Conf. (eds Wiertlewski, M. & Kappers, A.) 389–396 (IEEE, 2023).

  48. Nagano, H., Sase, K., Konyo, M. & Tadokoro, S. Wearable suction haptic display with spatiotemporal stimulus distribution on a finger pad. In Proc. 2019 IEEE WHC World Haptics Conf. (eds Shinoda, H. & Kajimoto, H.) 389–394 (IEEE, 2019).

  49. Morita, N. et al. Wearable high-resolution haptic display using suction stimuli to represent cutaneous contact information on finger pad. IEEE Trans. Haptics 16, 687–694 (2023).

    Google Scholar 

  50. Kajimoto, H. & Jones, L. A. Wearable tactile display based on thermal expansion of nichrome wire. IEEE Trans. Haptics 12, 257–268 (2019).

    Google Scholar 

  51. Schorr, S. B. & Okamura, A. M. Three-dimensional skin deformation as force substitution: wearable device design and performance during haptic exploration of virtual environments. IEEE Trans. Haptics 10, 418–430 (2017).

    Google Scholar 

  52. Giraud, F. H., Joshi, S. & Paik, J. Haptigami: a fingertip haptic interface with vibrotactile and 3-DoF cutaneous force feedback. IEEE Trans. Haptics 15, 131–141 (2021).

    Google Scholar 

  53. Zhakypov, Z. & Okamura, A. M. FingerPrint: A 3-D printed soft monolithic 4-degree-of-freedom fingertip haptic device with embedded actuation. In Proc. 2022 IEEE 5th Int. Conf. Soft Robotics (RoboSoft) (eds Mazzolai, B. & Stokes, A.) 938–944 (IEEE, 2022).

  54. Young, E. M. & Kuchenbecker, K. J. Implementation of a 6-DOF parallel continuum manipulator for delivering fingertip tactile cues. IEEE Trans. Haptics 12, 295–306 (2019).

    Google Scholar 

  55. Young, E. M., Gueorguiev, D., Kuchenbecker, K. J. & Pacchierotti, C. Compensating for fingertip size to render tactile cues more accurately. IEEE Trans. Haptics 13, 144–151 (2020).

    Google Scholar 

  56. Mo, Y. et al. Design and evaluation of a wearable fingertip device for three-dimensional skin-slip display. IEEE Trans. Haptics https://doi.org/10.1109/TOH.2023.3312661 (2023).

    Article  Google Scholar 

  57. Fani, S. et al. Modulating the perceived softness of real objects through wearable feel-through haptics. IEEE Trans. Haptics 16, 543–548 (2023).

    Google Scholar 

  58. Han, T., Anderson, F., Irani, P. & Grossman, T. Hydroring: Supporting mixed reality haptics using liquid flow. In Proc. 31st Annual ACM Symp. User Interface Software and Technology (UIST ‘18) (ed. Baudisch, P.) 913–925 (ACM, 2018).

  59. Preechayasomboon, P. & Rombokas, E. Haplets: finger-worn wireless and low-encumbrance vibrotactile haptic feedback for virtual and augmented reality. Front. Virtual Real. 2, 738613 (2021).

    Google Scholar 

  60. Hulin, T. et al. in Virtual, Augmented and Mixed Reality. Design and Interaction. HCII 2020 (eds Chen, J. Y. C. & Fragomeni, G.) 286–298 (Springer, 2020).

  61. Vechev, V. et al. TacTiles: Dual-Mode Low-Power Electromagnetic Actuators for Rendering Continuous Contact and Spatial Haptic Patterns in VR. In Proc. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (eds Kiyokawa, K., Ando, H., Mohler, B. & Tachi, S.) 312–320 (IEEE, 2019).

  62. Kawazoe, A., Reardon, G., Woo, E., Di Luca, M. & Visell, Y. Tactile echoes: Multisensory augmented reality for the hand. IEEE Trans. Haptics 14, 835–848 (2021).

    Google Scholar 

  63. Leonardis, D., Chiaradia, D. & Frisoli, A. A miniature direct-drive hydraulic actuator for wearable haptic devices based on ferrofluid magnetohydrodynamic levitation. In Proc. 2023 IEEE WHC World Haptics Conf. (eds Wiertlewski, M. & Kappers, A.) 293–298 (IEEE, 2023).

