Abstract
Soft robots, capable of safe interaction with delicate objects through their flexibility and compliance, are attracting attention in various real-world applications as manipulators, biomedical devices and wearable tools. As these technologies advance, the ability to perform complex tasks in a robust and reliable way becomes essential. Thus, the incorporation of embedded intelligence in soft robots, which enables them to perceive external environments and generate appropriate actions, is increasingly important. Inspiration from sophisticated biological systems, which exhibit optimized behaviours through the acquisition of external information, promotes the development of intelligent soft robots. Here, we introduce biomimicry strategies for intelligent soft robotics and highlight progress in how soft robots interact with their environment and perform tasks. First, we discuss sensors inspired by the sensory nervous systems and soft actuators inspired by the musculoskeletal systems. Furthermore, we investigate various applications such as manipulation, exploration, wearable devices, biomedical devices and imperceptible devices. We conclude discussing the challenges and offering a perspective on the future direction of this field.
Key points
-
Intelligent soft robots demonstrate advanced capabilities in environmental perception, decision-making based on contextual cues and execution of physical tasks, surpassing the limitations of traditional robots.
-
Nature serves as inspiration for the development of intelligent soft robots, leveraging efficient sensory and responsive mechanisms through innovations in sensors and actuators.
-
Despite notable strides, widespread adoption of intelligent soft robots is hindered by challenges such as data processing, energy constraints and the imperative for enhanced multifunctionality in practical applications.
-
An in-depth understanding of the operational mechanisms of nature and mimicry strategies is pivotal for addressing current hurdles and driving the evolution of intelligent soft robotics in research and applications.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Liu, Z. H., Liu, Q., Xu, W. J., Wang, L. H. & Zhou, Z. D. Robot learning towards smart robotic manufacturing: a review. Rob. Comput. Integr. Manuf. 77, 102360 (2022).
Wallin, T. J., Pikul, J. & Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).
Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).
Shih, B. et al. Electronic skins and machine learning for intelligent soft robots. Sci. Rob. 5, eaaz9239 (2020).
Zhang, X. et al. The pathway to intelligence: using stimuli-responsive materials as building blocks for constructing smart and functional systems. Adv. Mater. 31, e1804540 (2019).
Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).
Lee, Y. et al. Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020).
Ilami, M., Bagheri, H., Ahmed, R., Skowronek, E. O. & Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 33, 2003139 (2020).
Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023).
Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 7, 511–519 (2023).
Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).
Wen, N. et al. Emerging flexible sensors based on nanomaterials: recent status and applications. J. Mater. Chem. A 8, 25499–25527 (2020).
Luo, Y. F. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).
Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014).
Takei, K. et al. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc. Natl Acad. Sci. USA 111, 1703–1707 (2014).
Park, J., Kim, M., Lee, Y., Lee, H. S. & Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1, e1500661 (2015).
Kang, S. et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv. Electron. Mater. 2, 1600356 (2016).
Su, B., Gong, S., Ma, Z., Yap, L. W. & Cheng, W. L. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 11, 1886–1891 (2015).
Amjadi, M., Kyung, K. U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).
Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).
Kim, T., Park, J., Sohn, J., Cho, D. & Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10, 4770–4778 (2016).
Zhao, X. et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat. Commun. 9, 3579 (2018).
Lee, Y. et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 15, 1795–1804 (2021).
Di Giacomo, R., Bonanomi, L., Costanza, V., Maresca, B. & Daraio, C. Biomimetic temperature-sensing layer for artificial skins. Sci. Rob. 2, eaai9251 (2017).
Floreano, D. et al. Miniature curved artificial compound eyes. Proc. Natl Acad. Sci. USA 110, 9267–9272 (2013).
Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).
Gao, L. et al. Biomorphic carbon-doped TiO2 for photocatalytic gas sensing with continuous detection of persistent volatile organic compounds. ACS Appl. Nano Mater. 1, 1766–1775 (2018).
Gao, B. B. et al. Bioinspired kirigami fish-based highly stretched wearable biosensor for human biochemical-physiological hybrid monitoring. Adv. Mater. Technol. 3, 1700308 (2018).
Zou, J. D. et al. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv. Energy Mater. 8, 1702671 (2018).
Chun, S. et al. An artificial neural tactile sensing system. Nat. Electron. 4, 429–438 (2021).
Qiu, Y. et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. npj Flexible Electron. 6, 45 (2022).
Xu, C. H. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).
Hua, Q. et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018).
Yu, Y. et al. All-printed soft human–machine interface for robotic physicochemical sensing. Sci. Rob. 7, eabn0495 (2022).
Bang, J. et al. Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nano Micro Lett. 14, 49 (2022).
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed perspiration analysis. Nature 529, 509–514 (2016).
Han, S. et al. A multiparameter pressure–temperature–humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 6, 1802128 (2019).
You, I. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020).
Lee, J. S., Shin, K. Y., Cheong, O. J., Kim, J. H. & Jang, J. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring. Sci. Rep. 5, 7887 (2015).
Niu, H. S. et al. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat 5, e12412 (2023).
Sun, T. M. et al. Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano Micro Lett. 16, 14 (2024).
Kim, K. K. et al. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020).
Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2021).
Shin, J. et al. Dynamic pore modulation of stretchable electrospun nanofiber filter for adaptive machine learned respiratory protection. ACS Nano 15, 15730–15740 (2021).
Gong, S. et al. Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nat. Nanotechnol. 18, 889–897 (2023).
Lou, Z. Learning the signatures of the human grasp using a scalable tactile glove. J. Semicond. 40, 070202 (2019).
Zhao, P. F. et al. All-organic smart textile sensor for deep-learning-assisted multimodal sensing. Adv. Funct. Mater. 33, 2301816 (2023).
Wang, M. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020).
Won, D. et al. Transparent electronics for wearable electronics application. Chem. Rev. 123, 9982–10078 (2023).
Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).
Kwon, S. et al. At-home wireless sleep monitoring patches for the clinical assessment of sleep quality and sleep apnea. Sci. Adv. 9, eadg9671 (2023).
Zhou, F. C. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Bouzari, H. et al. Imaging performance for two row-column arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. 66, 1209–1221 (2019).
Yu, J. R. et al. Bioinspired interactive neuromorphic devices. Mater. Today 60, 158–182 (2022).
Wang, M. et al. Tactile near-sensor analogue computing for ultrafast responsive artificial skin. Adv. Mater. 34, e2201962 (2022).
Liao, F. Y. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).
van Doremaele, E. R. W., Ji, X., Rivnay, J. & van de Burgt, Y. A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 765–770 (2023).
Yu, J. et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021).
Wan, C. et al. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020).
Kumar, S., Wang, X. X., Strachan, J. P., Yang, Y. C. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).
Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).
Tee, B. C. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).
Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).
Wang, T. et al. A chemically mediated artificial neuron. Nat. Electron. 5, 586–595 (2022).
Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).
Xie, Z. X. et al. Octopus-inspired sensorized soft arm for environmental interaction. Sci. Rob. 8, eadh7852 (2023).
Ren, Z. et al. A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators. Adv. Mater. 34, e2106757 (2022).
Abdelhafiz, M. H., Andreasen Struijk, L. N., Dosen, S. & Spaich, E. G. Biomimetic tendon-based mechanism for finger flexion and extension in a soft hand exoskeleton: design and experimental assessment. Sensors 23, 2272 (2023).
Zhang, Y., Zhang, W., Yang, J. & Pu, W. Bioinspired soft robotic fingers with sequential motion based on tendon-driven mechanisms. Soft Rob. 9, 531–541 (2022).
Zhang, Z. et al. Soft and lightweight fabric enables powerful and high-range pneumatic actuation. Sci. Adv. 9, eadg1203 (2023).
Bartlett, N. W. et al. Soft robotics. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).
Yang, D. et al. Buckling pneumatic linear actuators inspired by muscle. Adv. Mater. Technol. 1, 1600055 (2016).
Jadhav, S., Majit, M. R. A., Shih, B., Schulze, J. P. & Tolley, M. T. Variable stiffness devices using fiber jamming for application in soft robotics and wearable haptics. Soft Rob. 9, 173–186 (2022).
Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).
Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T. & Hochner, B. Control of octopus arm extension by a peripheral motor program. Science 293, 1845–1848 (2001).
Drotman, D., Jadhav, S., Sharp, D., Chan, C. & Tolley, M. T. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Rob. 6, eaay2627 (2021).
Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).
Aubin, C. A. et al. Powerful, soft combustion actuators for insect-scale robots. Science 381, 1212–1217 (2023).
Heisser, R. H. et al. Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proc. Natl Acad. Sci. USA 118, e2106553118 (2021).
Ko, J. et al. High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Sci. Rob. 7, eabo6463 (2022).
Arnold, A. M., Su, J. & Sabolsky, E. M. Influence of environmental conditions and voltage application on the electromechanical performance of Nafion-Pt IPMC actuators. Smart Mater. Struct. 31, 115031 (2022).
Benselfelt, T. et al. Electrochemically controlled hydrogels with electrotunable permeability and uniaxial actuation. Adv. Mater. 35, e2303255 (2023).
Ma, S. et al. High‐performance ionic‐polymer–metal composite: toward large‐deformation fast‐response artificial muscles. Adv. Funct. Mater. 30, 1908508 (2019).
Ly, K. et al. Miniaturized circuitry for capacitive self-sensing and closed-loop control of soft electrostatic transducers. Soft Rob. 8, 673–686 (2021).
Duduta, M., Hajiesmaili, E., Zhao, H., Wood, R. J. & Clarke, D. R. Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl Acad. Sci. USA 116, 2476–2481 (2019).
Zhao, H. C. et al. Compact dielectric elastomer linear actuators. Adv. Funct. Mater. 28, 1804328 (2018).
Jiang, S. W., Tang, C., Dong, X. G., Liu, X. J. & Zhao, H. C. Soft pocket pump for multi-medium transportation via an active tubular diaphragm. Adv. Funct. Mater. 33, 2305289 (2023).
Sasso, G., Pugno, N., Busfield, J. J. C. & Carpi, F. Soft robotic patterning of liquids. Sci. Rep. 13, 15739 (2023).
Fowler, H. E., Rothemund, P., Keplinger, C. & White, T. J. Liquid crystal elastomers with enhanced directional actuation to electric fields. Adv. Mater. 33, e2103806 (2021).
Yang, Y. et al. Muscle-inspired soft robots based on bilateral dielectric elastomer actuators. Microsyst. Nanoeng. 9, 124 (2023).
Shintake, J., Cacucciolo, V., Shea, H. & Floreano, D. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Rob. 5, 466–474 (2018).
Chen, Y. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019).
Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).
Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Rob. 3, eaar3276 (2018).
Mitchell, S. K. et al. An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Adv. Sci. 6, 1900178 (2019).
Wang, T. et al. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. Sci. Adv. 9, eadg0292 (2023).
Li, Z., Myung, N. V. & Yin, Y. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Rob. 6, eabi4523 (2021).
Mirvakili, S. M., Sim, D., Hunter, I. W. & Langer, R. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Rob. 5, eaaz4239 (2020).
Tang, Y. et al. Wireless miniature magnetic phase-change soft actuators. Adv. Mater. 34, e2204185 (2022).
Wu, S., Hong, Y., Zhao, Y., Yin, J. & Zhu, Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 9, eadf8014 (2023).
Cai, G., Ciou, J. H., Liu, Y., Jiang, Y. & Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019).
Zhao, Y. et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Rob. 4, eaax7112 (2019).
Kim, H. et al. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater. 28, 1870220 (2018).
Lee, H. et al. Directional shape morphing transparent walking soft robot. Soft Rob. 6, 760–767 (2019).
Haines, C. S. et al. Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014).
Wang, S. et al. Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics. Nat. Commun. 11, 4359 (2020).
Azizihariri, P., Ebrahimi, A. H., Zamyad, H. & Sahebian, S. Development of a phase-change material-based soft actuator for soft robotic gripper functionality: in-depth analysis of material composition, ethanol microbubble distribution and lifting capabilities. Mater. Chem. Phys. 311, 128435 (2024).
Sogabe, M., Uetrecht, F. C., Kanno, T., Miyazaki, T. & Kawashima, K. A quick response soft actuator by miniaturized liquid-to-gas phase change mechanism with environmental thermal source. Sens. Actuat. A 361, 114587 (2023).
Byun, J. et al. Underwater maneuvering of robotic sheets through buoyancy-mediated active flutter. Sci. Rob. 6, eabe0637 (2021).
Yoon, Y. et al. Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chem. Eng. J. 451, 138794 (2023).
Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the venus flytrap snaps. Nature 433, 421–425 (2005).
Dawson, J., Vincent, J. F. V. & Rocca, A. M. How pine cones open. Nature 390, 668–668 (1997).
Lendlein, A. & Gould, O. E. C. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4, 116–133 (2019).
Scalet, G. Two-way and multiple-way shape memory polymers for soft robotics: an overview. Actuators 9, 8 (2020).
Peng, W. J. et al. Light-coded digital crystallinity patterns toward bioinspired 4d transformation of shape-memory polymers. Adv. Funct. Mater. 30, 2000522 (2020).
Choi, S. H. et al. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. Nat. Mater. 23, 834–843 (2024).
Zhao, Y. et al. Sunlight-powered self-excited oscillators for sustainable autonomous soft robotics. Sci. Rob. 8, eadf4753 (2023).
Herbert, K. M. et al. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7, 23–38 (2021).
Hou, W., Wang, J. & Lv, J. A. Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles. Adv. Mater. 35, e2211800 (2023).
Zeng, H., Wani, O. M., Wasylczyk, P., Kaczmarek, R. & Priimagi, A. Self‐regulating iris based on light‐actuated liquid crystal elastomer. Adv. Mater. 29, 1701814 (2017).
Mishra, A. K. et al. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Rob. 5, eaaz3918 (2020).
Li, M. et al. Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl Acad. Sci. USA 115, 8119–8124 (2018).
Ni, Y. Y. et al. Data-driven navigation of ferromagnetic soft continuum robots based on machine learning. Adv. Intell. Syst. 5, 2200167 (2023).
Kim, Y., Parada, G. A., Liu, S. & Zhao, X. Ferromagnetic soft continuum robots. Sci. Rob. 4, eaax7329 (2019).
Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).
Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).
Ren, Z., Hu, W., Dong, X. & Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10, 2703 (2019).
Mao, G. et al. Ultrafast small-scale soft electromagnetic robots. Nat. Commun. 13, 4456 (2022).
Yang, Z. X. & Li, Z. Magnetic actuation systems for miniature robots: a review. Adv. Intell. Syst. 2, 2000082 (2020).
Shen, Z., Chen, F., Zhu, X., Yong, K. T. & Gu, G. Stimuli-responsive functional materials for soft robotics. J. Mater. Chem. B 8, 8972–8991 (2020).
Cui, Y., Li, D., Gong, C. & Chang, C. Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano 15, 13712–13720 (2021).
Proksch, E. pH in nature, humans and skin. J. Dermatol. 45, 1044–1052 (2018).
Pu, W., Wei, F. A., Yao, L. G. & Xie, S. X. A review of humidity-driven actuator: toward high response speed and practical applications. J. Mater. Sci. 57, 12202–12235 (2022).
Jerca, F. A., Jerca, V. V. & Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 6, 51–69 (2022).
Jiang, J., Xu, S., Ma, H., Li, C. & Huang, Z. Photoresponsive hydrogel-based soft robot: a review. Mater. Today Bio 20, 100657 (2023).
Shimoga, G., Choi, D. S. & Kim, S. Y. Bio-inspired soft robotics: tunable photo-actuation behavior of azo chromophore containing liquid crystalline elastomers. Appl. Sci. 11, 1233 (2021).
Wani, O. M., Zeng, H. & Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017).
Li, C. et al. Fast and programmable locomotion of hydrogel–metal hybrids under light and magnetic fields. Sci. Rob. 5, eabb9822 (2020).
Li, C. et al. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 19, 900–909 (2020).
Pfeifer, R., Lungarella, M. & Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007).
Sitti, M. Physical intelligence as a new paradigm. Extreme Mech. Lett. 46, 101340 (2021).
Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, e1706383 (2018).
Thuruthel, T. G., Shih, B., Laschi, C. & Tolley, M. T. Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Rob. 4, eaav1488 (2019).
Hu, D. L., Giorgio-Serchi, F., Zhang, S. M. & Yang, Y. J. Stretchable e-skin and transformer enable high-resolution morphological reconstruction for soft robots. Nat. Mach. Intell. 5, 261–272 (2023).
Jin, T. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020).
Qu, X. C. et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8, eabq2521 (2022).
Li, G. Z., Liu, S. Q., Wang, L. Q. & Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Rob. 5, eabc8134 (2020).
Shi, Q. F., Sun, Z. D., Le, X. H., Xie, J. & Lee, C. K. Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence. ACS Nano 17, 4985–4998 (2023).
Galloway, K. C. et al. Soft robotic grippers for biological sampling on deep reefs. Soft Rob. 3, 23–33 (2016).
Roh, Y. et al. Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper. Sci. Rob. 6, eabi6774 (2021).
Wang, D. et al. Sensing-triggered stiffness-tunable smart adhesives. Sci. Adv. 9, eadf4051 (2023).
Sun, Z. J., Wang, S. Y., Zhao, Y. L., Zhong, Z. T. & Zuo, L. Discriminating soft actuators’ thermal stimuli and mechanical deformation by hydrogel sensors and machine learning. Adv. Intell. Syst. 4, 2200089 (2022).
Yao, K. M. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 1–11 (2022).
Shu, S. et al. Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater. 35, e2211385 (2023).
Jung, J., Park, M., Kim, D. & Park, Y. L. Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators. IEEE Rob. Autom. Lett. 5, 2333–2340 (2020).
Yang, X. et al. Bioinspired soft robots based on organic polymer–crystal hybrid materials with response to temperature and humidity. Nat. Commun. 14, 2287 (2023).
Zhang, C., Zou, W., Ma, L. P. & Wang, Z. Q. Biologically inspired jumping robots: a comprehensive review. Rob. Auton. Syst. 124, 103362 (2020).
Li, G. et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 14, 7097 (2023).
Baines, R. et al. Multi-environment robotic transitions through adaptive morphogenesis. Nature 610, 283–289 (2022).
Naclerio, N. D. et al. Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci. Rob. 6, eabe2922 (2021).
Das, R., Babu, S. P. M., Visentin, F., Palagi, S. & Mazzolai, B. An earthworm-like modular soft robot for locomotion in multi-terrain environments. Sci. Rep. 13, 1571 (2023).
Katzschmann, R. K., DelPreto, J., MacCurdy, R. & Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Rob. 3, eaar3449 (2018).
Qu, J. T. et al. Recent advances on underwater soft robots. Adv. Intell. Syst. 6, 2300299 (2023).
Shah, D. S. et al. A soft robot that adapts to environments through shape change. Nat. Mach. Intell. 3, 51–59 (2020).
Li, G. et al. Self-powered soft robot in the Mariana trench. Nature 591, 66–71 (2021).
Karipoth, P., Christou, A., Pullanchiyodan, A. & Dahiya, R. Bioinspired inchworm‐ and earthworm‐like soft robots with intrinsic strain sensing. Adv. Intell. Syst. 4, 2100092 (2021).
Hawkes, E. W., Blumenschein, L. H., Greer, J. D. & Okamura, A. M. A soft robot that navigates its environment through growth. Sci. Rob. 2, eaan3028 (2017).
Liang, J. et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Rob. 6, eabe7906 (2021).
Dong, X. et al. Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans. Sci. Rob. 6, eabe3950 (2021).
Zhao, Y. et al. Physically intelligent autonomous soft robotic maze escaper. Sci. Adv. 9, eadi3254 (2023).
Pahs, L. & Khan, J. Successful recovery of severe hypothermia with minimally invasive central catheter. J. Emerg. Med. 56, 393.e1–393.e4 (2022).
Qi, F., Ju, F., Bai, D., Wang, Y. & Chen, B. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 15, e2007 (2019).
Nguyen, C. C. et al. Bidirectional soft robotic catheter for arrhythmia treatment. In 2022 IEEE Int. Conf. Robotics and Automation (ICRA) 9579–9585 (2022).
Gu, H. et al. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat. Commun. 14, 1263 (2023).
Zhou, C. et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021).
Kim, Y. et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci. Rob. 7, eabg9907 (2022).
Fusco, S. et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26, 952–957 (2014).
Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
Li, H., Go, G., Ko, S. Y., Park, J. O. & Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 25, 027001 (2016).
Darmawan, B. A. et al. Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release. Sens. Actuat. B 324, 128752 (2020).
Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7, 3398–3405 (2015).
Shi, X. Q., Heung, H. L., Tang, Z. Q., Li, Z. & Tong, K. Y. Effects of a soft robotic hand for hand rehabilitation in chronic stroke survivors. J. Stroke Cerebrovasc. Dis. 30, 105812 (2021).
Channa, A., Popescu, N. & Ciobanu, V. Wearable solutions for patients with Parkinson’s disease and neurocognitive disorder: a systematic review. Sensors 20, 2713 (2020).
Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. & Walsh, C. J. Soft robotic glove for combined assistance and at-home rehabilitation. Rob. Auton. Syst. 73, 135–143 (2015).
Xiloyannis, M., Chiaradia, D., Frisoli, A. & Masia, L. Physiological and kinematic effects of a soft exosuit on arm movements. J. NeuroEng. Rehabil. 16, 29 (2019).
Proietti, T. et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis. Sci. Transl. Med. 15, eadd1504 (2023).
Kwon, J. et al. A soft wearable robotic ankle-foot-orthosis for post-stroke patients. IEEE Rob. Autom. Lett. 4, 2547–2552 (2019).
Chu, C. Y. & Patterson, R. M. Soft robotic devices for hand rehabilitation and assistance: a narrative review. J. NeuroEng. Rehabil. 15, 9 (2018).
Guo, K. et al. Empowering hand rehabilitation with ai-powered gesture recognition: a study of an sEMG-based system. Bioengineering 10, 557 (2023).
Kim, D. et al. Eyes are faster than hands: a soft wearable robot learns user intention from the egocentric view. Sci. Rob. 4, eaav2949 (2019).
Hussain, I., Salvietti, G., Spagnoletti, G. & Prattichizzo, D. The Soft-SixthFinger: a wearable EMG controlled robotic extra-finger for grasp compensation in chronic stroke patients. IEEE Rob. Autom. Lett. 1, 1000–1006 (2016).
Muehlhaus, M., Koelle, M., Saberpour, A. & Steimle, J. I Need a third arm! Eliciting body-based interactions with a wearable robotic arm. In Proc. 2023 CHI Conference on Human Factors in Computing Systems (2023).
Park, S. J. & Park, C. H. Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Sci. Rep. 9, 9157 (2019).
Kim, J. et al. Autonomous and portable soft exosuit for hip extension assistance with online walking and running detection algorithm. In 2018 IEEE Int. Conf. Robotics and Automation (ICRA) 5473–5480 (2018).
Heng, W. et al. Flexible insole sensors with stably connected electrodes for gait phase detection. Sensors 19, 5197 (2019).
Cheng, N. et al. Brain–computer interface-based soft robotic glove rehabilitation for stroke. IEEE Trans. Biomed. Eng. 67, 3339–3351 (2020).
Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Personalizing exoskeleton assistance while walking in the real world. Nature 610, 277–282 (2022).
Proietti, T. et al. Sensing and control of a multi-joint soft wearable robot for upper-limb assistance and rehabilitation. IEEE Rob. Autom. Lett. 6, 2381–2388 (2021).
Johnsen, S. Hidden in plain sight: the ecology and physiology of organismal transparency. Biol. Bull. 201, 301–318 (2001).
Wang, G., Chen, X., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).
Won, P. et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33, e2002397 (2021).
L’Heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. M. Machine learning with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017).
Kang, B. B., Choi, H., Lee, H. & Cho, K. J. Exo-Glove Poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Rob. 6, 214–227 (2019).
Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).
Ligon, R. A. & McGraw, K. J. Chameleons communicate with complex colour changes during contests: different body regions convey different information. Biol. Lett. 9, 20130892 (2013).
Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1004 (2019).
Stuart-Fox, D. & Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Phil. Trans. R. Soc. B 364, 463–470 (2009).
Miller, B. H., Liu, H. & Kolle, M. Scalable optical manufacture of dynamic structural colour in stretchable materials. Nat. Mater. 21, 1014–1018 (2022).
Kim, H. et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021).
Piacenza, P., Sherman, S. & Ciocarlie, M. Data-driven super-resolution on a tactile dome. IEEE Rob. Autom. Lett. 3, 1434–1441 (2018).
Must, I. et al. Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv. Eng. Mater. 17, 84–94 (2015).
Kim, M. H. et al. Bioinspired, shape-morphing scale battery for untethered soft robots. Soft Rob. 9, 486–496 (2022).
Aubin, C. A. et al. Towards enduring autonomous robots via embodied energy. Nature 602, 393–402 (2022).
Yang, G. Z. et al. The grand challenges of science robotics. Sci. Rob. 3, eaar7650 (2018).
Zhu, M. S. & Schmidt, O. G. Batteries for small-scale robotics. MRS Bull. 49, 115–124 (2024).
Scheibert, J., Leurent, S., Prevost, A. & Debregeas, G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009).
Zhu, M. S. & Schmidt, O. G. Tiny robots and sensors need tiny batteries — here’s how to do it. Nature 589, 195–197 (2021).
Aubin, C. A. et al. Electrolytic vascular systems for energy-dense robots. Nature 571, 51–57 (2019).
Zhang, S., Ke, X., Jiang, Q., Ding, H. & Wu, Z. Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Sci. Rob. 6, eabd6107 (2021).
Zhang, J. et al. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Rob. 6, eabf0112 (2021).
Man, K. & Damasio, A. Homeostasis and soft robotics in the design of feeling machines. Nat. Mach. Intell. 1, 446–452 (2019).
Roels, E. et al. Processing of self-healing polymers for soft robotics. Adv. Mater. 34, e2104798 (2022).
Cully, A., Clune, J., Tarapore, D. & Mouret, J. B. Robots that can adapt like animals. Nature 521, 503–507 (2015).
Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).
Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).
Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).
Zhang, F. et al. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat. Mater. 21, 1357–1365 (2022).
Kim, I. H. et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol. 17, 1198–1205 (2022).
Marchese, A. D., Onal, C. D. & Rus, D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Rob. 1, 75–87 (2014).
Roche, E. T. et al. A bioinspired soft actuated material. Adv. Mater. 26, 1200–1206 (2014).
Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).
Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011).
Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007).
Robinson, G. & Davies, J. B. C. Continuum robots — a state of the art. In Proc. 1999 IEEE Int. Conf. Robotics and Automation (Cat. No. 99CH36288C) 2849–2854 (1999).
Agerholm, M. & Lord, A. The ‘artificial muscle’ of McKibben. Lancet 277, 660–661 (1961).
Shim, H. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019).
Ranzani, T., Russo, S., Bartlett, N. W., Wehner, M. & Wood, R. J. Increasing the dimensionality of soft microstructures through injection-induced self-folding. Adv. Mater. 30, e1802739 (2018).
Calisti, M. et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 6, 036002 (2011).
Christianson, C., Goldberg, N. N., Deheyn, D. D., Cai, S. Q. & Tolley, M. T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Rob. 3, eaat1893 (2018).
Guo, X. Y. et al. Encoded sewing soft textile robots. Sci. Adv. 10, eadk3855 (2024).
Ke, X., Yong, H., Xu, F., Ding, H. & Wu, Z. Stenus-inspired, swift, and agile untethered insect-scale soft propulsors. Nat. Commun. 15, 1491 (2024).
Copaci, D., Martín, F., Moreno, L. & Blanco, D. SMA based elbow exoskeleton for rehabilitation therapy and patient evaluation. IEEE Access 7, 31473–31484 (2019).
Hyeon, K. et al. Design of a wearable mechanism with shape memory alloy (SMA)-based artificial muscle for assisting with shoulder abduction. IEEE Rob. Autom. Lett. 7, 10635–10642 (2022).
Jeong, J. et al. Soft wearable robot with shape memory alloy (SMA)-based artificial muscle for assisting with elbow flexion and forearm supination/pronation. IEEE Rob. Autom. Lett. 7, 6028–6035 (2022).
Park, S. J., Choi, K., Rodrigue, H. & Park, C. H. Fabric muscle with a cooling acceleration structure for upper limb assistance soft exosuits. Sci. Rep. 12, 11398 (2022).
Jeong, J. et al. Design of shape memory alloy-based soft wearable robot for assisting wrist motion. Appl. Sci. 9, 4025 (2019).
Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).
Chang, C. L., Zhao, L., Song, Z. C., Zhou, Y. & Yu, S. H. Transparent soft electrothermal actuators with integrated cu nanowire heater for soft robotics. Macromol. Mater. Eng. 307, 2100638 (2022).
Zhao, Y. et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Rob. 6, eabd5483 (2021).
Han, M. et al. Submillimeter-scale multimaterial terrestrial robots. Sci. Rob. 7, eabn0602 (2022).
Shao, Y. et al. 4D printing light-driven soft actuators based on liquid–vapor phase transition composites with inherent sensing capability. Chem. Eng. J. 454, 140271 (2023).
Dong, Y. et al. Multi-stimuli-responsive programmable biomimetic actuator. Nat. Commun. 10, 4087 (2019).
Zhao, Q. et al. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat. Commun. 5, 4293 (2014).
Taccola, S. et al. Toward a new generation of electrically controllable hygromorphic soft actuators. Adv. Mater. 27, 1668–1675 (2015).
Zheng, Z. et al. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat. Commun. 12, 1598 (2021).
Cao, J. W. et al. Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mech. Lett. 21, 9–16 (2018).
Li, Y. & Hashimoto, M. PVC gel soft actuator-based wearable assist wear for hip joint support during walking. Smart Mater. Struct. 26, 125003 (2017).
Wang, Y., Zhang, P., Huang, H. & Zhu, J. Bio-inspired transparent soft jellyfish robot. Soft Rob. 10, 590–600 (2023).
Kotal, M., Tabassian, R., Roy, S., Oh, S. & Oh, I. K. Metal–organic framework-derived graphitic nanoribbons anchored on graphene for electroionic artificial muscles. Adv. Funct. Mater. 30, 1910326 (2020).
Wu, G. et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 31, e1806492 (2019).
Wehner, M. et al. A lightweight soft exosuit for gait assistance. In 2013 IEEE Int. Conf. Robotics and Automation (ICRA) 3362–3369 (2013).
Kawamura, T., Takanaka, K., Nakamura, T. & Osumi, H. Development of an orthosis for walking assistance using pneumatic artificial muscle: a quantitative assessment of the effect of assistance. In 2013 IEEE 13th Int. Conf. Rehabilitation Robotics (ICORR) Vol. 2013, 6650350 (2013).
Payne, C. J. et al. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci. Rob. 2, eaan6736 (2017).
Wang, D. et al. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat. Commun. 14, 5067 (2023).
Elsayed, Y. et al. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Rob. 1, 255–262 (2014).
Tang, W. et al. Self-protection soft fluidic robots with rapid large-area self-healing capabilities. Nat. Commun. 14, 6430 (2023).
Rogatinsky, J. et al. A multifunctional soft robot for cardiac interventions. Sci. Adv. 9, eadi5559 (2023).
Pancaldi, L. et al. Flow driven robotic navigation of microengineered endovascular probes. Nat. Commun. 11, 6356 (2020).
Hu, J., Li, X., Ni, Y., Ma, S. D. & Yu, H. F. A programmable and biomimetic photo-actuator: a composite of a photo-liquefiable azobenzene derivative and commercial plastic film. J. Mater. Chem. C 6, 10815–10821 (2018).
Ma, S., Li, X., Huang, S., Hu, J. & Yu, H. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface. Angew. Chem. Int. Ed. Engl. 58, 2655–2659 (2019).
Venkiteswaran, V. K., Tan, D. K. & Misra, S. Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Extreme Mech. Lett. 41, 101023 (2020).
Kim, Y. S. et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14, 1002–1007 (2015).
Gerboni, G. et al. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper. Smart Mater. Struct. 25, 105025 (2016).
Mahdavi, A. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl Acad. Sci. USA 105, 2307–2312 (2008).
Min, W. L., Jiang, B. & Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 20, 3914 (2008).
Ghosh, A., Beaini, S., Zhang, B. J., Ganguly, R. & Megaridis, C. M. Enhancing dropwise condensation through bioinspired wettability patterning. Langmuir 30, 13103–13115 (2014).
Wang, Z. W. et al. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Adv. Mater. 34, e2107791 (2022).
Kotikian, A. et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33, e2101814 (2021).
Ng, C. S. X. et al. Locomotion of miniature soft robots. Adv. Mater. 33, e2003558 (2021).
Acknowledgements
This study was supported by the National Research Foundation of Korea (grant number 2021R1A2B5B03001691).
Author information
Authors and Affiliations
Contributions
J.B., S.H.C. and S.H.K. researched data and wrote the manuscript. All authors contributed to the discussion, revision and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks Xinyi Lin (who co-reviewed with Jia Liu), Chengkuo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bang, J., Choi, S.H., Pyun, K.R. et al. Bioinspired electronics for intelligent soft robots. Nat Rev Electr Eng 1, 597–613 (2024). https://doi.org/10.1038/s44287-024-00081-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44287-024-00081-2