Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioinspired electronics for intelligent soft robots

Abstract

Soft robots, capable of safe interaction with delicate objects through their flexibility and compliance, are attracting attention in various real-world applications as manipulators, biomedical devices and wearable tools. As these technologies advance, the ability to perform complex tasks in a robust and reliable way becomes essential. Thus, the incorporation of embedded intelligence in soft robots, which enables them to perceive external environments and generate appropriate actions, is increasingly important. Inspiration from sophisticated biological systems, which exhibit optimized behaviours through the acquisition of external information, promotes the development of intelligent soft robots. Here, we introduce biomimicry strategies for intelligent soft robotics and highlight progress in how soft robots interact with their environment and perform tasks. First, we discuss sensors inspired by the sensory nervous systems and soft actuators inspired by the musculoskeletal systems. Furthermore, we investigate various applications such as manipulation, exploration, wearable devices, biomedical devices and imperceptible devices. We conclude discussing the challenges and offering a perspective on the future direction of this field.

Key points

  • Intelligent soft robots demonstrate advanced capabilities in environmental perception, decision-making based on contextual cues and execution of physical tasks, surpassing the limitations of traditional robots.

  • Nature serves as inspiration for the development of intelligent soft robots, leveraging efficient sensory and responsive mechanisms through innovations in sensors and actuators.

  • Despite notable strides, widespread adoption of intelligent soft robots is hindered by challenges such as data processing, energy constraints and the imperative for enhanced multifunctionality in practical applications.

  • An in-depth understanding of the operational mechanisms of nature and mimicry strategies is pivotal for addressing current hurdles and driving the evolution of intelligent soft robotics in research and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of intelligent soft robots.
Fig. 2: Sensor signal processing inspired by the sensory nervous system.
Fig. 3: Working principles of soft actuators.
Fig. 4: Timeline of major milestones in the development of bioinspired electronics.
Fig. 5: Intelligent soft robotics.

Similar content being viewed by others

References

  1. Liu, Z. H., Liu, Q., Xu, W. J., Wang, L. H. & Zhou, Z. D. Robot learning towards smart robotic manufacturing: a review. Rob. Comput. Integr. Manuf. 77, 102360 (2022).

    Article  Google Scholar 

  2. Wallin, T. J., Pikul, J. & Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).

    Article  Google Scholar 

  3. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article  Google Scholar 

  4. Shih, B. et al. Electronic skins and machine learning for intelligent soft robots. Sci. Rob. 5, eaaz9239 (2020).

    Article  Google Scholar 

  5. Zhang, X. et al. The pathway to intelligence: using stimuli-responsive materials as building blocks for constructing smart and functional systems. Adv. Mater. 31, e1804540 (2019).

    Article  Google Scholar 

  6. Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    Article  Google Scholar 

  7. Lee, Y. et al. Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020).

    Article  Google Scholar 

  8. Ilami, M., Bagheri, H., Ahmed, R., Skowronek, E. O. & Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 33, 2003139 (2020).

    Article  Google Scholar 

  9. Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023).

    Google Scholar 

  10. Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 7, 511–519 (2023).

    Article  Google Scholar 

  11. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  Google Scholar 

  12. Wen, N. et al. Emerging flexible sensors based on nanomaterials: recent status and applications. J. Mater. Chem. A 8, 25499–25527 (2020).

    Article  Google Scholar 

  13. Luo, Y. F. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  Google Scholar 

  14. Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014).

    Article  Google Scholar 

  15. Takei, K. et al. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc. Natl Acad. Sci. USA 111, 1703–1707 (2014).

    Article  Google Scholar 

  16. Park, J., Kim, M., Lee, Y., Lee, H. S. & Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1, e1500661 (2015).

    Article  Google Scholar 

  17. Kang, S. et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv. Electron. Mater. 2, 1600356 (2016).

    Article  Google Scholar 

  18. Su, B., Gong, S., Ma, Z., Yap, L. W. & Cheng, W. L. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 11, 1886–1891 (2015).

    Article  Google Scholar 

  19. Amjadi, M., Kyung, K. U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).

    Article  Google Scholar 

  20. Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    Article  Google Scholar 

  21. Kim, T., Park, J., Sohn, J., Cho, D. & Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10, 4770–4778 (2016).

    Article  Google Scholar 

  22. Zhao, X. et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat. Commun. 9, 3579 (2018).

    Article  Google Scholar 

  23. Lee, Y. et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 15, 1795–1804 (2021).

    Article  Google Scholar 

  24. Di Giacomo, R., Bonanomi, L., Costanza, V., Maresca, B. & Daraio, C. Biomimetic temperature-sensing layer for artificial skins. Sci. Rob. 2, eaai9251 (2017).

    Article  Google Scholar 

  25. Floreano, D. et al. Miniature curved artificial compound eyes. Proc. Natl Acad. Sci. USA 110, 9267–9272 (2013).

    Article  Google Scholar 

  26. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    Article  Google Scholar 

  27. Gao, L. et al. Biomorphic carbon-doped TiO2 for photocatalytic gas sensing with continuous detection of persistent volatile organic compounds. ACS Appl. Nano Mater. 1, 1766–1775 (2018).

    Article  Google Scholar 

  28. Gao, B. B. et al. Bioinspired kirigami fish-based highly stretched wearable biosensor for human biochemical-physiological hybrid monitoring. Adv. Mater. Technol. 3, 1700308 (2018).