  64. van Beek, F. E., Bisschop, Q. P. & Kuling, I. A. Validation of a soft pneumatic unit cell (PUC) in a VR experience: a comparison between vibrotactile and soft pneumatic haptic feedback. IEEE Trans. Haptics 17, 191–201 (2023).

    Google Scholar 

  65. Chen, D., Song, A., Tian, L., Fu, L. & Zeng, H. FW-Touch: a finger wearable haptic interface with an MR foam actuator for displaying surface material properties on a touch screen. IEEE Trans. Haptics 12, 281–294 (2019).

    Google Scholar 

  66. Fani, S., Ciotti, S., Battaglia, E., Moscatelli, A. & Bianchi, M. W-FYD: a wearable fabric-based display for haptic multi-cue delivery and tactile augmented reality. IEEE Trans. Haptics 11, 304–316 (2017).

    Google Scholar 

  67. Meli, L. et al. Combining wearable finger haptics and augmented reality: user evaluation using an external camera and the microsoft hololens. IEEE Robot. Autom. Lett. 3, 4297–4304 (2018).

    Google Scholar 

  68. Garenfeld, M. A. et al. Novel electrode designs for electrotactile stimulation of the finger: a comparative assessment. IEEE Trans. Haptics 16, 748–759 (2023).

    Google Scholar 

  69. Yao, K. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 893–903 (2022).

    Google Scholar 

  70. Tanaka, Y., Shen, A., Kong, A. & Lopes, P. Full-hand electro-tactile feedback without obstructing palmar side of han. In Proc. 2023 CHI Conf. Human Factors in Computing Systems (CHI ‘23) (ed. Schmidt, A.) 1–15 (ACM, 2023).

  71. Luo, H., Wang, Z., Wang, Z., Zhang, Y. & Wang, D. Perceptual localization performance of the whole hand vibrotactile funneling illusion. IEEE Trans. Haptics 16, 240–250 (2023).

    Google Scholar 

  72. Trinitatova, D. & Tsetserukou, D. Study of the effectiveness of a wearable haptic interface with cutaneous and vibrotactile feedback for VR-based teleoperation. IEEE Trans. Haptics 16, 463–469 (2023).

    Google Scholar 

  73. Hosseini, M., Sengül, A., Pane, Y., De Schutter, J. & Bruyninck, H. Exoten-glove: A force-feedback haptic glove based on twisted string actuation system. In Proc. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (ed. Barakova, E. I.) 320–327 (IEEE, 2018).

  74. Baik, S., Park, S. & Park, J. Haptic glove using tendon-driven soft robotic mechanism. Front. Bioeng. 8, 541105 (2020).

    Google Scholar 

  75. Pierce, R. M., Fedalei, E. A. & Kuchenbecker, K. J. A wearable device for controlling a robot gripper with fingertip contact, pressure, vibrotactile, and grip force feedback. In Proc. 2018 IEEE Haptics Symp. (HAPTICS) (eds Choi, S. & O’Malley, M.) 19–25 (IEEE, 2014).

  76. Palagi, M. et al. A mechanical hand-tracking system with tactile feedback designed for telemanipulation. IEEE Trans. Haptics 16, 594–601 (2023).

    Google Scholar 

  77. Zubrycki, I. & Granosik, G. Novel haptic device using jamming principle for providing kinaesthetic feedback in glove-based control interface. J. Intell. Robotic Syst. 85, 413–429 (2017).

    Google Scholar 

  78. Dragusanu, M., Villani, A., Prattichizzo, D. & Malvezzi, M. Design of a wearable haptic device for hand palm cutaneous feedback. Front. Robot. AI 8, 706627 (2021).

    Google Scholar 

  79. Aggravi, M., Pausé, F., Giordano, P. R. & Pacchierotti, C. Design and evaluation of a wearable haptic device for skin stretch, pressure, and vibrotactile stimuli. IEEE Robot. Autom. Lett. 3, 2166–2173 (2018).

    Google Scholar 

  80. Sullivan, J. L. et al. Multi-sensory stimuli improve distinguishability of cutaneous haptic cues. IEEE Trans. Haptics 13, 286–297 (2019).

    Google Scholar 

  81. Buist, M. et al. Development and validation of a wearable device to provide rich somatosensory stimulation for rehabilitation after sensorimotor impairment. IEEE Trans. Biomed. Circuits Syst. 17, 547–557 (2023).

    Google Scholar 

  82. Pezent, E., Agarwal, P., Hartcher-O’Brien, J., Colonnese, N. & O’Malley, M. K. Design, control, and psychophysics of tasbi: a force-controlled multimodal haptic bracelet. IEEE Trans. Robot. 38, 2962–2978 (2022).

    Google Scholar 

  83. Gharat, S. S., Shetty, Y., & McDaniel, T. A vibrothermal haptic display for socio-emotional communication. In Proc. 23rd International Conference on Human-Computer Interaction (HCII 2021) (ed. Stephanidis, C.) 17–30 (Springer, 2021).

  84. Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).

    Google Scholar 

  85. Dementyev, A., Getreuer, P., Kanevsky, D., Slaney, M. & Lyon, R. F. VHP: vibrotactile haptics platform for on-body applications. In Proc. 34th Annual ACM Symp. User Interface Software and Technology (UIST ‘21) (eds Nichols, J., Kumar, R. & Nebeling, M.) 913–925 (ACM, 2021).

  86. de Vlam, V., Wiertlewski, M. & Vardar, Y. Focused vibrotactile stimuli from a wearable sparse array of actuators. IEEE Trans. Haptics 16, 511–517 (2023).

    Google Scholar 

  87. Casini, S. et al. Design and realization of the cuff-clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces. In Proc. 2015 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS) (eds Zhang, J. & Knoll, A.) 1186–1193 (IEEE, 2015).

  88. Meli, L. et al. The hBracelet: a wearable haptic device for the distributed mechanotactile stimulation of the upper limb. IEEE Robot. Autom. Lett. 3, 2198–2205 (2018).

    Google Scholar 

  89. Fani, S., Ciotti, S. & Bianchi, M. Multi-cue haptic guidance through wearables for enhancing human ergonomics. IEEE Trans. Haptics 15, 115–120 (2021).

    Google Scholar 

  90. Yamazaki, Y., Mitake, H. & Hasegawa, S. J. Implementation of tension-based compact necklace-type haptic device achieving widespread transmission of low-frequency vibrations. IEEE Trans. Haptics 15, 535–546 (2022).

    Google Scholar 

  91. Chinello, F., Pacchierotti, C., Bimbo, J., Tsagarakis, N. G. & Prattichizzo, D. Design and evaluation of a wearable skin stretch device for haptic guidance. IEEE Robot. Autom. Lett. 3, 524–531 (2017).

    Google Scholar 

  92. Battaglia, E. et al. The rice haptic rocker: skin stretch haptic feedback with the Pisa/IIT SoftHand. In Proc. 2017 IEEE WHC World Haptics Conf. (ed. Hirche, S.) 7–12 (IEEE, 2017).

  93. Dunkelberger, N. et al. A multisensory approach to present phonemes as language through a wearable haptic device. IEEE Trans. Haptics 14, 188–199 (2020).

    Google Scholar 

  94. Wu, W. & Culbertson, H. Wearable haptic pneumatic device for creating the illusion of lateral motion on the arm. In Proc. 2019 IEEE WHC World Haptics Conf. (eds Shinoda, H. & Kajimoto, H.) 193–198 (IEEE, 2019).

  95. Raitor, M., Walker, J. M., Okamura, A. M. & Culbertson, H. WRAP: Wearable, restricted-aperture pneumatics for haptic guidance. In Proc. 2017 IEEE Int. Conf. on Rob. and Aut. (ICRA) (eds I-Ming, C. & Ang, M.) 427–432 (IEEE, 2017).

  96. Young, E. M., Memar, A. H., Agarwal, P. & Colonnese, N. Bellowband: A pneumatic wristband for delivering local pressure and vibration. In Proc. 2019 IEEE WHC World Haptics Conf. (eds Shinoda, H. & Kajimoto, H.) 55–60 (IEEE, 2019).

  97. Kanjanapas, S., Nunez, C. M., Williams, S. R., Okamura, A. M. & Luo, M. Design and analysis of pneumatic 2-DoF soft haptic devices for shear display. IEEE Robot. Autom. Lett. 4, 1365–1371 (2019).

    Google Scholar 

  98. Yoshida, K. T., Nunez, C. M., Williams, S. R., Okamura, A. M. & Luo, M. 3-dof wearable, pneumatic haptic device to deliver normal, shear, vibration, and torsion feedback. In Proc. 2019 IEEE WHC World Haptics Conf. (eds Shinoda, H. & Kajimoto, H.) 97–102 (IEEE, 2019).

  99. Tewell, J., Bird, J. & Buchanan, G. R. Heat-nav: Using temperature changes as navigation cues. In Proc. 2017 CHI Conf. Human Factors in Computing Systems (CHI ‘17) (eds Mark, G. et al.) 1131–1135 (ACM, 2017).

  100. Singhal, A. & Jones, L. A. Creating thermal icons—a model-based approach. ACM Trans. Appl. Perception 15, 1–22 (2018).

    Google Scholar 

  101. Peiris, R. L., Feng, Y.-L., Chan, L. & Minamizawa, K. Thermalbracelet: Exploring thermal haptic feedback around the wrist. In Proc. 2019 CHI Conf. Human Factors in Computing Systems (CHI ‘19) (eds Brewster, S. & Fitzpatrick, G.) 1–11 (ACM, 2019).

  102. Iberite, F. et al. Restoration of natural thermal sensation in upper-limb amputees. Science 380, 731–735 (2023).

    Google Scholar 

  103. Bortone, I. et al. Immersive virtual environments and wearable haptic devices in rehabilitation of children with neuromotor impairments: a single-blind randomized controlled crossover pilot study. J. Neuroeng. Rehabilitation 17, 1–14 (2020). This article shows a relevant application and pilot clinical study of wearable haptics in immersive VR for neuro-rehabilitation.

    Google Scholar 

  104. Camardella, C., Chiaradia, D., Bortone, I., Frisoli, A. & Leonardis, D. Introducing wearable haptics for rendering velocity feedback in VR serious games for neuro-rehabilitation of children. Front. Virtual Real. 3, 1019302 (2023).

    Google Scholar 

  105. Brice, D., Gibson, Z., McGuinness, F. & Rafferty, K. Using ultrasonic haptics within an immersive spider exposure environment to provide a multi-sensorial experience. Front. Virtual Real. 2, 707731 (2021).

    Google Scholar 

  106. Hoffman, H. G. et al. Adding tactile feedback increases avatar ownership and makes virtual reality more effective at reducing pain in a randomized crossover study. Sci. Rep. 13, 7915 (2023).

    Google Scholar 

  107. Berton, F. et al. Crowd navigation in VR: exploring haptic rendering of collisions. IEEE Trans. Vis. Computer Graph. 28, 2589–2601 (2020).

    Google Scholar 

  108. Koilias, A., Mousas, C. & Anagnostopoulos, C. N. I feel a moving crowd surrounds me: exploring tactile feedback during immersive walking in a virtual crowd. Computer Animat. Virtual Worlds 31, e1963 (2020).

    Google Scholar 

  109. Venkatesan, R., Banakou, D. & Slater, M. Haptic feedback in a virtual crowd scenario improves the emotional response. Front. Virtual Real. 4, 1242587 (2023).

    Google Scholar 

  110. Ziat, M., Jhunjhunwala, R., Clepper, G., Kivelson, P. D. & Tan, H. Z. Walking on paintings: assessment of passive haptic feedback to enhance the immersive experience. Front. Virtual Real. 3, 997426 (2022).

    Google Scholar 

  111. Jung, K., Kim, S., Oh, S. & Yoon, S. H. HapMotion: motion-to-tactile framework with wearable haptic devices for immersive VR performance experience. Virtual Real. 28, 13 (2024).

    Google Scholar 

  112. Gasparello, P. S. et al. Use of mixed reality for the training of operators of mobile elevating work platforms with the aim of increasing the level of health and safety at work and reducing training costs. Front. virtual Real. 3, 1034500 (2022).

    Google Scholar 

  113. Calandra, D., De Lorenzis, F., Cannavò, A. & Lamberti, F. Immersive virtual reality and passive haptic interfaces to improve procedural learning in a formal training course for first responders. Virtual Real. 27, 985–1012 (2023).

    Google Scholar 

  114. Hauser, K. et al. Analysis and perspectives on the ana avatar xprize competition. Int. J. Social Rob. 16, 1–32 (2024).

    Google Scholar 

  115. Kosanovic, N., Vaz, J. C. & Oh, P. Y. Biomimetic real-time multimodal tactile perception and haptics for telepresence humanoids. In Proc. 2023 21st Int. Conf. Advanced Robotics (ICAR) (ed. Dias, J.) 613–620 (IEEE, 2023).

  116. Lenz, C. & Behnke, S. Bimanual telemanipulation with force and haptic feedback through an anthropomorphic avatar system. Robot. Autonomous Syst. 161, 104338 (2023).

    Google Scholar 

  117. Dafarra, S. et al. iCub3 avatar system: enabling remote fully immersive embodiment of humanoid robots. Sci. Robot. 9, eadh3834 (2024).

    Google Scholar 

  118. Van Erp, J. B. et al. What comes after telepresence? embodiment, social presence and transporting one’s functional and social self. In Proc. 2022 IEEE Int. Conf. Systems, Man, and Cybernetics (SMC) (ed. Marik, V.) 2067–2072 (IEEE, 2022).

  119. Clemente, F., D’Alonzo, M., Controzzi, M., Edin, B. B. & Cipriani, C. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans. Neural Syst. Rehabilitation Eng. 24, 1314–1322 (2015).

    Google Scholar 

  120. Battaglia, E. et al. Skin stretch haptic feedback to convey closure information in anthropomorphic, under-actuated upper limb soft prostheses. IEEE Trans. Haptics 12, 508–520 (2019).

    Google Scholar 

  121. Barontini, F. et al. Tactile feedback in upper limb prosthetics: a pilot study on trans-radial amputees comparing different haptic modalities. IEEE Trans. Haptics 16, 760–769 (2023). This article investigates different cutaneous stimuli modalities rendered by wearable haptics in a prosthetic application.

    Google Scholar 

  122. Li, K. & Brown, J. D. Dual-modality haptic feedback improves dexterous task execution with virtual EMG-controlled gripper. IEEE Trans. Haptics 16, 816–825 (2023).

    Google Scholar 

  123. Cha, H. et al. Study on intention recognition and sensory feedback: control of robotic prosthetic hand through EMG classification and proprioceptive feedback using rule-based haptic device. IEEE Trans. Haptics 15, 560–571 (2022).

    Google Scholar 

  124. Barontini, F., Catalano, M. G., Grioli, G., Bianchi, M. & Bicchi, A. J. I. R. Wearable integrated soft haptics in a prosthetic socket. IEEE Robot. Autom. Lett. 6, 1785–1792 (2021).

    Google Scholar 

  125. Vendrame, E., Coletti, A., Cappello, L., Mastinu, E. & Cipriani, C. A wearable device for hand sensorimotor rehabilitation through augmented sensory feedback. In Proc. 2023 Int. Conf. Rehabilitation Robotics (ICORR) (eds Riener, R. & Van Der Koij, H.) 1–6 (IEEE, 2023).

  126. Signal, N. et al. Haptic nudging using a wearable device to promote upper limb activity during stroke rehabilitation: exploring diurnal variation, repetition, and duration of effect. Behav. Sci. 13, 995 (2023).

    Google Scholar 

  127. Kappers, A. M. & Plaisier, M. A. Hands-free devices for displaying speech and language in the tactile modality—methods and approaches. IEEE Trans. Haptics 14, 465–478 (2021).

    Google Scholar 

  128. Luzhnica, G. & Veas, E. Optimising encoding for vibrotactile skin reading. In Proc. 2019 CHI Conf. Human Factors in Computing Systems (CHI ‘19) (eds Brewster, S. & Fitzpatrick, G.) 1–14 (ACM, 2019).

  129. MacGavin, B., Edwards, T. & Gorlewicz, J. L. A protactile-inspired wearable haptic device for capturing the core functions of communication. IEEE Trans. Haptics 14, 279–284 (2021).

    Google Scholar 

  130. Eguchi, R., Vacek, D., Godzinski, C. & Okamura, A. M. Between-tactor display using dynamic tactile stimuli for directional cueing in vibrating environments. IEEE Trans. Haptics https://doi.org/10.1109/TOH.2023.3304953 (2023).

    Article  Google Scholar 

  131. Scheggi, S., Talarico, A. & Prattichizzo, D. A remote guidance system for blind and visually impaired people via vibrotactile haptic feedback. In Proc. 22nd Mediterranean Conf. Control and Automation (eds Giarré, L. & Alonge, F.) 20–23 (IEEE, 2014).

  132. Barontini, F., Catalano, M. G., Pallottino, L., Leporini, B. & Bianchi, M. Integrating wearable haptics and obstacle avoidance for the visually impaired in indoor navigation: a user-centered approach. IEEE Trans. Haptics 14, 109–122 (2020).

    Google Scholar 

  133. Kim, W., Garate, V. R., Gandarias, J. M., Lorenzini, M. & Ajoudani, A. A directional vibrotactile feedback interface for ergonomic postural adjustment. IEEE Trans. Haptics 15, 200–211 (2021).

    Google Scholar 

  134. Bontula, A., Preston, R. C., Shannon, E., Wilson, C. & Fitter, N. T. Deep pressure therapy: a promising anxiety treatment for individuals with high touch comfort? IEEE Trans. Haptics 16, 549–554 (2023).

    Google Scholar 

  135. Foo, E., Baker, J., Compton, C. & Holschuh, B. in Extended Abstracts of the 2020 CHI Conf. Human Factors in Computing Systems (CHI EA ‘20) (eds Bernhaupt, R. et al.) 1–8 (ACM, 2020).

  136. Bimbo, J., Pacchierotti, C., Aggravi, M., Tsagarakis, N. & Prattichizzo, D. Teleoperation in cluttered environments using wearable haptic feedback. In Proc. 2017 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS) (ed. Lee, C. S. G.) 3401–3408 (IEEE, 2017).

  137. Valdivia, A. A. et al. Wrapping haptic displays around robot arms to communicate learning. IEEE Trans. Haptics 16, 57–72 (2023).

    Google Scholar 

  138. Fu, Z., Zhao, T. Z. & Finn, C. Mobile aloha: Learning bimanual mobile manipulation with low-cost whole-body teleoperation. Preprint at https://doi.org/10.48550/arXiv.2401.02117 (2024).

  139. Leonardis, D., Gabardi, M., Barsotti, M. & Frisoli, A. Discrete cutaneous feedback for reducing dimensions of wearable haptic devices. Front. Virtual Real. 3, 820266 (2022).

    Google Scholar 

  140. Cappello, L. et al. Continuous supplementary tactile feedback can be applied (and then removed) to enhance precision manipulation. J. Neuroeng. Rehabilitation 17, 1–13 (2020).

    Google Scholar 

  141. Platkiewicz, J., Lipson, H. & Hayward, V. Haptic edge detection through shear. Sci. Rep. 6, 23551 (2016).

    Google Scholar 

  142. Johansson, R. S. & Lamotte, R. H. Tactile detection thresholds for a single asperity on an otherwise smooth surface. Somatosensory Res. 1, 21–31 (1983).

    Google Scholar 

Download references

Acknowledgements

This Review is dedicated to the memory of Prof. Vincent Hayward, who suddenly passed in 2023. He has been an esteemed colleague and a great scientist, who has provided profound inspiration and mentorship to a high number of researchers in haptics both at the academic and industrial levels, such that for his significant contribution to this area he is also well known as the ‘godfather of haptics’.

Author information

Authors and Affiliations

Authors

Contributions

A.F. and D.L. contributed equally to the manuscript. A.F. and D.L. researched data for the article, substantially contributed to discussion of content, wrote the manuscript and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Antonio Frisoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Hui Zhou and Marcia O’Malley, who co-reviewed with Elyse Chase, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frisoli, A., Leonardis, D. Wearable haptics for virtual reality and beyond. Nat Rev Electr Eng 1, 666–679 (2024). https://doi.org/10.1038/s44287-024-00089-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00089-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing