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Abstract

The rapid growth of artificial intelligence and the increasing complexity 
of neural network models are driving demand for efficient hardware 
architectures that can address power-constrained and resource-
constrained deployments. In this context, the emergence of in-memory 
computing (IMC) stands out as a promising technology. For this 
purpose, several IMC devices, circuits and architectures have been 
developed. However, the intricate nature of designing, implementing 
and deploying such architectures necessitates a well-orchestrated 
toolchain for hardware–software co-design. This toolchain must 
allow IMC-aware optimizations across the entire stack, encompassing 
devices, circuits, chips, compilers, software and neural network design. 
The complexity and sheer size of the design space involved renders 
manual optimizations impractical. To mitigate these challenges, 
hardware-aware neural architecture search (HW-NAS) has emerged as 
a promising approach to accelerate the design of streamlined neural 
networks tailored for efficient deployment on IMC hardware. This 
Review illustrates the application of HW-NAS to the specific features 
of IMC hardware and compares existing optimization frameworks. 
Ongoing research and unresolved issues are discussed. A roadmap 
for the evolution of HW-NAS for IMC architectures is proposed.
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a neural network while considering the characteristics and constraints 
of the hardware on which this neural network is deployed. Depending on 
the goal and problem setting, HW-NAS can also be used to optimize the 
hardware parameters themselves, such as the design features contrib-
uting to hardware efficiency. The parameter space for state-of-the-art 
neural network models can easily reach the order of 1035 (ref. 8), making 
it impossible to search for the optimal parameters manually. Traditional 
NAS frameworks are efficient at automating the search for optimum 
network parameters (for example network layers, blocks and kernel 
sizes)9. However, they do not consider hardware constraints, nor can 
they optimize the parameters of the hardware itself. HW-NAS extends 
conventional NAS by seamlessly integrating hardware parameters and 
characteristics, streamlining the efforts of hardware designers and soft-
ware programmers alike10. HW-NAS can automate the optimization of 
neural network models given hardware constraints such as energy, 
latency, silicon area and memory size. Moreover, certain HW-NAS frame-
works have the capability to optimize the parameters of the hardware 
architecture that is best suited for deploying a given neural network. 
HW-NAS can also help to identify trade-offs between performance and 
other hardware parameters11. Moreover, conventional NAS frameworks 
often incorporate operations that are not suited to IMC hardware and 
disregard inherent IMC hardware non-idealities such as noise or tem-
poral drift within the search framework12. The absence of established 
IMC NAS benchmarks compounds these challenges. To close these gaps, 
since the beginning of the 2020s, several HW-NAS frameworks for IMC 
architectures have been proposed13–17, some of which support a joint 
search of neural network parameters and IMC hardware parameters. 
These IMC hardware parameters include crossbar size, the resolu-
tion of the analog-to-digital converter or digital-to-analog converter  
(ADC/DAC), buffer size and device precision.

Existing NAS surveys focus on the software and algorithmic per-
spectives, discussing search approaches, optimization strategies and 
search-space configurations18–20. Reviews related to HW-NAS discuss a 
taxonomy of HW-NAS methods, search strategies, optimization tech-
niques, hardware parameters relating to different types of hardware, 
such as central processing units (CPUs), GPUs, field-programmable 
gate arrays (FPGAs) and traditional application-specific integrated 
circuits (ASICs)9–11,20,21. However, an in-depth review of HW-NAS spe-
cifically for IMC, with consideration for its unique properties and the 
available hardware frameworks is not available.

In this Review, we discuss HW-NAS methods and frameworks focus-
ing on IMC architecture search space. We compare existing frameworks 
and identify research challenges and open problems in this area. A road-
map for HW-NAS for IMC is outlined. Moreover, we provide recommen-
dations and best practices for effective implementation of HW-NAS 
frameworks for IMC architectures. Finally, we show where HW-NAS 
stands in the context of IMC hardware–software co-design, highlight-
ing the importance of incorporating IMC design  optimizations into 
HW-NAS frameworks.

In-memory computing background
In traditional von Neumann architectures (Supplementary Fig. 1a), 
the energy cost of moving data between the memory and the comput-
ing units is high. Processor parallelism can alleviate this problem to 
some extent by performing more operations per memory transfer, 
but the cost of data movement remains an issue4. Moreover, von Neu-
mann architectures suffer from the memory wall problem — that is, 
the speed of processing has improved at a much faster rate than that 
of traditional memories (such as dynamic random access memory 

Key points

 • Hardware-aware neural architecture search (HW-NAS) is an efficient 
tool in hardware–software co-design, and it can be combined with 
other architecture-level and system-level optimization techniques 
to design efficient in-memory computing (IMC) hardware for deep 
learning accelerators.

 • HW-NAS for IMC can be used for optimizing deep learning models 
for a specific IMC hardware, and co-optimizing a model and hardware 
design searching for the most efficient implementation.

 • In HW-NAS, it is important to define a search space, select an 
appropriate problem formulation technique, and consider the trade-
off between performance, search speed, computation demands and 
scalability when selecting a search strategy and a hardware evaluation 
technique.

 • In addition to neural network model hyperparameters and 
quantization and pruning policies, HW-NAS for IMC can include the 
circuit-level and architecture-level hardware parameters in the search.

 • The main challenges in HW-NAS for IMC include a lack of unified 
framework to support different types of neural network models 
and different IMC hardware architectures, HW-NAS benchmarks and 
efficient software–hardware co-design techniques and tools.

 • Fully automated NAS methods capable of constructing new deep 
learning operations and algorithms suitable for IMC with minimal 
human design are needed.

Introduction
The proliferation of the Internet of things is fuelling an unprecedented 
surge in data generation and advanced processing capabilities to cater 
to the intricate demands of applications leading to rapidly developing 
artificial intelligence (AI) systems. The design and implementation of 
efficient hardware solutions for AI applications are critical, as modern 
AI models are trained using machine learning (ML) and deep learning 
algorithms processed by graphic processing unit (GPU) accelerators 
on the cloud1. However, high energy consumption, latency and data 
privacy issues associated with cloud-based processing have increased 
the demand for developing efficient hardware for deep learning accel-
erators, especially for on-edge processing2. One of the most promising 
hardware architectures executing deep learning algorithms and neu-
ral networks at the edge is in-memory computing (IMC)3. This entails 
carrying out data processing directly within or in close proximity 
to the memory. The cost related to data movement is thus reduced, 
and notable enhancements in both latency and energy efficiency for 
 computation and data transfer operations are obtained4–6.

Efficient and functional IMC systems require the optimization of 
the design parameters across devices, circuits, architectures and algo-
rithms. Effective hardware–software co-design toolchains are needed 
to connect the software implementation of neural networks with IMC 
hardware design7. Hardware–software co-design requires optimizations 
at each level of the process, which involves hundreds of parameters and 
is difficult to perform manually. Hardware-aware neural architecture 
search (HW-NAS) is a hardware–software co-design method to optimize 
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(DRAM)), resulting in overall application performance being limited 
by memory bandwidth4,22. Power efficiency has also ceased scaling with 
technology node advances, resulting in stalled gains in performance 
computational density23.

In in-memory computing (IMC), one approach proposed to over-
come the von Neumann bottleneck, data processing is performed 
within memory, by incorporating processing elements (Supplementary 
Fig. 1b). This alleviates the cost of data movement and improves the 
latency and energy required for both computation and data trans-
fer4,24–26. Tiled architectures for IMC27 are based on a crossbar array of 
memory devices which can perform multiply–accumulate (MAC) or 
matrix–vector multiplication (MVM) operations efficiently. Because 
MVMs constitute the vast majority of their associated operations, 
the tiled architecture is ideal for hardware realization of deep neural 
networks28. To implement an efficient IMC system, device-level4,29–32, 
circuit-level33–35 and architecture-level36 design aspects should be 
considered37.

In-memory computing devices and technologies
IMC can be built using charge-based memories, such as static random 
access memory (SRAM) and flash memory, or using resistance-based 
memories, such as resistive random access memory (RRAM), phase-
change memory (PCM), magnetoresistive random access memory 
(MRAM), ferroelectric random access memory (FeRAM) and ferroelec-
tric field-effect transistors (FeFETs)4 (Supplementary Fig. 1c). SRAM is 
a well-developed volatile memory used for IMC applications, whereas 
the other IMC devices mentioned are non-volatile. Overall, non-volatile 
memories are less mature than traditional SRAM-based memories 
but have promising potential for IMC-based neural network hardware 
due to high storage density, scalability and non-volatility properties. 
The configuration and operating principle of volatile and non-volatile 
memories are described in Supplementary Note 1.

The important criteria used to select devices for IMC architectures 
are access speed for read and write operations, write energy, endur-
ance, scalability, cell area, and cost (Supplementary Fig. 1d). To imple-
ment state-of-the-art neural networks, both read and write operation 
speeds of IMC devices are important for both training and inference, 
especially considering dynamic operations in some models, such as 
transformer-based neural networks38. SRAM has the lowest write latency 
(<1 ns) and highest endurance (>1016 cycles), compared with non-volatile 
IMC memory devices (Supplementary Fig. 1d). SRAM and some non-
volatile memories, such as MRAM, FeRAM and FeFET, have low write 
energy (<0.1 nJ for SRAM and <1 nJ for non-volatile memories), which can 
contribute to faster neural network training and dynamic operations. 
Non-volatile memories, such as RRAM, PCM and Flash memories, have 
the smallest cell area (approximately 10–16F2, where F is the minimum 
lithography feature size) and higher scalability and storage density 
due to the possibility of multilevel storage. In most IMC architectures, 
memories are organized in a 2D array, but 3D integration and 3D stacking 
can offer higher storage density. Overall, the most common and scalable 
memory devices for IMC architectures are SRAMs, RRAMs and PCMs39. 
Flash-array-based IMC accelerators also show promising results for 
neural networks and ML applications40. Other possible IMC devices 
include spin-torque MRAM, electrochemical RAM and memtransistors29. 
However, they are less common and are at an early stage of development.

Conventional IMC architectures for neural networks
A typical IMC architecture has several layers of hierarchy33,41–44 
(Supplementary Fig. 1e). The highest layer is constituted by tiles 

typically connected through a network-on-chip that includes the rout-
ers to transmit the signal between the tiles. The weight matrix of a neural 
network can be stored inside a single tile or shared between several 
tiles. This layer also includes peripheral and interface circuits, such as 
the global accumulation unit, pooling unit and input–output interface 
circuits. A tile consists of several computing elements42, also called MAC 
units or MVM units41,43, and peripheral circuits, including accumulation 
and activation units. Each computing element contains several crossbar 
arrays (processing elements) and processing circuits, including multi-
plexers shared by several crossbar columns, shift-and-add circuits, 
ADC converters, local registers and control circuits. A crossbar array 
contains memory cells with one or more devices depending on IMC 
memory type used in the design.

Some device technologies, such as RRAM and PCM, use a device 
in series with a switching element to mitigate sneak path currents 
from cell to cell (which would result in false cell programming or 
reading) and limit the current in the low-resistance state (to avoid 
damage and improve variability and endurance). This device can be 
a two-terminal threshold-switching selector located above or below 
the resistance-based memory (namely 1S1R); or a complementary 
metal–oxide–semiconductor transistor (1T1R). This choice typically 
increases the size of each cell (the resistance-based memory is inte-
grated on the via that comes from the drain and source contacts of 
the transistor)30. State-of-the-art IMC architectures include ISAAC41, 
PUMA/PANTHER43,45, TIMELY46, RIMAC47, PIMCA48, HERMES39 and 
SAMBA49. ISAAC41 is a pipelined IMC accelerator with embedded DRAM 
buffer banks to store intermediate outputs of the pipeline stages. 
PUMA45 is a programmable eight-core accelerator with a special-
ized instruction set architecture and compiler supporting complex 
workloads. PANTHER43 is an extension of PUMA architecture support-
ing efficient training for RRAM-based IMC architectures. TIMELY46 
adopts analog local buffers inside the crossbar arrays to improve 
data locality, and time-domain interfaces to improve energy effi-
ciency. RIMAC47 is an ADC/DAC-free IMC accelerator with analog cache 
and computation modules. PIMCA48 is a capacitive-coupling-based 
SRAM IMC accelerator with a flexible single-instruction, multiple-
data processor for non-MVM operations. SAMBA49 is a sparsity-aware 
RRAM-based IMC accelerator with load balancing and optimized  
scheduling.

An alternative to hierarchical architectures is one that combines 
spatially distributed analog IMC tiles and heterogeneous digital com-
puting cores50. Such an architecture, based on 2D-mesh interconnect51, 
is highly programmable and supports a wide range of workloads (map-
ping and pipelining). TAICHI51 is another example of a tiled RRAM-based 
accelerator with mesh interconnect, local arithmetic units and global 
co-processor targeting reconfigurability and efficiency.

Since the beginning of the 2020s, several fabricated IMC macros 
have been demonstrated: a reconfigurable 48-core RRAM-based IMC 
chip (NeuRRAM) suitable for various applications, such as image clas-
sification, speech recognition and image reconstruction52; eight-core 
RRAM-based IMC macros53,54; a PCM-based fabricated eight-core chip55; 
a flash-memory-based pipelined 76-core chip with analog computing 
engine tiles40; a SRAM-based mixed-signal 16-core IMC accelerator with 
configurable on-chip network, flexible dataflow and scalable cores56; 
and a MRAM-based IMC core with readout circuits57. In 2023, a mixed-
signal IMC chip called the IBM HERMES Project Chip, comprising 64 
cores of PCM-based crossbar arrays with integrated data converters, 
on-chip digital processing and a digital communication fabric, was 
presented39.



Nature Reviews Electrical Engineering

Review article

Weight mapping, computing precision and non-idealities
Several software and hardware parameters need to be considered to 
map a software-based neural network model to IMC hardware. For 
example, when mapping neural network weight matrices and inputs 
or activations to IMC crossbars, important parameters are the matrix 
size, the crossbar size, the precision of weights and inputs, the precision 
of IMC devices, the resolution of the converters (ADCs and DACs) and 
the peripheral circuits. In this case, the concept of partial sums should 
be considered. Partial sums in IMC architectures are applied in three 
different cases (Supplementary Fig. 1f): (1) when a large weight matrix 
does not fit into a single crossbar array; (2) when high-precision weights 
are mapped to low-precision crossbar cells; and (3) when high-precision 
inputs are streamed to the crossbar sequentially58 (discussed in detail in 
Supplementary Note 2). Partial sums require specific ADC resolution to 
maintain the desirable computing precision (Supplementary Note 2), 
which contributes to on-chip area and energy consumption overhead 
of peripheral circuits43.

In IMC architectures with non-volatile memory devices, comput-
ing precision is also affected by non-idealities, including device-to-
device variability, circuit nonlinearity, and conductance variation 
with time38,59. Such degradation of computing precision can be pre-
dicted and mitigated using hardware-aware training methods lead-
ing to robust IMC hardware designs38,60. The accuracy degradation 
caused by non-idealities of the devices can also be improved by 
periodically calibrating batch normalization parameters during 
the inference59. Overall, it is necessary to conduct a comprehensive 
analysis of noise effects when designing IMC hardware and include 
mitigation and  compensation techniques for non-idealities as part of  
the design.

Model compression for IMC architectures
Model compression techniques used for neural network optimization, 
such as quantization and pruning61, can be applied in implementations 
on IMC architectures to reduce hardware costs. It is too expensive 
to deploy full-precision neural network weights to IMC devices62, so 
quantization is often used, reducing occupied memory, data trans-
mission and computation latency63. Network pruning, which removes 
unnecessary neural network weights or groups of weights, can reduce 
energy and latency64.

Quantization for IMC architectures. Quantization methods are 
divided into uniform quantization and non-uniform quantization65. 
In uniform quantization, the quantization intervals are equally dis-
tributed across the quantized range58. An example of non-uniform 
quantization is logarithmic quantization, that is the power-of-two 
method66 commonly used for SRAM-based IMC hardware or RRAM-
based binarized IMC architectures. More complex quantized weight 
representations use bit-level sparsity to increase the number of zeros 
in the bit representation of weights and activations to improve energy 
efficiency in MAC operation during quantization67,68. Most quanti-
zation-related RRAM-based architectures focus on fixed-precision 
quantization with a uniform quantizer62.

An alternative approach is based on mixed precision quantization, 
where different quantization configurations are chosen for different 
layers63,69. This method is effective because different neural network 
layers and convolution filters have different sensitivity to quantiza-
tion62 and contribute differently to overall accuracy69. Flexible word 
length quantization improves compression and reduces accuracy loss 
compared with uniform quantization70.

In IMC architectures, quantization is performed by either chang-
ing the number of crossbar cells per weight or the number of bits per 
crossbar cell. Analog weight storage (≥2 bits per cell) allows for higher 
effective cell density (bits mm−2), leading to higher storage density39. 
However, increasing the number of bits per cell increases the effect 
of RRAM non-idealities and variabilities. ADC precision, and hence 
overhead, also increases with the precision of crossbar weights63.

Pruning in IMC architectures. Pruning is divided into unstructured 
and structured pruning. In unstructured pruning, the individual 
connections (weights) are removed at a fine granularity. Structured 
pruning implies coarse-grained pruning of groups of weights (kernel 
or channel pruning)64,71. In IMC hardware, weight pruning (usually 
unstructured pruning of individual weights) disconnects unnecessary 
crossbar cells, leading to sparse neural network hardware implementa-
tion. Structured pruning is implemented by removing or disconnect-
ing whole rows or columns of the crossbar array and corresponding 
peripheral circuits.

Sparsity due to unstructured pruning in IMC architectures can 
improve energy efficiency and throughput, but it can also lead to 
unnecessary computation overhead, difficulty in parallelizing process-
ing, and low hardware utilization. Nevertheless, mapping structured 
row-wise or column-wise pruning to IMC architecture leads to higher 
crossbar utilization than unstructured pruning64. One of the ways to 
reach a desired compression ratio via structured pruning is to incorpo-
rate several rounds of weight grouping, determining the importance of 
these groups, followed by fine-grained row-wise pruning64.

Most work on RRAM-based neural network pruning uses heuristics 
or rules to prune network weights. This can sometimes prune non-
trivial weights and preserve trivial weights, leading to sub-optimal 
solutions. Also, hardware constraints and hardware feedback are not 
always considered in RRAM-based network pruning72.

Hardware-aware neural architecture search
In the hardware-aware neural architecture search (HW-NAS) process, 
the inputs are neural network parameters, model compression param-
eters and hardware parameters (Fig. 1a). In some cases, the search space 
includes hardware search space and model compression options to 
be optimized. Optimal neural network designs and optimal hardware 
parameters are searched for within this space using a search strat-
egy (algorithm or heuristic). The main difference between HW-NAS 
and traditional NAS is the consideration of hardware limitations and 
constraints in the search. Problem formulation methods are used to 
define an objective function for the search and a method to incorporate 
optimization constraints. Some frameworks search only for optimum 
neural network designs considering hardware constraints, whereas 
others can incorporate the search of optimal hardware parameters 
to find the most efficient hardware design. Performance is evaluated 
using performance metrics and hardware metrics. In this Review, per-
formance metrics refer to a neural network performance characteristic 
such as accuracy or performance error, while hardware metrics refer 
to the metrics describing hardware efficiency, such as energy, latency 
and on-chip area. To evaluate hardware performance, various hardware 
cost estimation methods can be used.

HW-NAS basics
HW-NAS for IMC incorporates four efficient deep learning methods for 
design space exploration (Fig. 1b), which allow the optimal design of 
neural network model and hardware to be found: model compression, 
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neural network model search, hyperparameter search and hardware 
optimization. Model compression techniques, such as quantization and 
pruning, can be viewed as HW-NAS problems and are often included 
in HW-NAS flows9. Neural network model search implies searching 
for neural network layers and corresponding operations, as well as 
the connections between them73,74. Hyperparameter search includes 
searching for the optimized parameters for a fixed network — that is, 
the number of filters in a convolution layer or the kernel size9. Hard-
ware optimization is the optimization of hardware components such 
as tiling parameters, buffer sizes and other parameters included in the 

hardware search space. For IMC architectures, hardware optimization 
may include crossbar-related parameters (such as ADC/DAC preci-
sion and crossbar size) that can have an effect on the performance of 
the architecture, in terms of energy consumption, processing speed,  
on-chip area and performance accuracy15,75.

The search space in HW-NAS refers to the set of network opera-
tions and hyperparameters searched to optimize the network and 
hardware architecture. The search space can be fixed or hardware-
aware11. In a fixed search space, neural network operations are designed 
manually without considering the hardware. In hardware-aware search, 

a   HW-NAS

b   Design space exploration in HW-NAS for IMC
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Fig. 1 | Fundamentals of hardware-aware neural architecture search. a, Overview of hardware-aware neural architecture search (HW-NAS). b, Efficient deep 
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the interlayer and intralayer operations in the network are adapted 
 depending on the hardware.

From the perspective of the search parameters, the search space 
can be divided into the neural network search space and hardware 
architecture search space9. The first covers the selection of neural 
network operations, blocks, layers and the connections between them. 
The second considers the hardware design, for example IP core reuse 
on FPGA, quantization schemes, tiling, or selection of buffer sizes. 
The hardware architecture search space depends either on hardware 
platform configurations or on predefined templates for different 
operations to optimize certain hardware parameters9. For IMC archi-
tectures, the search space should be extended to include specific 
hardware-related details, such as crossbar size and precision of the 
converters (discussed later).

Depending on the HW-NAS objectives, frameworks can optimize a 
specific neural network or set of network models for a specific or multi-
ple hardware architectures11. Depending on the target hardware, hard-
ware constraints can vary. Hardware constraints can be categorized 
into implicit constraints and explicit constraints. Implicit constraints 
are those that do not describe desired hardware metrics directly but 
affect them implicitly, such as bits per operation. Explicit constraints 
are the evaluated metrics related to hardware deployment, including 
energy consumption, latency, on-chip area, memory and available 
hardware blocks. Typical constraints for IMC architectures include 
energy consumption, latency and the number of available resources 
(for example crossbar tiles on a chip).

Problem formulation in HW-NAS
A problem formulation in HW-NAS defines the objective function, 
optimization constraints and how the problem is formulated. The prob-
lem formulation method is selected according to the target output 
and available information about hardware resources. For example, 
the HW-NAS target can be either a single architecture with optimized 
performance and hardware parameters or a set of architectures opti-
mizing hardware parameters with a certain priority. HW-NAS problem 
formulation is divided into single-objective optimization and multi-
objective optimization methods (Fig. 2). The selection of a HW-NAS 
problem formulation method depends on the objectives of the search. 
Two-stage methods are suitable for deploying well-performing models 
to a specific hardware or getting a sub-model from an existing model 
followed by a specific hardware deployment. Constrained optimization 
is useful for the case of specified hardware constraints or designing 
a neural network model for a specific hardware platform. Scalariza-
tion methods could be used when setting up the priority of a certain 
objective function and the Pareto-based optimization for finding the 
trade-off between the performance metrics and hardware metrics.

Single-objective optimization. These methods are categorized into 
two-stage methods and constrained optimization9. In two-stage opti-
mization, HW-NAS first selects a set of well-performing high-accuracy 
network models and then performs hardware optimization and selects 
the most hardware-efficient design. It is useful to transform well-
performing neural networks for implementation on different hardware 
platforms, or to optimize networks for a specific hardware platform. 
Hardware constraints are included in the second stage of HW-NAS. The  
drawback of such methods is that the selected network models in 
the first stage tend to be large to maximize accuracy and may not always 
fit the hardware constraints of a specific platform. In constrained 
optimization, hardware parameters are considered when searching 

for a neural network model. This allows filtering out of network models 
that do not fit within hardware constraints during the search process, 
thus speeding up HW-NAS. The challenge of constrained optimization 
is the difficulty of including hardware constraints directly in the search 
algorithms, especially in gradient-based methods or reinforcement 
learning. Therefore, the problem is often transformed into an uncon-
strained optimization that includes the hardware constraints in the 
objective function9,76.

Multi-objective optimization. These methods are categorized into 
scalarization methods and Pareto optimization typically using the 
NSGA-II algorithm9. The first approach is a multi-objective optimization 
method when several objective functions are combined via weighted 
summation, weighted exponential sum or weighted product to set 
up the significance of the objective term. This approach is useful to 
set the priority for certain objective terms while not ignoring others, 
and modifying this weighting based on requirements. During a search, 
the weights are usually fixed, and multiple runs are required to find the 
Pareto optimal set or to get a ‘truly’ optimum network model. There-
fore, speed is slow and depends on the number of search iterations with 
different weights. In the second method, a set of Pareto optimal neural 
network models is searched. The search can be implemented with the 
evolutionary algorithm NSGA-II9, where the problem is formulated as 
a linear combination of different objective functions. This method is 
useful to find trade-offs between performance, accuracy and hardware 
metrics, especially when searching for the optimal network model for 
different hardware platforms. Search speed is slow compared with the 
previous methods, as the whole set of network models on the Pareto 
curve is searched.

Search strategies: algorithms for HW-NAS
After defining a problem formulation method, a search strategy should 
be selected (Fig. 3). The search algorithm is a core component of NAS 
and defines the flow of parameter search. There are three main optimi-
zation algorithms used for HW-NAS: reinforcement learning, evolution-
ary algorithms, and gradient-based methods, such as differentiable 
search. Less common algorithms include random search and Bayesian 
optimization. The search algorithm is independent of the problem 
formulation methods shown in Fig. 2. For example, two different search 
algorithms can be used in a two-stage problem formulation method 
in different optimization stages, in a hybrid approach9. Constrained 
optimization and scalarization method-based problem formulation can 
be combined with most search strategies, for example reinforcement 
learning, evolutionary algorithms and Bayesian optimization. Differ-
entiable search is easier to apply for differentiable parameters search, 
for example, in the first stage of two-state methods when optimizing 
the neural network model parameters, while using any other algorithm 
(reinforcement learning or evolutionary algorithm) to optimize the 
hardware or fine-tuning the model to fit hardware constraints8. Pareto 
optimization problems are mainly addressed in the literature by evolu-
tionary algorithm approaches, such as NSGA-II77; however, the Pareto 
optimal set can also be found using other methods78.

In reinforcement-learning-based NAS search, an agent interacts 
with the environment and learns the best policy to take an action using 
a trial-and-error approach. The environment is modelled with a Markov 
decision process63. The algorithm aims to maximize the reward func-
tion. The main drawback of reinforcement learning is slow search speed 
and high computational cost. Reinforcement learning can be applied 
to RRAM-based architecture63 or used to find the best-performing 
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network models (considering the optimization of hardware resource 
utilization in an RRAM-based architecture)69. Reinforcement-learning-
based automated weight pruning can also be applied for RRAM-based 
crossbars72,79.

One of the best-known evolutionary algorithms is the genetic 
algorithm, which is used in several HW-NAS frameworks9. The first 

step of an evolutionary algorithm is the initialization of a population of 
networks with a random combination of parameters to start the search. 
The performance of the networks is then evaluated and scored based 
on an objective function (also called the fitness function). The best-
performing networks are used in a mutation and crossover process, 
where the parameters of these networks are mixed and some of the 
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parameters are randomly changed to new ones to create a new popula-
tion. The process is repeated starting from evaluation for several itera-
tions, called generations, until convergence to a set of well-performing 
network models70,80.

Gradient-based and differentiable search methods use the one-
shot NAS approach and weight sharing in a super-network (an over-
parametrized network)81. This approach combines all possible neural 

network models with different parameters in a single super-network 
using a weight-sharing technique. Compared with reinforcement learn-
ing and evolutionary algorithm methods, where the evaluated networks 
are randomly sampled at the beginning of a search from the existing 
parameters, the weights in a super-network in gradient-based methods 
are trained at the same time as the search is performed. After train-
ing, the super-network is pruned to eliminate inefficient connections 
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are often used as a second step in a two-state optimization, where the first step is 
a scalable gradient-based method with a super-network search space. Gradient-
based methods are scalable, as the search time does not increase exponentially 
with search space size. Computational demand and memory requirements refer 
to the resources required to run the algorithm. The scalability of each algorithm 
in terms of memory consumption depends on the specific algorithm and may 
vary within the same subset of methods.
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and blocks, creating a single optimum network. Differentiable search 
is the only scalable approach with a differentiable search space, where  
the search space does not grow exponentially with the increased num-
ber of searched hyperparameters. This approach is faster than other 
methods, as it does not require the training of every single neural net-
work model and therefore has low computational demand. However, 
differentiable search has high memory requirements for storing an 
over-parameterized network. An example of differentiable NAS applied 
to RRAM-based architecture is CMQ62. The super-network search can 
be performed by evolutionary algorithm or Bayesian optimization 
methods, which are also suitable for a discrete search space8.

Bayesian optimization82 excels in managing complex search spaces 
by constructing and iteratively refining a probabilistic model of the 
objective function. It balances exploration of new architectures and 
exploitation of known effective configurations. This makes Bayesian 
optimization a strong contender for optimizing hyperparameters 
within a set macro-architecture of a neural network. However, it is 
important to note that the search speed of Bayesian optimization 
is relatively slow, comparable to that of reinforcement learning meth-
ods. Complementing Bayesian optimization, other strategies, such as 
random search83, the multi-armed bandit approach84 and simulated 
annealing85, also contribute to the field. Random search, with its sim-
plicity and unpredictability, offers a baseline performance metric 
and can be effective in certain high-dimensional search spaces. The 
multi-armed bandit approach, adept at efficiently navigating decisions 
under uncertainty, and simulated annealing, inspired by metallurgical 
cooling processes, both provide unique mechanisms for exploring the 
search space. These methods are valuable for their distinctive ways of 
handling search space complexities and often find use in scenarios 
where more advanced techniques may not be as suitable or necessary.

Overall, reinforcement learning16 and evolutionary algorithms12 
can produce good results, but they are slow and not scalable. The 
search space and search time required for reinforcement learning and 
evolutionary algorithms increase exponentially with the number of 
searched hyperparameters. This problem is addressed by differentiable 
search14, which is scalable and faster than reinforcement learning and 
evolutionary algorithms. Therefore, differentiable search is useful for 
a large search space with many parameters. However, it is important 
to consider the gradient estimation techniques for non-differentiable 
parameters. Bayesian optimization is also a promising search strat-
egy. Nevertheless, the application of Bayesian optimization for IMC 
 hardware has not been explored yet.

Hardware cost estimation methods
A major factor in HW-NAS is the estimation methods for hardware 
performance. There are four different methods for evaluation of a 
hardware cost (Fig. 4): real-time estimation, lookup table (LUT)-based 
methods, analytical estimation, and prediction models.

In real-time measurement-based methods, the hardware evalu-
ation is performed directly on target hardware in real time. In FPGA-
based or microcontroller-based designs, this implies the deployment 
of the network model to real or simulated hardware9. For IMC architec-
tures, this can be performed directly on IMC chip or using circuit-level 
simulations such as SPICE, which is difficult to automate. This method 
ensures highly accurate performance estimation, and it is also scalable 
for different models and across different hardware platforms; however, 
it is slow, inefficient and impractical.

LUT-based methods involve the separate evaluation of hardware 
metrics for every hardware parameter and its storage in a large LUT8,86. 

During hardware evaluation in HW-NAS, LUTs are used to calculate the  
total hardware metrics, which are the total energy, the latency or 
the on-chip area, using the stored results. LUT-based methods are less 
accurate than real-time measurements and prediction methods, espe-
cially when the communication between crossbar tiles or other hardware 
blocks in IMC architecture is not considered. LUT-based methods are 
less scalable than other methods, as with the increased search space, the  
number of required measurements grows combinatorically with  
the number of parameters. In addition, LUT-based methods are mod-
erately scalable across different neural network models and require 
regeneration when transferred to other hardware platforms.

Analytical estimation methods imply computing rough esti-
mates of hardware metrics using mathematical equations (such as 
DNN+NeuroSim87, MNSIM88,89, AIHWKit90 and PUMAsim45 for IMC-based 
hardware). Such a method is fast and highly scalable when the search 
space is increased. The scalability of this method across different 
neural network models depends on how similar a new model is to the 
already estimated one. The transferability across hardware platforms 
also depends on the similarity of the hardware architectures. However, 
it still is not as accurate as real-time measurements. It also requires 
the initial estimation of hardware metrics from real-time hardware or 
circuit-level simulations.

Prediction-based methods are based on ML and are trained to 
use a linear regression or neural-network-based approach to predict 
hardware metrics91–93. These methods require an initial set of hardware 
parameters and hardware metrics stored in LUTs to train ML models and 
are fast and highly scalable when adding new hyperparameters to the 
search space. The scalability across neural network models depends 
on the similarity of the models. Prediction-based methods support 
differentiable NAS methods and are more accurate than analytical 
estimation and LUT-based methods.

Other HW-NAS considerations
Each search strategy and algorithm contains a sampling part, where 
the neural network models are sampled. In evolutionary algorithm and 
reinforcement learning-based optimization frameworks, the network 
models are sampled before the search. In contrast, in differentiable 
NAS, the best-performing models are sampled after training a supernet. 
The most common sampling method is uniform and random-uniform 
sampling, which is simple and effective94. Other methods include Monte 
Carlo sampling, which guarantees good performance and diversity 
owing to the randomness of the sampling process, and the Stein vari-
ational gradient descent algorithm with regularized diversity, which 
provides a controllable trade-off between the single-model perfor-
mance and the predictive diversity95. More advanced sampling methods 
include attentive sampling aiming to produce a better Pareto front, 
such as AttentiveNAS framework96, and dynamic adaptive sampling97, 
where the sampling probability is adjusted according to the hardware 
constraints.

As search parameters of a neural network models can be non-
differentiable, one of the main issues in differentiable NAS is the 
relaxation of non-differentiable parameters when applying differen-
tiable search methods. As these methods require gradient calculation, 
the search space should be differentiable. When it comes to HW-NAS 
and searching for the hardware parameters, this becomes an even 
more critical issue, as most of the hardware parameters and hardware 
metrics are non-differentiable98. These relaxation methods allow gradi-
ent computation over discrete variables. The most common methods 
include estimated continuous function, the REINFORCE algorithm, and 
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application of the Gumbel Softmax function using random Gumbel 
noise in a computation9.

The main challenge in HW-NAS is search speed and runtime perfor-
mance. To improve the search speed of HW-NAS, several techniques, 
including early stopping, hot start, proxy datasets and accurate predic-
tion models, are used9. In early stopping, the change in a loss function 
is monitored for the first few training iterations instead of training 
the neural network modes completely. In the hot start technique, the 
search starts from the well-performing efficient network models rather 
than random ones. In the application of the proxy dataset, small simple 
datasets are used in the search first, and then the search results are fine-
tuned for more complex datasets. To speed up the search, accuracy 
prediction methods can also be used for accuracy estimation instead 
of training every sampled network9.

HW-NAS for IMC architectures
State-of-the-art HW-NAS frameworks for IMC
Manually searching for both the optimum design and processing 
of in-memory architecture is unrealistic, as a search space becomes 
huge when adding the architecture parameters16 (Supplementary 
Fig. 2a). Besides neural network blocks, hyperparameter search and 
optimized compression techniques, the search space for IMC archi-
tectures can be expanded to search for IMC crossbar-related hardware 

components15–17,63. The IMC hardware search space considered in these 
frameworks includes IMC crossbar size, ADC/DAC precision, device 
precision and buffer size.

Between 2020 and 2023, several HW-NAS frameworks for IMC-
based neural network architectures have been introduced (Supplemen-
tary Fig. 2b–d and Table 1). Based on which parameters are searched 
(Supplementary Fig. 2b), the HW-NAS methods for IMC architectures 
can be divided into three main categories: (1) frameworks contain-
ing the ‘true’ NAS searching for the neural network components and 
hyperparameters12–17,80,99–101; (2) frameworks in which quantization is 
presented as an HW-NAS problem, and optimum bit-width is searched 
considering the hardware feedback62,69,70; and (3) frameworks search-
ing for optimum pruning, formulating the problem as HW-NAS72,79. 
Compared with ‘true’ NAS approaches, frameworks focused on only 
quantization or pruning search for optimized model compression 
techniques while using HW-NAS problem formulation techniques.

Based on the consideration of hardware parameters in a search 
(Supplementary Fig. 2c), HW-NAS frameworks for IMC can be divided 
into three categories: (1) frameworks for a fixed IMC architecture opti-
mizing a neural network model for a fixed hardware12–14,62,69,70,72,79,80,99–101, 
(2) frameworks with hardware parameters search for a fixed model 
optimizing IMC hardware for a certain application102, and (3) frame-
works for optimum model and architecture search optimizing both 
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Table 1 | State-of-the-art hardware-aware neural architecture search frameworks for in-memory computing

Framework Q P N Network model search 
space

Hardware 
search space

Hardware 
considerations

Algorithm Hardware 
non-idealities

C Performance gains 
and outcomes

AnalogNAS12 
(2023)

— — ✓ Number of blocks, 
channels, branches, kernel 
size, widening factor

— AIHWKit90 EA Device variations, 
conductance drift

✓ 2% ↑ accuracy, 4× ↓ 
time, 1.2× ↑ energy eff. 
(vs ResNet32a,b)

Pareto-based 
NAS14 (2022)

— — ✓ Convolution layer width, 
depth, expansion ratio

— DNN + NeuroSim87 DS — — Pareto front (accuracy 
vs latency)

NAS4RRAM13 
(2021)

— — ✓ Layers, output channels 
(residual blocks)

— Simulator for 
RRAM-based 
accelerator

EA Device variations 
(thermal/shot 
noises, RTN)

— >6% ↑ accuracy  
(vs ResNet32b)

FLASH99 (2021) — — ✓ Number of skip 
connections, cells, layers 
per cell, channels per layer

— NeuroSim87 and 
BookSim119

SHGO — — >27,729× ↑ speed 
than RL

UAE101 (2021) ✓ — ✓ Number of channels, filter 
height/width, weights bit-
width (integer/fraction bits)

— Analytical RL Device variations 
(thermal/shot 
noises, RTN), 
programming errors

— 6.3% ↑ accuracyb  
(vs NACIM17), robust  
to device variations

GA for IMC AI 
hardware80,100 
(2020)

— — ✓ Number of layers, neurons, 
channels, activation 
functions, kernel size

— Analytical GA Device variations 
(Gaussian), 
conductance 
deviation, device 
failure

— ∼2× ↑ speed vs 
grid search for 
small networks, 
↑↑ accuracy vs 
using NASc

NAX15 (2021) — — ✓ Kernel size Crossbar size GENIEx112 
(non-idealities)

DS Wire resistances, 
source/sink 
resistances

— 0.8% ↑ accuracy 17% 
↓ EDAP (vs ResNet20b)

Gibbon16 (2022) ✓ — ✓ Number of blocks, output 
channels, groups (for 
group convolution), kernel 
size, weights/activations 
bit-width

Crossbar size, 
ADC/DAC 
resolution, 
device 
precision

MNSIM89 EA Device variations — 8.4–41.3× ↑ speed, 
10.7% ↑ accuracyb, 
6.48x ↓ EDP  
(vs refs. 13,17,101)

NACIM17 (2020) ✓ — ✓ Network hyperparameters, 
weights bit-width (integer/
fraction bits)

Tile size, buffer 
size, bandwidth

DNN + NeuroSim87 RL Device variations — 3% ↑ accuracyb (vs 
VGG11), high accuracy 
with device variations

CF-MESMO for 
RRAM102 (2021)

— — — — Crossbar 
size, device 
precision, 
frequency

DNN + NeuroSim87 CF- MESMO Device variations 
(thermal/shot 
noises, RTN)

— Pareto front 
and 90.91% ↓ in 
computation cost  
(vs NSGA-II)

CMQ62 (2022) ✓ — — Quantization threshold and 
weights bit-width

— MINT120 DS Device variations 
(Gaussian)

— 2.04% ↑ accuracyb  
(vs fixed-precision 
model for ResNet20)

Mixed-precision 
quantization63 
(2021)

✓ — — Weights bit-width 
(total + fraction), inputs  
bit-width (total + fraction)

ADC precision PUMAsim45 RL — — 4.84× ↓ energy,  
3.98× ↓ latency  
(vs 16-bit LeNet model)

EGQ70 (2021) ✓ — — Weights/activations 
bit-width

— DNN + NeuroSim87 GA — — 1.2–1.6 ↑ TOPs/Wd, 
5–25% ↓ areab  
(vs fixed-precision 
model for VGG8)

RaQU69 (2021) ✓ — — Weights/kernels bit-width — Analytical RL — — 18% ↑ utilization,  
3.3% ↑ accuracyb  
(vs fixed-precision 
model for ResNet18)

ASBP79 (2021) — ✓ — Bits of weights — Analytical RL — — 79% ↓ energy, 55% ↓ 
areab (vs unpruned bit 
model for ResNet18)

Auto-prune72 
(2021)

— ✓ — Weights (pruned 
unimportant columns)

— MNSIM89 RL — — 9x ↑ area eff.,  
12× ↑ energy eff.b  
(vs unpruned bit 
model for VGG16)

ADC/DAC, analog to digital or digital to analog converters; AI, artifical intelligence; C, available open-source code; DS, differentiable search; EA, evolutionary algorithm; EDAP, energy–delay–
area product; EDP, energy–delay product; eff., efficiency; GA, genetic algorithm; HW-NAS, hardware-aware neural architecture search; IMC, in-memory computing; N, neural architecture 
search; P, automated pruning; Q, quantization search; RL, reinforcement learning; RRAM, resistive random-access memory;RTN, random telegraph noise. aHardware implementation of 
ResNet32 with phase-change memory devices. bFor CIFAR-10. cWithout consideration of hardware non-idealities. dTOPs/W, tera operations per second per watt (energy efficiency).
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neural network model parameters and hardware parameters15–17,63. 
The frameworks for a fixed architecture are designed to optimize the 
neural network model for a specific IMC hardware. This approach is 
the most widespread method employed for adjusting a neural network 
model for a specific ready IMC architecture considering hardware 
constraints12–14,62,69,70,72,79,80,99–101. Frameworks for IMC hardware param-
eters search for a fixed neural network model formulate a hardware 
optimization problem as a single- or multi-objective optimization 
problem, rather than optimizing the design manually or using brute 
force approaches102. The HW-NAS frameworks for both neural network 
model and IMC hardware parameters search perform co-optimization 
of software and hardware parameters. This approach is useful to obtain 
optimum hardware solutions for a particular application, especially at 
the initial design stages.

In addition, state-of-the-art HW-NAS frameworks can be catego-
rized based on the algorithm used in a search (Supplementary Fig. 2d). 
The detailed description of each framework and mathematical repre-
sentation of the problem formulation can be found in Supplementary 
Note 3.

An HW-NAS framework for IMC that can simultaneously prune, 
quantize and perform NAS in one flow has not been reported yet. The 
baseline and optimization functions for the state-of-the-art HW-NAS 
frameworks for IMC are different, and these frameworks focus on dif-
ferent neural network models and different search strategies (Table 1). 
Therefore, comparing the performance and search speed of these 
frameworks is difficult. It is important to note that the state-of-the-
art frameworks for HW-NAS for IMC are mostly designed for different 
types of convolutional neural networks, and it is still an open prob-
lem to apply HW-NAS techniques to other types of neural network 
 architectures implemented on IMC hardware.

Two-stage optimization versus joint optimization
The HW-NAS can be divided into the search of an optimized model 
for a specific hardware architecture taking hardware constraints into 
account, and co-optimization of a neural network model and hardware 
parameters (Supplementary Fig. 2c). The second is useful when design-
ing IMC hardware for a specific application, especially when hardware 
efficiency is critical. As illustrated in Table 1, only a few HW-NAS frame-
works for IMC include hardware parameters in the search and perform 
hardware–software co-optimization. The hardware parameter search 
can help to design a more efficient hardware implementation of an IMC 
architecture. To include IMC hardware parameters in the search, there 
are two possible scenarios of HW-NAS frameworks: two-stage optimiza-
tion and joint optimization. Comparing it to the problem formulation 
techniques of HW-NAS shown in Fig. 2, two-stage optimization falls 
into the category of two-state methods, whereas joint optimization 
refers to the rest of the HW-NAS problem formulation methods.

In the two-stage optimization, a neural network model search 
space and hardware search space are separated. After defining the 
neural network model search space, the set of networks is sampled 
followed by HW-NAS to select a set of models with high-performance 
accuracy using a certain search algorithm. When the best-performing 
networks are selected, the set of networks is passed to the second 
stage of optimization. In the second optimization stage, the optimum 
hardware parameters are searched from the set of sampled hardware 
parameters. Finally, the second search stage outputs the optimum 
neural network model(s) and optimum hardware parameters.

In joint optimization, a large joint search space consisting of neural 
network models and hardware parameters is sampled to create a set of 

random neural network models. Then, HW-NAS is performed, search-
ing for the optimum neural network model and hardware parameters 
simultaneously. Both performance accuracy and hardware metrics 
are used to evaluate the performance sampled networks and find the 
most optimum design.

Two-stage optimization can simplify the search, as the best-
performing models are selected in the first stage only based on per-
formance accuracy. This makes the search space smaller in the second 
stage, where hardware parameters are selected. However, this approach 
can lead to local optimization and might not explore the search space 
fully. In joint optimization, the search space is large, which can make the 
search slower and more complex. However, it also allows the selection 
of the best-performing models considering design parameters and 
has more probability of reaching the global solution. Also, as shown 
in ref. 15, there is a correlation between the hardware parameters and 
performance accuracy. In addition, the problem formulation methods 
and end goal of HW-NAS should be considered when selecting the 
methods to add the hardware parameters to the search.

Outlook and recommendations
Even though methods and frameworks for hardware–software 
co-design techniques for IMC, and HW-NAS in particular, have already 
been developed, there are still several open challenges in HW-NAS for 
IMC to be addressed. This section covers the open issues and future 
research directions for HW-NAS for IMC and provides recommenda-
tions for hardware evaluation techniques, mapping neural network 
models to hardware, and IMC system co-optimization.

Open problems and challenges in HW-NAS for IMC
A roadmap for HW-NAS for IMC architectures, including state-of-the-
art frameworks, open problems and future development, is illustrated 
in Fig. 5. One of the main challenges is the lack of a unified framework 
searching for both neural network design parameters and hardware 
parameters. Moreover, none of the reported HW-NAS frameworks 
for IMC can prune, quantize and perform NAS in one flow. Combin-
ing these three optimizations in a single framework and optimizing 
a search time for such a large search space is an open challenge for 
IMC architectures. One example of a similar existing framework is 
APQ, which targets a constrained NAS problem but for a digital neural 
network accelerator8.

Different frameworks focus on different hardware implementa-
tions and parameters, and different neural network designs (Table 1). 
Most of the frameworks focus only on specific issues without consider-
ing various HW aspects, such as the study of the correlation between 
crossbar size and convolution kernel sizes in the search engine NAX15. 
Therefore, a fair comparison between methods for HW-NAS for IMC is 
not possible, which leads to a lack of benchmarking of various HW-NAS 
techniques and search strategies. For the end user, it is still challenging 
to understand which search algorithm will perform better, what possi-
ble speed-up could be provided by certain algorithms, and which tech-
niques of HW-NAS are the most efficient for IMC applications. There 
is a lack of quantitative comparison of HW-NAS methods, especially 
considering various hardware parameters in the search.

Moreover, state-of-the-art HW-NAS frameworks for IMC archi-
tectures focus mostly on different types of convolutional neural 
networks for computer vision applications, such as ResNet or VGG. 
However, there are many other neural network types to which the 
HW-NAS approach for IMC architectures has not yet been applied, 
such as transformer-based networks103 or graph networks104.  
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There are open challenges related to hardware–software co-design of 
such models and IMC architectures for various applications, for example 
biomedical tasks105, language processing106 or recommender systems81.

In addition to the lack of HW-NAS frameworks for IMC focus-
ing on diverse neural network models, the same applies to HW-NAS 
benchmarks. In NAS, benchmarks are the datasets describing the 
accuracy of all the sampled architectures in a certain search space107. 
NAS benchmarks are important to ensure reproducibility of the experi-
ments and comparison of different methods and algorithms, avoid-
ing extensive computations when generating a search space. These 
include NAS-Bench-101 (ref. 108), NAS-Bench-201 (ref. 109) and NAS-
Bench-360 (ref. 110). It is also important to extend such benchmarks to 
the hardware domain. For example, HW-NAS benchmarks, including 
energy and latency, for different types of edge devices, such as mobile 
devices, ASIC and FPGA, have been demonstrated86. An HW-NAS bench-
mark for IMC architectures is still an open problem, which is essential 
to be addressed for further development of HW-NAS algorithms for 
IMC applications.

From the hardware perspective, most existing frameworks for 
HW-NAS for IMC focus on the standard mixed-signal IMC architec-
ture14,17,70,99, because of the availability of open-source frameworks for 
hardware evaluation, such as DNN+NeuroSim87. However, there are 
a lot of other IMC architectures, where different design parameters, 
devices and technologies are used. The main issue is the adaptation 
of state-of-the-art HW-NAS frameworks for the other IMC hardware 
architectures without implementing the frameworks from scratch.

Further development is required in hardware–software co-design 
techniques to transfer the neural network model from software to hard-
ware. Techniques to speed up the hardware simulation are needed. Even 
though most HW-NAS frameworks for IMC use software-level simula-
tions (such as Python or C++) to approximate and speed up simulations 
of circuits and architectures (as for SPICE-level simulations), further 
development and improvements in hardware–software co-design frame-
works are required7. Moreover, hardware–software co-design includes 

IMC-related compiler optimizations, which can translate deep learning 
operations to IMC-friendly hardware implementations.

The complexity and runtime issues of the search algorithms 
should also be addressed. Although there are various methods to 
speed up HW-NAS, the architecture search is still complex and slow, 
especially when a lot of search parameters are considered. Moreover, 
the complexity of HW-NAS increases even further when IMC hardware 
search space is considered. In most of the search strategies, except 
the differentiable search, the search time and search space increase 
exponentially with the number of search parameters.

Finally, the step further is to create fully automated NAS methods 
capable of constructing new deep learning operations and algorithms 
suitable for IMC with minimal human design. One such approach for 
general ML algorithms and neural networks is illustrated by AutoML-
Zero111, which automatically searches for the whole ML algorithm, 
including the model, optimization procedures and initialization tech-
niques, with minimum restriction on the form and only simple math-
ematical operations. Such algorithms aim to reduce human intervention 
in the design and allow constructing of an algorithm and neural network 
model without predefined complex building blocks, which can adapt 
to different tasks. Adding IMC-awareness to such methods is a step 
 forward in fully automating IMC-based neural network hardware design.

Hardware evaluation frameworks
The frameworks for HW-NAS require the estimation of the hardware 
metrics, even when not searching for the hardware parameters. Sev-
eral open-source hardware estimation frameworks can be used to 
estimate hardware metrics for standard IMC architecture, such as 
DNN+NeuroSim87 and PUMAsim45. Both frameworks allow setting up of 
several computation cores (crossbars) and architecture-related param-
eters. NeuroSim also includes several hardware non-idealities and preci-
sion parameters. In addition, adding hardware non-idealities and noise 
effects to the search framework is an essential step toward developing 
highly effective surrogate models, as they can affect the performance 
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accuracy and hardware metrics, and also can be compensated by the 
selected neural network model parameters15,80,100. One of the open-
source frameworks that can be used for IMC hardware non-idealities 
simulations is GENIEx112. For the non-standard designs, there is still a 
lack of open-source frameworks, so designers are still required to create 
custom hardware evaluation frameworks for non-trivial IMC architec-
ture or customize the existing ones. This challenge can be addressed 
by developing a framework generating IMC hardware description 
automatically from a neural network model.

Mapping deep neural network models to IMC hardware
Another drawback of the state-of-the-art HW-NAS models for IMC is the 
lack of consideration of dataflow optimization methods and mapping 
techniques of ML model to the IMC hardware. Dataflow optimization 
involves consideration of data movement, including transmission of 
inputs, outputs, intermediate values and control instructions within the 
IMC architecture and to the external system components, while map-
ping covers the split of the neural network model across the available 
hardware resources. In addition to the several layers of the hierarchy of 
the IMC architecture, including processing elements, computing ele-
ments, and tiles (Supplementary Fig. 1), which should be considered for 
efficient mapping, the IMC accelerator is also connected to the external 
memory and cache system (Supplementary Fig. 3). Global registers, 
SRAM global buffer, cache and DRAM are used for storing and fetch-
ing inputs, outputs and neural network weights (in the case of larger 
deep neural networks when all the layers cannot fit into the accelerator 
processing elements). Some IMC systems can also have a local cache, 
such as the RIMAC IMC accelerator that contains a local analog cache to 
reduce the overhead of ADCs and DACs47. The benefits of IMC — energy 
efficiency and low latency — can fully be exploited only if the data-path 
and data-mapping to the external memory are optimized113.

Depending on the workloads and types of layers, the optimum 
mapping varies. For example, there are several ways to map the con-
volution layer to the crossbar, including dense and sparse mapping75. 
However, depth-wise separable convolution layers should be converted 
to a dense layer form, which yields highly inefficient performance114. 
Mapping of neural network layers to processing elements, computing 
elements and tiles is considered in the existing IMC hardware simula-
tors. The design space exploration framework, for example, supports 
different types of mapping and investigates its effects on the RRAM-
based IMC architecture performance75. HW-NAS frameworks based on 

NeuroSim87 and AIHWKit90 consider the mapping to the real hardware 
models, and NeuroSim performs the optimization of hardware utiliza-
tion. Nevertheless, the types of supported layers are still limited, and 
the hardware architecture is fixed.

In contrast, optimization of data movement from and to the exter-
nal memory, fetching and storing inputs and outputs considering 
different levels of the external memory hierarchy, is rarely done in the 
existing frameworks113. The trade-off between the global buffer or cache 
sizes and the data movement time affects IMC hardware efficiency. 
Spatial and temporal data reuse can also reduce latency and improve 
energy efficiency. Therefore, mapping ML and neural network models 
to IMC hardware considering the data path and the external memory 
based on the workloads is a separate optimization problem. One of the 
existing frameworks that can be used for these purposes is ZigZag115, 
which aims to optimize even and uneven mapping to large balanced 
and unbalanced memory hierarchy design space and is suitable for 
IMC hardware accelerators113.

HW-NAS and IMC co-optimization
As of the beginning of 2024, HW-NAS frameworks for IMC applications 
mostly cover device-related, circuit-related and algorithm-related 
optimizations (Fig. 6). However, to design the optimized IMC hardware, 
the architecture- and system-level design should also be optimized. 
Therefore, it is important to combine HW-NAS with other  optimization 
techniques.

In most state-of-the-art HW-NAS optimization frameworks, the 
architecture is fixed, including mapping and communication between 
tiles. However, architecture-related details in IMC architectures should 
also be optimized. For example, effective on-chip communication and 
optimized interconnect choice are critical for IMC hardware44.

The system-level design is the part responsible for translating the 
algorithm to the hardware, which also requires optimization. From  
the programming perspective, there are various high-level hard-
ware–software co-design concepts requiring design and optimiza-
tion, including communication of the IMC accelerator with the CPU, 
programming commands and instructions, issues with shared off-chip 
memory, and automated scheduling. These challenges related to accel-
erator programming are rarely considered by IMC hardware designers, 
even though there are many design aspects to optimize116.

In most cases, IMC accelerators are not used as a standalone sys-
tem and are considered as co-processors that need to communicate 
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neural architecture search (HW-NAS) can be involved in device-level, circuit-level 

and algorithm-level optimizations. Including optimization of architecture and 
system-related parameters in HW-NAS is a potential direction of future research, 
which could help to automate hardware–software co-design and further improve 
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with the host CPU. Control and instruction units on both sides, CPU 
and IMC accelerator, and extending instruction set architecture are 
thus needed. Extending instruction set architecture is an abstraction 
of hardware–software interface defining the main hardware opera-
tions and control commands. This interface is a key to support the 
implementation of different algorithms on hardware117, including 
mapping different types of neural networks to IMC hardware. Creat-
ing instruction set architectures and optimizing the programming of 
an IMC architecture using high-level languages is important for IMC 
architectures118. Hardware compilers and automated translation of 
the software commands to hardware implementation are also open 
challenges for IMC architectures.

Often external DRAM should be shared between the CPU and 
IMC accelerator to support storage of large models and large tensors 
that do not fit on on-chip memories. This point brings in other design 
issues to consider and optimize, including data sharing, virtual address 
translation (to translate the memory address used by IMC architecture 
to the global DRAM address) and cache coherence (if the IMC accelera-
tor shares the cache with the CPU). Also, as swapping and re-loading 
neural network weights to IMC architecture can reintroduce data move-
ment issues, it can be more practical to split the large network models 
between the CPU and weight-stationary IMC architecture when it does 
not fit an IMC accelerator. This point might require additional opti-
mization. Another optimization challenge is the automated runtime 
scheduling of IMC tasks116. Therefore, consideration of the higher-level 
programming perspective, automating and simplifying the translation 
of the software algorithms to hardware, is the next optimization step in 
IMC hardware accelerators for ML and neural network applications. 
In general, it is crucial to combine HW-NAS with other optimization 
techniques to design efficient IMC hardware for AI and ML applications.

Published online: xx xx xxxx
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