    Article  Google Scholar 

  29. Zou, J. D. et al. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv. Energy Mater. 8, 1702671 (2018).

    Article  Google Scholar 

  30. Chun, S. et al. An artificial neural tactile sensing system. Nat. Electron. 4, 429–438 (2021).

    Article  Google Scholar 

  31. Qiu, Y. et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. npj Flexible Electron. 6, 45 (2022).

    Article  Google Scholar 

  32. Xu, C. H. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).

    Article  Google Scholar 

  33. Hua, Q. et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018).

    Article  Google Scholar 

  34. Yu, Y. et al. All-printed soft human–machine interface for robotic physicochemical sensing. Sci. Rob. 7, eabn0495 (2022).

    Article  Google Scholar 

  35. Bang, J. et al. Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nano Micro Lett. 14, 49 (2022).

    Article  Google Scholar 

  36. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed perspiration analysis. Nature 529, 509–514 (2016).

    Article  Google Scholar 

  37. Han, S. et al. A multiparameter pressure–temperature–humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 6, 1802128 (2019).

    Article  Google Scholar 

  38. You, I. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020).

    Article  Google Scholar 

  39. Lee, J. S., Shin, K. Y., Cheong, O. J., Kim, J. H. & Jang, J. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring. Sci. Rep. 5, 7887 (2015).

    Article  Google Scholar 

  40. Niu, H. S. et al. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat 5, e12412 (2023).

    Article  Google Scholar 

  41. Sun, T. M. et al. Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano Micro Lett. 16, 14 (2024).

    Article  Google Scholar 

  42. Kim, K. K. et al. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020).

    Article  Google Scholar 

  43. Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2021).

    Article  Google Scholar 

  44. Shin, J. et al. Dynamic pore modulation of stretchable electrospun nanofiber filter for adaptive machine learned respiratory protection. ACS Nano 15, 15730–15740 (2021).

    Article  Google Scholar 

  45. Gong, S. et al. Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nat. Nanotechnol. 18, 889–897 (2023).

    Article  Google Scholar 

  46. Lou, Z. Learning the signatures of the human grasp using a scalable tactile glove. J. Semicond. 40, 070202 (2019).

    Article  Google Scholar 

  47. Zhao, P. F. et al. All-organic smart textile sensor for deep-learning-assisted multimodal sensing. Adv. Funct. Mater. 33, 2301816 (2023).

    Article  Google Scholar 

  48. Wang, M. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020).

    Article  Google Scholar 

  49. Won, D. et al. Transparent electronics for wearable electronics application. Chem. Rev. 123, 9982–10078 (2023).

    Article  Google Scholar 

  50. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article  Google Scholar 

  51. Kwon, S. et al. At-home wireless sleep monitoring patches for the clinical assessment of sleep quality and sleep apnea. Sci. Adv. 9, eadg9671 (2023).

    Article  Google Scholar 

  52. Zhou, F. C. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article  Google Scholar 

  53. Bouzari, H. et al. Imaging performance for two row-column arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. 66, 1209–1221 (2019).

    Article  Google Scholar 

  54. Yu, J. R. et al. Bioinspired interactive neuromorphic devices. Mater. Today 60, 158–182 (2022).

    Article  Google Scholar 

  55. Wang, M. et al. Tactile near-sensor analogue computing for ultrafast responsive artificial skin. Adv. Mater. 34, e2201962 (2022).

    Article  Google Scholar 

  56. Liao, F. Y. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  Google Scholar 

  57. van Doremaele, E. R. W., Ji, X., Rivnay, J. & van de Burgt, Y. A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 765–770 (2023).

    Article  Google Scholar 

  58. Yu, J. et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021).

    Article  Google Scholar 

  59. Wan, C. et al. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020).

    Article  Google Scholar 

  60. Kumar, S., Wang, X. X., Strachan, J. P., Yang, Y. C. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article  Google Scholar 

  61. Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Article  Google Scholar 

  62. Tee, B. C. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    Article  Google Scholar 

  63. Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).

    Article  Google Scholar 

  64. Wang, T. et al. A chemically mediated artificial neuron. Nat. Electron. 5, 586–595 (2022).

    Article  Google Scholar 

  65. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Article  Google Scholar 

  66. Xie, Z. X. et al. Octopus-inspired sensorized soft arm for environmental interaction. Sci. Rob. 8, eadh7852 (2023).

    Article  Google Scholar 

  67. Ren, Z. et al. A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators. Adv. Mater. 34, e2106757 (2022).

    Article  Google Scholar 

  68. Abdelhafiz, M. H., Andreasen Struijk, L. N., Dosen, S. & Spaich, E. G. Biomimetic tendon-based mechanism for finger flexion and extension in a soft hand exoskeleton: design and experimental assessment. Sensors 23, 2272 (2023).

    Article  Google Scholar 

  69. Zhang, Y., Zhang, W., Yang, J. & Pu, W. Bioinspired soft robotic fingers with sequential motion based on tendon-driven mechanisms. Soft Rob. 9, 531–541 (2022).

    Article  Google Scholar 

  70. Zhang, Z. et al. Soft and lightweight fabric enables powerful and high-range pneumatic actuation. Sci. Adv. 9, eadg1203 (2023).

    Article  Google Scholar 

  71. Bartlett, N. W. et al. Soft robotics. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).

    Article  Google Scholar 

  72. Yang, D. et al. Buckling pneumatic linear actuators inspired by muscle. Adv. Mater. Technol. 1, 1600055 (2016).

    Article  Google Scholar 

  73. Jadhav, S., Majit, M. R. A., Shih, B., Schulze, J. P. & Tolley, M. T. Variable stiffness devices using fiber jamming for application in soft robotics and wearable haptics. Soft Rob. 9, 173–186 (2022).

    Article  Google Scholar 

  74. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  Google Scholar 

  75. Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T. & Hochner, B. Control of octopus arm extension by a peripheral motor program. Science 293, 1845–1848 (2001).

    Article  Google Scholar 

  76. Drotman, D., Jadhav, S., Sharp, D., Chan, C. & Tolley, M. T. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Rob. 6, eaay2627 (2021).

    Article  Google Scholar 

  77. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  Google Scholar 

  78. Aubin, C. A. et al. Powerful, soft combustion actuators for insect-scale robots. Science 381, 1212–1217 (2023).

    Article  Google Scholar 

  79. Heisser, R. H. et al. Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proc. Natl Acad. Sci. USA 118, e2106553118 (2021).

    Article  Google Scholar 

  80. Ko, J. et al. High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Sci. Rob. 7, eabo6463 (2022).

    Article  Google Scholar 

  81. Arnold, A. M., Su, J. & Sabolsky, E. M. Influence of environmental conditions and voltage application on the electromechanical performance of Nafion-Pt IPMC actuators. Smart Mater. Struct. 31, 115031 (2022).

    Article  Google Scholar 

  82. Benselfelt, T. et al. Electrochemically controlled hydrogels with electrotunable permeability and uniaxial actuation. Adv. Mater. 35, e2303255 (2023).

    Article  Google Scholar 

  83. Ma, S. et al. High‐performance ionic‐polymer–metal composite: toward large‐deformation fast‐response artificial muscles. Adv. Funct. Mater. 30, 1908508 (2019).

    Article  Google Scholar 

  84. Ly, K. et al. Miniaturized circuitry for capacitive self-sensing and closed-loop control of soft electrostatic transducers. Soft Rob. 8, 673–686 (2021).

    Article  Google Scholar 

  85. Duduta, M., Hajiesmaili, E., Zhao, H., Wood, R. J. & Clarke, D. R. Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl Acad. Sci. USA 116, 2476–2481 (2019).

    Article  Google Scholar 

  86. Zhao, H. C. et al. Compact dielectric elastomer linear actuators. Adv. Funct. Mater. 28, 1804328 (2018).

    Article  Google Scholar 

  87. Jiang, S. W., Tang, C., Dong, X. G., Liu, X. J. & Zhao, H. C. Soft pocket pump for multi-medium transportation via an active tubular diaphragm. Adv. Funct. Mater. 33, 2305289 (2023).

    Article  Google Scholar 

  88. Sasso, G., Pugno, N., Busfield, J. J. C. & Carpi, F. Soft robotic patterning of liquids. Sci. Rep. 13, 15739 (2023).

    Article  Google Scholar 

  89. Fowler, H. E., Rothemund, P., Keplinger, C. & White, T. J. Liquid crystal elastomers with enhanced directional actuation to electric fields. Adv. Mater. 33, e2103806 (2021).

    Article  Google Scholar 

  90. Yang, Y. et al. Muscle-inspired soft robots based on bilateral dielectric elastomer actuators. Microsyst. Nanoeng. 9, 124 (2023).

    Article  Google Scholar 

  91. Shintake, J., Cacucciolo, V., Shea, H. & Floreano, D. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Rob. 5, 466–474 (2018).

    Article  Google Scholar 

  92. Chen, Y. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019).

    Article  Google Scholar 

  93. Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    Article  Google Scholar 

  94. Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Rob. 3, eaar3276 (2018).

    Article  Google Scholar 

  95. Mitchell, S. K. et al. An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Adv. Sci. 6, 1900178 (2019).

    Article  Google Scholar 

  96. Wang, T. et al. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. Sci. Adv. 9, eadg0292 (2023).

    Article  Google Scholar 

  97. Li, Z., Myung, N. V. & Yin, Y. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Rob. 6, eabi4523 (2021).

    Article  Google Scholar 

  98. Mirvakili, S. M., Sim, D., Hunter, I. W. & Langer, R. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Rob. 5, eaaz4239 (2020).

    Article  Google Scholar 

  99. Tang, Y. et al. Wireless miniature magnetic phase-change soft actuators. Adv. Mater. 34, e2204185 (2022).

    Article  Google Scholar 

  100. Wu, S., Hong, Y., Zhao, Y., Yin, J. & Zhu, Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 9, eadf8014 (2023).

    Article  Google Scholar 

  101. Cai, G., Ciou, J. H., Liu, Y., Jiang, Y. & Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019).

    Article  Google Scholar 

  102. Zhao, Y. et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Rob. 4, eaax7112 (2019).

    Article  Google Scholar 

  103. Kim, H. et al. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater. 28, 1870220 (2018).

    Article  Google Scholar 

  104. Lee, H. et al. Directional shape morphing transparent walking soft robot. Soft Rob. 6, 760–767 (2019).

    Article  Google Scholar 

  105. Haines, C. S. et al. Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014).

    Article  Google Scholar 

  106. Wang, S. et al. Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics. Nat. Commun. 11, 4359 (2020).

    Article  Google Scholar 

  107. Azizihariri, P., Ebrahimi, A. H., Zamyad, H. & Sahebian, S. Development of a phase-change material-based soft actuator for soft robotic gripper functionality: in-depth analysis of material composition, ethanol microbubble distribution and lifting capabilities. Mater. Chem. Phys. 311, 128435 (2024).

    Article  Google Scholar 

  108. Sogabe, M., Uetrecht, F. C., Kanno, T., Miyazaki, T. & Kawashima, K. A quick response soft actuator by miniaturized liquid-to-gas phase change mechanism with environmental thermal source. Sens. Actuat. A 361, 114587 (2023).

    Article  Google Scholar 

  109. Byun, J. et al. Underwater maneuvering of robotic sheets through buoyancy-mediated active flutter. Sci. Rob. 6, eabe0637 (2021).

    Article  Google Scholar 

  110. Yoon, Y. et al. Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chem. Eng. J. 451, 138794 (2023).

    Article  Google Scholar 

  111. Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the venus flytrap snaps. Nature 433, 421–425 (2005).

    Article  Google Scholar 

  112. Dawson, J., Vincent, J. F. V. & Rocca, A. M. How pine cones open. Nature 390, 668–668 (1997).

    Article  Google Scholar 

  113. Lendlein, A. & Gould, O. E. C. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4, 116–133 (2019).

    Article  Google Scholar 

  114. Scalet, G. Two-way and multiple-way shape memory polymers for soft robotics: an overview. Actuators 9, 8 (2020).

    Article  Google Scholar 

  115. Peng, W. J. et al. Light-coded digital crystallinity patterns toward bioinspired 4d transformation of shape-memory polymers. Adv. Funct. Mater. 30, 2000522 (2020).

    Article  Google Scholar 

  116. Choi, S. H. et al. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. Nat. Mater. 23, 834–843 (2024).

    Article  Google Scholar 

  117. Zhao, Y. et al. Sunlight-powered self-excited oscillators for sustainable autonomous soft robotics. Sci. Rob. 8, eadf4753 (2023).

    Article  Google Scholar 

  118. Herbert, K. M. et al. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7, 23–38 (2021).

    Article  Google Scholar 

  119. Hou, W., Wang, J. & Lv, J. A. Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles. Adv. Mater. 35, e2211800 (2023).

    Article  Google Scholar 

  120. Zeng, H., Wani, O. M., Wasylczyk, P., Kaczmarek, R. & Priimagi, A. Self‐regulating iris based on light‐actuated liquid crystal elastomer. Adv. Mater. 29, 1701814 (2017).

    Article  Google Scholar 

  121. Mishra, A. K. et al. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Rob. 5, eaaz3918 (2020).

    Article  Google Scholar 

  122. Li, M. et al. Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl Acad. Sci. USA 115, 8119–8124 (2018).

    Article  Google Scholar 

  123. Ni, Y. Y. et al. Data-driven navigation of ferromagnetic soft continuum robots based on machine learning. Adv. Intell. Syst. 5, 2200167 (2023).

    Article  Google Scholar 

  124. Kim, Y., Parada, G. A., Liu, S. & Zhao, X. Ferromagnetic soft continuum robots. Sci. Rob. 4, eaax7329 (2019).

    Article  Google Scholar 

  125. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article  Google Scholar 

  126. Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    Article  Google Scholar 

  127. Ren, Z., Hu, W., Dong, X. & Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10, 2703 (2019).

    Article  Google Scholar 

  128. Mao, G. et al. Ultrafast small-scale soft electromagnetic robots. Nat. Commun. 13, 4456 (2022).

    Article  Google Scholar 

  129. Yang, Z. X. & Li, Z. Magnetic actuation systems for miniature robots: a review. Adv. Intell. Syst. 2, 2000082 (2020).

    Article  Google Scholar 

  130. Shen, Z., Chen, F., Zhu, X., Yong, K. T. & Gu, G. Stimuli-responsive functional materials for soft robotics. J. Mater. Chem. B 8, 8972–8991 (2020).

    Article  Google Scholar 

  131. Cui, Y., Li, D., Gong, C. & Chang, C. Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano 15, 13712–13720 (2021).

    Article  Google Scholar 

  132. Proksch, E. pH in nature, humans and skin. J. Dermatol. 45, 1044–1052 (2018).

    Article  Google Scholar 

  133. Pu, W., Wei, F. A., Yao, L. G. & Xie, S. X. A review of humidity-driven actuator: toward high response speed and practical applications. J. Mater. Sci. 57, 12202–12235 (2022).

    Article  Google Scholar 

  134. Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022).

    Article  Google Scholar 

  135. Jiang, J., Xu, S., Ma, H., Li, C. & Huang, Z. Photoresponsive hydrogel-based soft robot: a review. Mater. Today Bio 20, 100657 (2023).

    Article  Google Scholar 

  136. Shimoga, G., Choi, D. S. & Kim, S. Y. Bio-inspired soft robotics: tunable photo-actuation behavior of azo chromophore containing liquid crystalline elastomers. Appl. Sci. 11, 1233 (2021).

    Article  Google Scholar 

  137. Wani, O. M., Zeng, H. & Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017).

    Article  Google Scholar 

  138. Li, C. et al. Fast and programmable locomotion of hydrogel–metal hybrids under light and magnetic fields. Sci. Rob. 5, eabb9822 (2020).

    Article  Google Scholar 

  139. Li, C. et al. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 19, 900–909 (2020).

    Article  Google Scholar 

  140. Pfeifer, R., Lungarella, M. & Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007).

    Article  Google Scholar 

  141. Sitti, M. Physical intelligence as a new paradigm. Extreme Mech. Lett. 46, 101340 (2021).

    Article  Google Scholar 

  142. Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, e1706383 (2018).

    Article  Google Scholar 

  143. Thuruthel, T. G., Shih, B., Laschi, C. & Tolley, M. T. Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Rob. 4, eaav1488 (2019).

    Article  Google Scholar 

  144. Hu, D. L., Giorgio-Serchi, F., Zhang, S. M. & Yang, Y. J. Stretchable e-skin and transformer enable high-resolution morphological reconstruction for soft robots. Nat. Mach. Intell. 5, 261–272 (2023).

    Article  Google Scholar 

  145. Jin, T. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020).

    Article  Google Scholar 

  146. Qu, X. C. et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8, eabq2521 (2022).

    Article  Google Scholar 

  147. Li, G. Z., Liu, S. Q., Wang, L. Q. & Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Rob. 5, eabc8134 (2020).

    Article  Google Scholar 

  148. Shi, Q. F., Sun, Z. D., Le, X. H., Xie, J. & Lee, C. K. Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence. ACS Nano 17, 4985–4998 (2023).

    Article  Google Scholar 

  149. Galloway, K. C. et al. Soft robotic grippers for biological sampling on deep reefs. Soft Rob. 3, 23–33 (2016).

    Article  Google Scholar 

  150. Roh, Y. et al. Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper. Sci. Rob. 6, eabi6774 (2021).

    Article  Google Scholar 

  151. Wang, D. et al. Sensing-triggered stiffness-tunable smart adhesives. Sci. Adv. 9, eadf4051 (2023).

    Article  Google Scholar 

  152. Sun, Z. J., Wang, S. Y., Zhao, Y. L., Zhong, Z. T. & Zuo, L. Discriminating soft actuators’ thermal stimuli and mechanical deformation by hydrogel sensors and machine learning. Adv. Intell. Syst. 4, 2200089 (2022).

    Article  Google Scholar 

  153. Yao, K. M. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 1–11 (2022).

    Article  Google Scholar 

  154. Shu, S. et al. Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater. 35, e2211385 (2023).

    Article  Google Scholar 

  155. Jung, J., Park, M., Kim, D. & Park, Y. L. Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators. IEEE Rob. Autom. Lett. 5, 2333–2340 (2020).

    Article  Google Scholar 

  156. Yang, X. et al. Bioinspired soft robots based on organic polymer–crystal hybrid materials with response to temperature and humidity. Nat. Commun. 14, 2287 (2023).

    Article  Google Scholar 

  157. Zhang, C., Zou, W., Ma, L. P. & Wang, Z. Q. Biologically inspired jumping robots: a comprehensive review. Rob. Auton. Syst. 124, 103362 (2020).

    Article  Google Scholar 

  158. Li, G. et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 14, 7097 (2023).

    Article  Google Scholar 

  159. Baines, R. et al. Multi-environment robotic transitions through adaptive morphogenesis. Nature 610, 283–289 (2022).

    Article  Google Scholar 

  160. Naclerio, N. D. et al. Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci. Rob. 6, eabe2922 (2021).

    Article  Google Scholar 

  161. Das, R., Babu, S. P. M., Visentin, F., Palagi, S. & Mazzolai, B. An earthworm-like modular soft robot for locomotion in multi-terrain environments. Sci. Rep. 13, 1571 (2023).

    Article  Google Scholar 

  162. Katzschmann, R. K., DelPreto, J., MacCurdy, R. & Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Rob. 3, eaar3449 (2018).

    Article  Google Scholar 

  163. Qu, J. T. et al. Recent advances on underwater soft robots. Adv. Intell. Syst. 6, 2300299 (2023).

    Article  Google Scholar 

  164. Shah, D. S. et al. A soft robot that adapts to environments through shape change. Nat. Mach. Intell. 3, 51–59 (2020).

    Article  Google Scholar 

  165. Li, G. et al. Self-powered soft robot in the Mariana trench. Nature 591, 66–71 (2021).

    Article  Google Scholar 

  166. Karipoth, P., Christou, A., Pullanchiyodan, A. & Dahiya, R. Bioinspired inchworm‐ and earthworm‐like soft robots with intrinsic strain sensing. Adv. Intell. Syst. 4, 2100092 (2021).

    Article  Google Scholar 

  167. Hawkes, E. W., Blumenschein, L. H., Greer, J. D. & Okamura, A. M. A soft robot that navigates its environment through growth. Sci. Rob. 2, eaan3028 (2017).

    Article  Google Scholar 

  168. Liang, J. et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Rob. 6, eabe7906 (2021).

    Article  Google Scholar 

  169. Dong, X. et al. Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans. Sci. Rob. 6, eabe3950 (2021).

    Article  Google Scholar 

  170. Zhao, Y. et al. Physically intelligent autonomous soft robotic maze escaper. Sci. Adv. 9, eadi3254 (2023).

    Article  Google Scholar 

  171. Pahs, L. & Khan, J. Successful recovery of severe hypothermia with minimally invasive central catheter. J. Emerg. Med. 56, 393.e1–393.e4 (2022).

    Google Scholar 

  172. Qi, F., Ju, F., Bai, D., Wang, Y. & Chen, B. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 15, e2007 (2019).

    Article  Google Scholar 

  173. Nguyen, C. C. et al. Bidirectional soft robotic catheter for arrhythmia treatment. In 2022 IEEE Int. Conf. Robotics and Automation (ICRA) 9579–9585 (2022).

  174. Gu, H. et al. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat. Commun. 14, 1263 (2023).

    Article  Google Scholar 

  175. Zhou, C. et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021).

    Article  Google Scholar 

  176. Kim, Y. et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci. Rob. 7, eabg9907 (2022).

    Article  Google Scholar 

  177. Fusco, S. et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26, 952–957 (2014).

    Article  Google Scholar 

  178. Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    Article  Google Scholar 

  179. Li, H., Go, G., Ko, S. Y., Park, J. O. & Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 25, 027001 (2016).

    Article  Google Scholar 

  180. Darmawan, B. A. et al. Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release. Sens. Actuat. B 324, 128752 (2020).

    Article  Google Scholar 

  181. Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7, 3398–3405 (2015).

    Article  Google Scholar 

  182. Shi, X. Q., Heung, H. L., Tang, Z. Q., Li, Z. & Tong, K. Y. Effects of a soft robotic hand for hand rehabilitation in chronic stroke survivors. J. Stroke Cerebrovasc. Dis. 30, 105812 (2021).

    Article  Google Scholar 

  183. Channa, A., Popescu, N. & Ciobanu, V. Wearable solutions for patients with Parkinson’s disease and neurocognitive disorder: a systematic review. Sensors 20, 2713 (2020).

    Article  Google Scholar 

  184. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. & Walsh, C. J. Soft robotic glove for combined assistance and at-home rehabilitation. Rob. Auton. Syst. 73, 135–143 (2015).

    Article  Google Scholar 

  185. Xiloyannis, M., Chiaradia, D., Frisoli, A. & Masia, L. Physiological and kinematic effects of a soft exosuit on arm movements. J. NeuroEng. Rehabil. 16, 29 (2019).

    Article  Google Scholar 

  186. Proietti, T. et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis. Sci. Transl. Med. 15, eadd1504 (2023).

    Article  Google Scholar 

  187. Kwon, J. et al. A soft wearable robotic ankle-foot-orthosis for post-stroke patients. IEEE Rob. Autom. Lett. 4, 2547–2552 (2019).

    Article  Google Scholar 

  188. Chu, C. Y. & Patterson, R. M. Soft robotic devices for hand rehabilitation and assistance: a narrative review. J. NeuroEng. Rehabil. 15, 9 (2018).

    Article  Google Scholar 

  189. Guo, K. et al. Empowering hand rehabilitation with ai-powered gesture recognition: a study of an sEMG-based system. Bioengineering 10, 557 (2023).

    Article  Google Scholar 

  190. Kim, D. et al. Eyes are faster than hands: a soft wearable robot learns user intention from the egocentric view. Sci. Rob. 4, eaav2949 (2019).

    Article  Google Scholar 

  191. Hussain, I., Salvietti, G., Spagnoletti, G. & Prattichizzo, D. The Soft-SixthFinger: a wearable EMG controlled robotic extra-finger for grasp compensation in chronic stroke patients. IEEE Rob. Autom. Lett. 1, 1000–1006 (2016).

    Article  Google Scholar 

  192. Muehlhaus, M., Koelle, M., Saberpour, A. & Steimle, J. I Need a third arm! Eliciting body-based interactions with a wearable robotic arm. In Proc. 2023 CHI Conference on Human Factors in Computing Systems (2023).

  193. Park, S. J. & Park, C. H. Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Sci. Rep. 9, 9157 (2019).

    Article  Google Scholar 

  194. Kim, J. et al. Autonomous and portable soft exosuit for hip extension assistance with online walking and running detection algorithm. In 2018 IEEE Int. Conf. Robotics and Automation (ICRA) 5473–5480 (2018).

  195. Heng, W. et al. Flexible insole sensors with stably connected electrodes for gait phase detection. Sensors 19, 5197 (2019).

    Article  Google Scholar 

  196. Cheng, N. et al. Brain–computer interface-based soft robotic glove rehabilitation for stroke. IEEE Trans. Biomed. Eng. 67, 3339–3351 (2020).

    Article  Google Scholar 

  197. Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022).

    Article  Google Scholar 

  198. Proietti, T. et al. Sensing and control of a multi-joint soft wearable robot for upper-limb assistance and rehabilitation. IEEE Rob. Autom. Lett. 6, 2381–2388 (2021).

    Article  Google Scholar 

  199. Johnsen, S. Hidden in plain sight: the ecology and physiology of organismal transparency. Biol. Bull. 201, 301–318 (2001).

    Article  Google Scholar 

  200. Wang, G., Chen, X., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).

    Article  Google Scholar 

  201. Won, P. et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33, e2002397 (2021).

    Article  Google Scholar 

  202. L’Heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. M. Machine learning with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017).

    Article  Google Scholar 

  203. Kang, B. B., Choi, H., Lee, H. & Cho, K. J. Exo-Glove Poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Rob. 6, 214–227 (2019).

    Article  Google Scholar 

  204. Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).

    Article  Google Scholar 

  205. Ligon, R. A. & McGraw, K. J. Chameleons communicate with complex colour changes during contests: different body regions convey different information. Biol. Lett. 9, 20130892 (2013).

    Article  Google Scholar 

  206. Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1004 (2019).

    Article  Google Scholar 

  207. Stuart-Fox, D. & Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Phil. Trans. R. Soc. B 364, 463–470 (2009).

    Article  Google Scholar 

  208. Miller, B. H., Liu, H. & Kolle, M. Scalable optical manufacture of dynamic structural colour in stretchable materials. Nat. Mater. 21, 1014–1018 (2022).

    Article  Google Scholar 

  209. Kim, H. et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021).

    Article  Google Scholar 

  210. Piacenza, P., Sherman, S. & Ciocarlie, M. Data-driven super-resolution on a tactile dome. IEEE Rob. Autom. Lett. 3, 1434–1441 (2018).

    Article  Google Scholar 

  211. Must, I. et al. Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv. Eng. Mater. 17, 84–94 (2015).

    Article  Google Scholar 

  212. Kim, M. H. et al. Bioinspired, shape-morphing scale battery for untethered soft robots. Soft Rob. 9, 486–496 (2022).

    Article  Google Scholar 

  213. Aubin, C. A. et al. Towards enduring autonomous robots via embodied energy. Nature 602, 393–402 (2022).

    Article  Google Scholar 

  214. Yang, G. Z. et al. The grand challenges of science robotics. Sci. Rob. 3, eaar7650 (2018).

    Article  Google Scholar 

  215. Zhu, M. S. & Schmidt, O. G. Batteries for small-scale robotics. MRS Bull. 49, 115–124 (2024).

    Article  Google Scholar 

  216. Scheibert, J., Leurent, S., Prevost, A. & Debregeas, G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009).

    Article  Google Scholar 

  217. Zhu, M. S. & Schmidt, O. G. Tiny robots and sensors need tiny batteries — here’s how to do it. Nature 589, 195–197 (2021).

    Article  Google Scholar 

  218. Aubin, C. A. et al. Electrolytic vascular systems for energy-dense robots. Nature 571, 51–57 (2019).

    Article  Google Scholar 

  219. Zhang, S., Ke, X., Jiang, Q., Ding, H. & Wu, Z. Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Sci. Rob. 6, eabd6107 (2021).

    Article  Google Scholar 

  220. Zhang, J. et al. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Rob. 6, eabf0112 (2021).

    Article  Google Scholar 

  221. Man, K. & Damasio, A. Homeostasis and soft robotics in the design of feeling machines. Nat. Mach. Intell. 1, 446–452 (2019).

    Article  Google Scholar 

  222. Roels, E. et al. Processing of self-healing polymers for soft robotics. Adv. Mater. 34, e2104798 (2022).

    Article  Google Scholar 

  223. Cully, A., Clune, J., Tarapore, D. & Mouret, J. B. Robots that can adapt like animals. Nature 521, 503–507 (2015).

    Article  Google Scholar 

  224. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  225. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    Article  Google Scholar 

  226. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    Article  Google Scholar 

  227. Zhang, F. et al. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat. Mater. 21, 1357–1365 (2022).

    Article  Google Scholar 

  228. Kim, I. H. et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol. 17, 1198–1205 (2022).

    Article  MathSciNet  Google Scholar 

  229. Marchese, A. D., Onal, C. D. & Rus, D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Rob. 1, 75–87 (2014).

    Article  Google Scholar 

  230. Roche, E. T. et al. A bioinspired soft actuated material. Adv. Mater. 26, 1200–1206 (2014).

    Article  Google Scholar 

  231. Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).

    Article  Google Scholar 

  232. Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011).

    Article  Google Scholar 

  233. Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007).

    Article  Google Scholar 

  234. Robinson, G. & Davies, J. B. C. Continuum robots — a state of the art. In Proc. 1999 IEEE Int. Conf. Robotics and Automation (Cat. No. 99CH36288C) 2849–2854 (1999).

  235. Agerholm, M. & Lord, A. The ‘artificial muscle’ of McKibben. Lancet 277, 660–661 (1961).

    Article  Google Scholar 

  236. Shim, H. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019).

    Article  Google Scholar 

  237. Ranzani, T., Russo, S., Bartlett, N. W., Wehner, M. & Wood, R. J. Increasing the dimensionality of soft microstructures through injection-induced self-folding. Adv. Mater. 30, e1802739 (2018).

    Article  Google Scholar 

  238. Calisti, M. et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 6, 036002 (2011).

    Article  Google Scholar 

  239. Christianson, C., Goldberg, N. N., Deheyn, D. D., Cai, S. Q. & Tolley, M. T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Rob. 3, eaat1893 (2018).

    Article  Google Scholar 

  240. Guo, X. Y. et al. Encoded sewing soft textile robots. Sci. Adv. 10, eadk3855 (2024).

    Article  Google Scholar 

  241. Ke, X., Yong, H., Xu, F., Ding, H. & Wu, Z. Stenus-inspired, swift, and agile untethered insect-scale soft propulsors. Nat. Commun. 15, 1491 (2024).

    Article  Google Scholar 

  242. Copaci, D., Martín, F., Moreno, L. & Blanco, D. SMA based elbow exoskeleton for rehabilitation therapy and patient evaluation. IEEE Access 7, 31473–31484 (2019).

    Article  Google Scholar 

  243. Hyeon, K. et al. Design of a wearable mechanism with shape memory alloy (SMA)-based artificial muscle for assisting with shoulder abduction. IEEE Rob. Autom. Lett. 7, 10635–10642 (2022).

    Article  Google Scholar 

  244. Jeong, J. et al. Soft wearable robot with shape memory alloy (SMA)-based artificial muscle for assisting with elbow flexion and forearm supination/pronation. IEEE Rob. Autom. Lett. 7, 6028–6035 (2022).

    Article  Google Scholar 

  245. Park, S. J., Choi, K., Rodrigue, H. & Park, C. H. Fabric muscle with a cooling acceleration structure for upper limb assistance soft exosuits. Sci. Rep. 12, 11398 (2022).

    Article  Google Scholar 

  246. Jeong, J. et al. Design of shape memory alloy-based soft wearable robot for assisting wrist motion. Appl. Sci. 9, 4025 (2019).

    Article  Google Scholar 

  247. Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).

    Article  Google Scholar 

  248. Chang, C. L., Zhao, L., Song, Z. C., Zhou, Y. & Yu, S. H. Transparent soft electrothermal actuators with integrated cu nanowire heater for soft robotics. Macromol. Mater. Eng. 307, 2100638 (2022).

    Article  Google Scholar 

  249. Zhao, Y. et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Rob. 6, eabd5483 (2021).

    Article  Google Scholar 

  250. Han, M. et al. Submillimeter-scale multimaterial terrestrial robots. Sci. Rob. 7, eabn0602 (2022).

    Article  Google Scholar 

  251. Shao, Y. et al. 4D printing light-driven soft actuators based on liquid–vapor phase transition composites with inherent sensing capability. Chem. Eng. J. 454, 140271 (2023).

    Article  Google Scholar 

  252. Dong, Y. et al. Multi-stimuli-responsive programmable biomimetic actuator. Nat. Commun. 10, 4087 (2019).

    Article  Google Scholar 

  253. Zhao, Q. et al. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat. Commun. 5, 4293 (2014).

    Article  Google Scholar 

  254. Taccola, S. et al. Toward a new generation of electrically controllable hygromorphic soft actuators. Adv. Mater. 27, 1668–1675 (2015).

    Article  Google Scholar 

  255. Zheng, Z. et al. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat. Commun. 12, 1598 (2021).

    Article  Google Scholar 

  256. Cao, J. W. et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mech. Lett. 21, 9–16 (2018).

    Article  Google Scholar 

  257. Li, Y. & Hashimoto, M. PVC gel soft actuator-based wearable assist wear for hip joint support during walking. Smart Mater. Struct. 26, 125003 (2017).

    Article  Google Scholar 

  258. Wang, Y., Zhang, P., Huang, H. & Zhu, J. Bio-inspired transparent soft jellyfish robot. Soft Rob. 10, 590–600 (2023).

    Article  Google Scholar 

  259. Kotal, M., Tabassian, R., Roy, S., Oh, S. & Oh, I. K. Metal–organic framework-derived graphitic nanoribbons anchored on graphene for electroionic artificial muscles. Adv. Funct. Mater. 30, 1910326 (2020).

    Article  Google Scholar 

  260. Wu, G. et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 31, e1806492 (2019).

    Article  Google Scholar 

  261. Wehner, M. et al. A lightweight soft exosuit for gait assistance. In 2013 IEEE Int. Conf. Robotics and Automation (ICRA) 3362–3369 (2013).

  262. Kawamura, T., Takanaka, K., Nakamura, T. & Osumi, H. Development of an orthosis for walking assistance using pneumatic artificial muscle: a quantitative assessment of the effect of assistance. In 2013 IEEE 13th Int. Conf. Rehabilitation Robotics (ICORR) Vol. 2013, 6650350 (2013).

    Google Scholar 

  263. Payne, C. J. et al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci. Rob. 2, eaan6736 (2017).

    Article  Google Scholar 

  264. Wang, D. et al. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat. Commun. 14, 5067 (2023).

    Article  Google Scholar 

  265. Elsayed, Y. et al. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Rob. 1, 255–262 (2014).

    Article  Google Scholar 

  266. Tang, W. et al. Self-protection soft fluidic robots with rapid large-area self-healing capabilities. Nat. Commun. 14, 6430 (2023).

    Article  Google Scholar 

  267. Rogatinsky, J. et al. A multifunctional soft robot for cardiac interventions. Sci. Adv. 9, eadi5559 (2023).

    Article  Google Scholar 

  268. Pancaldi, L. et al. Flow driven robotic navigation of microengineered endovascular probes. Nat. Commun. 11, 6356 (2020).

    Article  Google Scholar 

  269. Hu, J., Li, X., Ni, Y., Ma, S. D. & Yu, H. F. A programmable and biomimetic photo-actuator: a composite of a photo-liquefiable azobenzene derivative and commercial plastic film. J. Mater. Chem. C 6, 10815–10821 (2018).

    Article  Google Scholar 

  270. Ma, S., Li, X., Huang, S., Hu, J. & Yu, H. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface. Angew. Chem. Int. Ed. Engl. 58, 2655–2659 (2019).

    Article  Google Scholar 

  271. Venkiteswaran, V. K., Tan, D. K. & Misra, S. Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Extreme Mech. Lett. 41, 101023 (2020).

    Article  Google Scholar 

  272. Kim, Y. S. et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14, 1002–1007 (2015).

    Article  Google Scholar 

  273. Gerboni, G. et al. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper. Smart Mater. Struct. 25, 105025 (2016).

    Article  Google Scholar 

  274. Mahdavi, A. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl Acad. Sci. USA 105, 2307–2312 (2008).

    Article  Google Scholar 

  275. Min, W. L., Jiang, B. & Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 20, 3914 (2008).

    Article  Google Scholar 

  276. Ghosh, A., Beaini, S., Zhang, B. J., Ganguly, R. & Megaridis, C. M. Enhancing dropwise condensation through bioinspired wettability patterning. Langmuir 30, 13103–13115 (2014).

    Article  Google Scholar 

  277. Wang, Z. W. et al. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Adv. Mater. 34, e2107791 (2022).

    Article  Google Scholar 

  278. Kotikian, A. et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33, e2101814 (2021).

    Article  Google Scholar 

  279. Ng, C. S. X. et al. Locomotion of miniature soft robots. Adv. Mater. 33, e2003558 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (grant number 2021R1A2B5B03001691).

Author information

Authors and Affiliations

Authors

Contributions

J.B., S.H.C. and S.H.K. researched data and wrote the manuscript. All authors contributed to the discussion, revision and editing of the manuscript.

Corresponding author

Correspondence to Seung Hwan Ko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Xinyi Lin (who co-reviewed with Jia Liu), Chengkuo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, J., Choi, S.H., Pyun, K.R. et al. Bioinspired electronics for intelligent soft robots. Nat Rev Electr Eng 1, 597–613 (2024). https://doi.org/10.1038/s44287-024-00081-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00081-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing