Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in understanding quantum dot light-emitting diodes

Abstract

Quantum dot light-emitting diodes (QD-LEDs) are attractive for display and lighting applications owing to their high colour rendering index, their low-cost solution processability and their ability to achieve simultaneous high brightness and near-unity internal quantum efficiency at low voltages. Since 1994, tremendous progress has been made in improving the external quantum efficiency and lifetimes of QD-LEDs, and there has been growing understanding of the operational and degradation mechanisms. However, there are still critical problems that remain to be clarified, such as the origin of positive ageing and the role of zinc oxide nanoparticles in achieving high performance. In this Review, we analyse the key factors influencing voltage, internal quantum and photon out-coupling efficiencies of QD-LEDs. We point out the issues related to cadmium-free quantum dots and short-lifetime blue QD-LEDs. Finally, we clarify the challenges and summarize the latest progress in commercializing QD-LEDs.

Key points

  • Quantum dot light-emitting diodes (QD-LEDs) convert electrical energy into light through the recombination of electrons and holes in quantum dots.

  • QD-LEDs are one of the most promising contenders for future display technologies owing to their colour accuracy, high brightness and low-cost solution processability.

  • Commercialization of QD-LED technology is facing several challenges, such as emission efficiency, stability and the short lifetime of blue QD-LEDs.

  • An in-depth understanding of the fundamental operational mechanism is imperative to addressing the current challenges in commercializing QD-LEDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Voltage efficiencies in QD-LEDs.
Fig. 2: Photon out-coupling efficiency of QD-LEDs.
Fig. 3: Origins of the efficiency gap between PL and electroluminescence.
Fig. 4: Possible degradation mechanism of QD-LEDs.
Fig. 5: Cadmium-free QD-LEDs.
Fig. 6: Consistency and stability issues induced by ZnO nanoparticles and challenges in inkjet-printed QD-LEDs.

Similar content being viewed by others

References

  1. Gao, Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 18, 1168–1174 (2023). This article shows that using larger-sized QDs can increase the charge occupancy and quasi-Fermi level splitting, resulting in increased brightness at reduced driving voltages and reduced heat generation.

    Article  Google Scholar 

  2. Lin, J. et al. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function. Adv. Funct. Mater. 30, 1907265 (2020).

    Article  Google Scholar 

  3. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  Google Scholar 

  4. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  Google Scholar 

  5. Sun, Q. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photon. 1, 717–722 (2007).

    Article  Google Scholar 

  6. Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7, 407–412 (2013).

    Article  Google Scholar 

  7. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  Google Scholar 

  8. Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015).

    Article  Google Scholar 

  9. Cao, W. et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608 (2018).

    Article  Google Scholar 

  10. Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article  Google Scholar 

  11. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article  Google Scholar 

  12. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019). This article demonstrates that InP-based QDs synthesized using HF2 can exhibit 100% PL QY, high brightness and a long lifetime.

    Article  Google Scholar 

  13. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020). This article shows that ZnTeSe-based QDs can be used for cadmium-free blue QD-LEDs with high brightness and long operational lifetime.

    Article  Google Scholar 

  14. Deng, Y. et al. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 11, 2309 (2020). This article demonstrates the formation process of excitons in QD-LEDs under electrical excitation.

    Article  Google Scholar 

  15. Pu, C. et al. Electrochemically-stable ligands bridge the photoluminescence–electroluminescence gap of quantum dots. Nat. Commun. 11, 937 (2020).

    Article  Google Scholar 

  16. Xiang, C. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 11, 1646 (2020).

    Article  Google Scholar 

  17. Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article  Google Scholar 

  18. Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon 16, 505–511 (2022). This article demonstrates that using polymer materials with both low electron affinity and energy disorder as the HTL can effectively mitigate electron leakage at the interface between organic and inorganic layers, thereby realizing high EQE and stability in QD-LEDs.

    Article  Google Scholar 

  19. Chen, X. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface–bulk coupling. Nat. Commun. 14, 284 (2023). This article shows that monotonically graded core/shell/shell blue QDs can enable low surface–bulk coupling and record the T95 operational lifetime.

    Article  Google Scholar 

  20. Xu, H. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photon 18, 186–191 (2024). This article shows that dipole–dipole interactions in mixed-phase CdZnSeS QDs enable the effective orientation of QDs and improve photon out-coupling when employed in an LED.

    Article  Google Scholar 

  21. Qian, L., Zheng, Y., Xue, J. G. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon 5, 543–548 (2011). This article represents the first instance of utilizing ZnO to prepare organic–inorganic hybrid structured QD-LEDs.

    Article  Google Scholar 

  22. Lee, T. et al. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 34, 2106276 (2022). This article demonstrates bright and stable QLEDs on a silicon substrate, expanding their potential application boundary over the present art.

    Article  Google Scholar 

  23. Wood, V. et al. Inkjet-printed quantum dot–polymer composites for full-color AC-driven displays. Adv. Mater. 21, 2151–2155 (2009).

    Article  Google Scholar 

  24. Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  Google Scholar 

  25. Chen, M. et al. High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Res. 14, 4125–4131 (2021).

    Article  Google Scholar 

  26. Roh, H. et al. Enhanced performance of pixelated quantum dot light-emitting diodes by inkjet printing of quantum dot–polymer composites. Adv. Opt. Mater. 9, 2002129 (2021).

    Article  Google Scholar 

  27. Jia, S. et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability. Adv. Opt. Mater. 9, 2101069 (2021).

    Article  Google Scholar 

  28. Xie, L. et al. High-performance inkjet-printed blue QLED enabled by crosslinked and intertwined hole transport layer. Adv. Opt. Mater. 10, 2200935 (2022).

    Article  Google Scholar 

  29. Liu, Y. et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique. ACS Appl. Mater. Interfaces 9, 25506–25512 (2017).

    Article  Google Scholar 

  30. Jia, S. et al. Improvement of the efficiency and stability of inkjet‐printed green quantum dot light‐emitting diodes by controlling the extra shell of quantum dot. J. Soc. Inf. Disp. 30, 574–584 (2022).

    Article  Google Scholar 

  31. Acharya, K. P. et al. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 9, 14451–14457 (2017).

    Article  Google Scholar 

  32. Su, Q., Sun, Y. Z., Zhang, H. & Chen, S. M. Origin of positive aging in quantum-dot light-emitting diodes. Adv. Sci. 5, 1800549 (2018).

    Article  Google Scholar 

  33. Ding, W. et al. Positive aging mechanisms for high-efficiency blue quantum dot light-emitting diodes. SID Symp. Dig. Tech. Pap. 49, 1622–1624 (2018).

    Article  Google Scholar 

  34. Zhang, W. J. et al. Positive aging effect of ZnO nanoparticles induced by surface stabilization. J. Phys. Chem. Lett. 11, 5863–5870 (2020).

    Article  Google Scholar 

  35. Yang, X. et al. Light extraction efficiency enhancement of colloidal quantum dot light-emitting diodes using large-scale nanopillar arrays. Adv. Funct. Mater. 24, 5977–5984 (2014).

    Article  Google Scholar 

  36. Li, Z. et al. Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots. Laser Photonics Rev. 11, 1600227 (2017).

    Article  Google Scholar 

  37. Zhang, Z. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 30, 1801387 (2018).

    Article  Google Scholar 

  38. Fu, Y., Jiang, W., Kim, D., Lee, W. & Chae, H. Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers. ACS Appl. Mater. Interfaces 10, 17295–17300 (2018).

    Article  Google Scholar 

  39. Li, X. et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness. Adv. Opt. Mater. 8, 1901145 (2020).

    Article  Google Scholar 

  40. Fan, X. et al. An efficient green-emitting quantum dot with near-unity quantum yield and suppressed Auger recombination for high-performance light-emitting diodes. Chem. Eng. J. 461, 142027 (2023).

    Article  Google Scholar 

  41. Chen, M. et al. Highly stable SnO2-based quantum-dot light-emitting diodes with the conventional device structure. ACS Nano 16, 9631–9639 (2022).

    Article  Google Scholar 

  42. Liu, B. et al. Cadmium-doped zinc sulfide shell as a hole injection springboard for red, green, and blue quantum dot light-emitting diodes. Adv. Sci. 9, 2104488 (2022).

    Article  Google Scholar 

  43. Rhee, S. et al. Tailoring the electronic landscape of quantum dot light-emitting diodes for high brightness and stable operation. ACS Nano 14, 17496–17504 (2020).

    Article  Google Scholar 

  44. Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012).

    Article  Google Scholar 

  45. Chen, L., Qin, Z. & Chen, S. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities. Small Methods 6, 2101090 (2022).

    Article  Google Scholar 

  46. Chen, S. et al. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 10, 765 (2019).

    Article  Google Scholar 

  47. Ye, Y. et al. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 11, 4649–4654 (2020).

    Article  Google Scholar 

  48. Chen, Z., Su, Q., Qin, Z. & Chen, S. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 14, 320–327 (2021).

    Article  Google Scholar 

  49. Chen, D. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 32, 2006178 (2020).

    Article  Google Scholar 

  50. Liu, A., Cheng, C. & Tian, J. Exploring performance degradation of quantum-dot light-emitting diodes. J. Mater. Chem. C. 10, 8642–8649 (2022).

    Article  Google Scholar 

  51. Su, Q. & Chen, S. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 13, 369 (2022).

    Article  Google Scholar 

  52. Qu, X., Ma, J., Liu, P., Wang, K. & Sun, X. W. On the voltage behavior of quantum dot light-emitting diode. Nano Res. 16, 5511–5516 (2023).

    Article  Google Scholar 

  53. Zhang, H. et al. On the electroluminescence turn-on mechanism of blue quantum-dot light-emitting diodes. Adv. Opt. Mater. 11, 2203152 (2023).

    Article  Google Scholar 

  54. Yu, R., Yin, F., Zhou, D., Zhu, H. & Ji, W. Efficient quantum-dot light-emitting diodes enabled via a charge manipulating structure. J. Phys. Chem. Lett. 14, 4548–4553 (2023).

    Article  Google Scholar 

  55. Qu, X. et al. Does interfacial exciton quenching exist in high-performance quantum dot light-emitting diodes? Nanoscale 15, 3430–3437 (2023).

    Article  Google Scholar 

  56. Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Article  Google Scholar 

  57. Xue, J. et al. Thermally enhanced blue light-emitting diode. Appl. Phys. Lett. 107, 121109 (2015).

    Article  Google Scholar 

  58. Li, N. et al. Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat. Photon. 13, 588–592 (2019).

    Article  Google Scholar 

  59. Li, P. P. et al. Significant quantum efficiency enhancement of InGaN red micro-light-emitting diodes with a peak external quantum efficiency of up to 6%. ACS Photon. 10, 1899–1905 (2023).

    Article  Google Scholar 

  60. Zhanghu, M. Y., Hyun, B. R., Jiang, F. L. & Liu, Z. J. Ultra-bright green InGaN micro-LEDs with brightness over 10 M nits. Opt. Express 30, 10119–10125 (2022).

    Article  Google Scholar 

  61. Daami, A., Olivier, F., Dupre, L., Henry, F. & Templier, F. Electro-optical size-dependence investigation in GaN micro-LED devices. SID Symp. Dig. Tech. Pap. 49, 790–793 (2018).

    Article  Google Scholar 

  62. Jeon, S. O. et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photon. 15, 208–215 (2021).

    Article  Google Scholar 

  63. Fan, X.-C. et al. Ultrapure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design. Nat. Photon. 17, 280–285 (2023).

    Article  Google Scholar 

  64. Wu, S. et al. Highly efficient green and red narrowband emissive organic light-emitting diodes employing multi-resonant thermally activated delayed fluorescence emitters. Angew. Chem. Int. Ed. Engl. 61, e202213697 (2022).

    Article  Google Scholar 

  65. Song, J. et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29, 1808377 (2019).

    Article  Google Scholar 

  66. Qiu, Y. et al. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer. ACS Appl. Nano Mater. 5, 2962–2972 (2022).

    Article  Google Scholar 

  67. Luo, H. et al. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 13, 8229–8236 (2019).

    Article  Google Scholar 

  68. Lee, H., Jeong, B. G., Bae, W. K., Lee, D. C. & Lim, J. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 12, 5669 (2021).

    Article  Google Scholar 

  69. Lin, X. et al. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Res. 15, 9402–9409 (2022).

    Article  Google Scholar 

  70. Ieuji, R., Goushi, K. & Adachi, C. Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nat. Commun. 10, 10 (2019).

    Article  Google Scholar 

  71. Shukla, A. et al. Controlling triplet–triplet upconversion and singlet–triplet annihilation in organic light-emitting diodes for injection lasing. Commun. Mater. 3, 11 (2022).

    Article  Google Scholar 

  72. Engmann, S. et al. Higher order effects in organic LEDs with sub-bandgap turn-on. Nat. Commun. 10, 10 (2019).

    Article  Google Scholar 

  73. Ye, Z. et al. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat. Commun. 12, 4283 (2021).

    Article  Google Scholar 

  74. Kuang, Z. Y., Yuan, L. Z., Peng, Q. M. & Wang, J. P. Sub-bandgap-voltage electroluminescence of light-emitting diodes. J. Phys. Chem. Lett. 13, 11925–11927 (2022).

    Article  Google Scholar 

  75. Tauc, J. The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p–n junction. Czech. J. Phys. 7, 275–276 (1957).

    Article  Google Scholar 

  76. Sadi, T., Radevici, I. & Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photon. 14, 205–214 (2020).

    Article  Google Scholar 

  77. Xu, M. et al. Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Res. 15, 7453–7459 (2022).

    Article  Google Scholar 

  78. Zhao, B. et al. Light management for perovskite light-emitting diodes. Nat. Nanotechnol. 18, 981–992 (2023).

    Article  Google Scholar 

  79. Rani, S. & Kumar, J. Modeling charge transport mechanism in inorganic quantum dot light-emitting devices through transport layer modification strategies. J. Appl. Phys. 133, 104302 (2023).

    Article  Google Scholar 

  80. Yeom, J. E. et al. Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep HOMO level hole transport layer. ACS Energy Lett. 5, 3868–3875 (2020).

    Article  Google Scholar 

  81. Zhang, X., Li, D., Zhang, Z., Liu, H. & Wang, S. Constructing effective hole transport channels in cross-linked hole transport layer by stacking discotic molecules for high performance deep blue QLEDs. Adv. Sci. 9, 2200450 (2022).

    Article  Google Scholar 

  82. Wu, W. et al. An efficient hole transporting polymer for quantum dot light‐emitting diodes. Adv. Mater. Interfaces 8, 2100731 (2021).

    Article  Google Scholar 

  83. Wurfel, P. The chemical-potential of radiation. J. Phys. C: Solid. State Phys. 15, 3967–3985 (1982).

    Article  Google Scholar 

  84. Pradhan, S., Dalmases, M. & Konstantatos, G. Origin of the below-bandgap turn-on voltage in light-emitting diodes and the high Voc in solar cells comprising colloidal quantum dots with an engineered density of states. J. Phys. Chem. Lett. 10, 3029–3034 (2019).

    Article  Google Scholar 

  85. Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    Article  Google Scholar 

  86. Greenham, N. C., Friend, R. H. & Bradley, D. D. C. Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations. Adv. Mater. 6, 491–494 (1994).

    Article  Google Scholar 

  87. Kim, J.-S., Ho, P. K. H., Greenham, N. C. & Friend, R. H. Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J. Appl. Phys. 88, 1073–1081 (2000).

    Article  Google Scholar 

  88. Tanaka, D. et al. Ultra high efficiency green organic light-emitting devices. Jpn. J. Appl. Phys. 46, L10–L12 (2007).

    Article  Google Scholar 

  89. Kim, S.-Y. & Kim, J.-J. Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Org. Electron. 11, 1010–1015 (2010).

    Article  Google Scholar 

  90. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  Google Scholar 

  91. Song, Y. et al. Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Sci. Adv. 8, 8 (2022).

    Article  Google Scholar 

  92. Kim, S.-Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).

    Article  Google Scholar 

  93. Brutting, W., Frischeisen, J., Schmidt, T. D., Scholz, B. J. & Mayr, C. Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. Phys. Status Solidi A 210, 44–65 (2013).

    Article  Google Scholar 

  94. Kim, W. D. et al. Pushing the efficiency envelope for semiconductor nanocrystal-based electroluminescence devices using anisotropic nanocrystals. Chem. Mater. 31, 3066–3082 (2019).

    Article  Google Scholar 

  95. Li, H., Zhou, S. & Chen, S. Highly efficient top-emitting quantum-dot light-emitting diodes with record-breaking external quantum efficiency of over 44.5%. Laser Photonics Rev. 17, 2300371 (2023).

    Article  Google Scholar 

  96. Zhu, H. Charge and Exciton Dynamics in Quantum Dot Light-Emitting Diodes (Massachusetts Institute of Technology, 2019).

  97. Kim, K. H., Moon, C. K., Lee, J. H., Kim, S. Y. & Kim, J. J. Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv. Mater. 26, 3844–3847 (2014).

    Article  Google Scholar 

  98. Kim, K.-H., Ahn, E. S., Huh, J.-S., Kim, Y.-H. & Kim, J.-J. Design of heteroleptic Ir complexes with horizontal emitting dipoles for highly efficient organic light-emitting diodes with an external quantum efficiency of 38%. Chem. Mater. 28, 7505–7510 (2016).

    Article  Google Scholar 

  99. Kim, K. H. et al. Crystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting layer. Adv. Mater. 28, 2526–2532 (2016).

    Article  Google Scholar 

  100. Jiang, P. et al. Quenching-resistant multiresonance TADF emitter realizes 40% external quantum efficiency in narrowband electroluminescence at high doping level. Adv. Mater. 34, 2106954 (2022).

    Article  Google Scholar 

  101. Chen, Y.-K. et al. Triarylamine-pyridine-carbonitriles for organic light-emitting devices with EQE nearly 40%. Adv. Mater. 33, 2008032 (2021).

    Article  Google Scholar 

  102. Wang, Q., Xu, Y., Yang, T., Xue, J. & Wang, Y. Precise functionalization of a multiple-resonance framework: constructing narrowband organic electroluminescent materials with external quantum efficiency over 40%. Adv. Mater. 35, 2205166 (2023).

    Article  Google Scholar 

  103. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  Google Scholar 

  104. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  Google Scholar 

  105. Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article  Google Scholar 

  106. Walters, G. et al. Directional light emission from layered metal halide perovskite crystals. J. Phys. Chem. Lett. 11, 3458–3465 (2020).

    Article  Google Scholar 

  107. Marcato, T., Krumeich, F. & Shih, C. J. Confinement-tunable transition dipole moment orientation in perovskite nanoplatelet solids and binary blends. ACS Nano 16, 18459–18471 (2022).

    Article  Google Scholar 

  108. Scott, R. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 12, 1155–1160 (2017).

    Article  Google Scholar 

  109. Ma, X. et al. Anisotropic photoluminescence from isotropic optical transition dipoles in semiconductor nanoplatelets. Nano Lett. 18, 4647–4652 (2018).

    Article  Google Scholar 

  110. Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).

    Article  Google Scholar 

  111. Cunningham, P. D., Boercker, J. E., Placencia, D. & Tischler, J. G. Anisotropic absorption in PbSe nanorods. ACS Nano 8, 581–590 (2014).

    Article  Google Scholar 

  112. Nam, S., Oh, N., Zhai, Y. & Shim, M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 9, 878–885 (2015).

    Article  Google Scholar 

  113. Gao, Y., Weidman, M. C. & Tisdale, W. A. CdSe nanoplatelet films with controlled orientation of their transition dipole moment. Nano Lett. 17, 3837–3843 (2017).

    Article  Google Scholar 

  114. Cassette, E. et al. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano 6, 6741–6750 (2012).

    Article  Google Scholar 

  115. Giovanella, U. et al. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 18, 3441–3448 (2018).

    Article  Google Scholar 

  116. Rastogi, P., Palazon, F., Prato, M., Di Stasio, F. & Krahne, R. Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification. ACS Appl. Mater. Interfaces 10, 5665–5672 (2018).

    Article  Google Scholar 

  117. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  Google Scholar 

  118. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  Google Scholar 

  119. Pazos-Outon, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    Article  Google Scholar 

  120. Shen, H. et al. High-efficient deep-blue light-emitting diodes by using high quality ZnxCd1–xS/ZnS core/shell quantum dots. Adv. Funct. Mater. 24, 2367–2373 (2014).

    Article  Google Scholar 

  121. Li, D. et al. Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance. Chem. Commun. 55, 3501–3504 (2019).

    Article  Google Scholar 

  122. Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).

    Article  Google Scholar 

  123. Li, Z. et al. Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: nonblinking, single photoluminescence decay channel, and suppressed FRET. Chem. Mat. 30, 3668–3676 (2018).

    Article  Google Scholar 

  124. Zhou, J., Zhu, M., Meng, R., Qin, H. & Peng, X. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 139, 16556–16567 (2017).

    Article  Google Scholar 

  125. Zeng, S. et al. Ultrafast electron transfer dynamics affected by ligand chain length in InP/ZnS core/shell quantum dots. J. Phys. Chem. C. 126, 9091–9098 (2022).

    Article  Google Scholar 

  126. Tang, J. et al. Reducing the chromaticity shifts of light-emitting diodes using gradient-alloyed CdxZn1–xSeyS1–y@ ZnS core shell quantum dots with enhanced high-temperature photoluminescence. Adv. Opt. Mater. 7, 1801687 (2019).

    Article  Google Scholar 

  127. Li, H. et al. High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization. Adv. Funct. Mater. 32, 2204529 (2022).

    Article  Google Scholar 

  128. Shirasaki, Y., Supran, G. J., Tisdale, W. A. & Bulovic, V. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Phys. Rev. Lett. 110, 5 (2013).

    Article  Google Scholar 

  129. Lim, J., Park, Y. S., Wu, K. F., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).

    Article  Google Scholar 

  130. Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013).

    Article  Google Scholar 

  131. Yang, Z. et al. Recent advances in quantum dot-based light-emitting devices: challenges and possible solutions. Mater. Today 24, 69–93 (2019).

    Article  Google Scholar 

  132. Park, Y.-S., Bae, W. K., Padilha, L. A., Pietryga, J. M. & Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14, 396–402 (2014).

    Article  Google Scholar 

  133. Chang, J. H. et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 12, 10231–10239 (2018).

    Article  Google Scholar 

  134. Hou, X. et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat. Commun. 10, 1750 (2019).

    Article  Google Scholar 

  135. Hou, X., Qin, H. & Peng, X. Enhancing dielectric screening for auger suppression in CdSe/CdS quantum dots by epitaxial growth of ZnS shell. Nano Lett. 21, 3871–3878 (2021).

    Article  Google Scholar 

  136. Huang, X. et al. The influence of the hole transport layers on the performance of blue and color tunable quantum dot light‐emitting diodes. J. Soc. Inf. Disp. 26, 470–476 (2018).

    Article  Google Scholar 

  137. Fang, Y. et al. Highly efficient red quantum dot light-emitting diodes by balancing charge injection and transport. ACS Appl. Mater. Interfaces 14, 21263–21269 (2022).

    Article  Google Scholar 

  138. Wang, F. et al. Enhancing the performance of blue quantum dots light-emitting diodes through interface engineering with deoxyribonucleic acid. Adv. Opt. Mater. 6, 1800578 (2018).

    Article  Google Scholar 

  139. Qu, X. et al. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer. Appl. Phys. Lett. 114, 071101 (2019).

    Article  Google Scholar 

  140. Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 7 (2018).

    Article  Google Scholar 

  141. Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    Article  Google Scholar 

  142. Yuan, G., Gómez, D. E., Kirkwood, N., Boldt, K. & Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 12, 3397–3405 (2018).

    Article  Google Scholar 

  143. Ye, M. & Searson, P. C. Blinking in quantum dots: the origin of the grey state and power law statistics. Phys. Rev. B 84, 125317 (2011).

    Article  Google Scholar 

  144. Qin, H. Y. et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 136, 179–187 (2014).

    Article  Google Scholar 

  145. Meng, Q.-Y. et al. Longevity gene responsible for robust blue organic materials employing thermally activated delayed fluorescence. Nat. Commun. 14, 3927 (2023).

    Article  Google Scholar 

  146. European Commission. Restriction of hazardous substances in electrical and electronic equipment (RoHS). European Commission Environment https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en (2003).

  147. Chao, W.-C. et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2, 96 (2021).

    Article  Google Scholar 

  148. Li, H. et al. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 22, 4067–4073 (2022).

    Article  Google Scholar 

  149. Li, Y. et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 141, 6448–6452 (2019).

    Article  Google Scholar 

  150. Mude, N. N., Khan, Y., Thuy, T. T., Walker, B. & Kwon, J. H. Stable ZnS electron transport layer for high-performance inverted cadmium-free quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 14, 55925–55932 (2022).

    Article  Google Scholar 

  151. Zhang, T. et al. Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Adv. 5, 385–392 (2023).

    Article  Google Scholar 

  152. Gao, M. et al. Alleviating electron over-injection for efficient cadmium-free quantum dot light-emitting diodes toward deep-blue emission. ACS Photon. 9, 1400–1408 (2022).

    Article  Google Scholar 

  153. Lee, S.-H. et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem. Eng. J. 429, 132464 (2022).

    Article  Google Scholar 

  154. Han, C.-Y. et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 5, 1568–1576 (2020).

    Article  Google Scholar 

  155. Thuy, T. T., Mude, N. N. & Kwon, J. H. High-performance inverted green and red InP quantum-dot light emitting diodes with robust ZnS electron transport interlayer. SID Symp. Dig. Tech. Pap. (USA), 1174–1177 (2023).

  156. Zhang, H. et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv. Opt. Mater. 7, 1801602 (2019).

    Article  Google Scholar 

  157. Han, C.-Y., Yang, H., Han, C.-Y. & Yang, H. Development of colloidal quantum dots for electrically driven light-emitting devices. J. Korean Ceram. Soc. 54, 449–469 (2017).

    Article  Google Scholar 

  158. Jang, E.-P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

    Article  Google Scholar 

  159. Kim, S. et al. Efficient blue-light-emitting Cd-free colloidal quantum well and its application in electroluminescent devices. Chem. Mat. 32, 5200–5207 (2020).

    Article  Google Scholar 

  160. Cheng, Y. et al. Electronic structural insight into high-performance quantum dot light-emitting diodes. Adv. Funct. Mater. 32, 7 (2022).

    Article  Google Scholar 

  161. Lee, T. et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 15, 1905162 (2019).

    Article  Google Scholar 

  162. Li, D. et al. Enhanced efficiency of InP-based red quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 11, 34067–34075 (2019).

    Article  Google Scholar 

  163. Su, Q., Zhang, H. & Chen, S. Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl. Phys. Lett. 117, 053502 (2020).

    Article  Google Scholar 

  164. Lim, J. et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ ZnSeS quantum dots. ACS Nano 7, 9019–9026 (2013).

    Article  Google Scholar 

  165. Ding, S. H. et al. Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes. Appl. Phys. Lett. 117, 5 (2020).

    Article  Google Scholar 

  166. Han, Y. J., Kang, K.-T. & Cho, K. H. Residual-solvent-induced morphological transformation by intense pulsed light on spin-coated and inkjet-printed ZnO NP films for quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 13, 50111–50120 (2021).

    Article  Google Scholar 

  167. Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008).

    Article  Google Scholar 

  168. Li, H. et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv. Mater. Technol. 5, 2000401 (2020).

    Article  Google Scholar 

  169. Park, Y., Park, Y., Lee, J. & Lee, C. Simulation for forming uniform inkjet-printed quantum dot layer. J. Appl. Phys. 125, 065304 (2019).

    Article  Google Scholar 

  170. Nadupalli, S., Repp, S., Weber, S. & Erdem, E. About defect phenomena in ZnO nanocrystals. Nanoscale 13, 9160–9171 (2021).

    Article  Google Scholar 

  171. Zanjani, S. M. et al. Tailored ZnO functional nanomaterials for solution-processed quantum-dot light-emitting diodes. Adv. Photon. Res. 3, 26 (2022).

    Google Scholar 

  172. Yunker, P. J. et al. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions. Phys. Rev. Lett. 110, 035501 (2013).

    Article  Google Scholar 

  173. Rizzo, A., Mazzeo, M., Biasiucci, M., Cingolani, R. & Gigli, G. White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer. Small 4, 2143–2147 (2008).

    Article  Google Scholar 

  174. Lee, S., Yoon, D., Choi, D. & Kim, T.-H. Mechanical characterizations of high-quality quantum dot arrays via transfer printing. Nanotechnology 24, 025702 (2012).

    Article  Google Scholar 

  175. Kim, B. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano 10, 4920–4925 (2016).

    Article  Google Scholar 

  176. Zhan, S. et al. Inkjet-printed multi-color arrays based on eco-friendly quantum dot light emitting diodes with tailored hole transport layer. J. Soc. Inf. Disp. 30, 748–757 (2022).

    Article  Google Scholar 

  177. Keller, K., Yakovlev, A. V., Grachova, E. V. & Vinogradov, A. V. Inkjet printing of multicolor daylight visible opal holography. Adv. Funct. Mater. 28, 1706903 (2018).

    Article  Google Scholar 

  178. Jiang, C. B. et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).

    Article  Google Scholar 

  179. Zaiats, G., Ikeda, S. & Kamat, P. V. Optimization of the electron transport layer in quantum dot light-emitting devices. NPG Asia Mater. 12, 6 (2020).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grants U22A2072, 62204078), Chinese Academy of Sciences (grants XDC07000000, GJJSTD20200001, QYZDY-SSW-SLH004) and Anhui Initiative in Quantum Information Technologies (grant AHY050000). They thank S. Wang at Macau University, K. Wang at Southern University of Science and Technology, and X. Lin at Zhejiang University for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and F.C. contributed equally. B.L., F.C., H.X, Y.S., X.Y., Q.X., H.S. and F.F. researched data for the article. B.L., F.F. and H.S. wrote the article and all the authors substantially contributed to the scientific discussion. B.L., F.C., H.X., Y.S., X.Y., H.S. and F.F. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Huaibin Shen or Fengjia Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, F., Xu, H. et al. Advances in understanding quantum dot light-emitting diodes. Nat Rev Electr Eng 1, 412–425 (2024). https://doi.org/10.1038/s44287-024-00059-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00059-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing