
Nature Reviews Electrical Engineering

nature reviews electrical engineering https://doi.org/10.1038/s44287-024-00052-7

Review article Check for updates

Neural architecture search for
in-memory computing-based
deep learning accelerators

Olga Krestinskaya   1 , Mohammed E. Fouda2, Hadjer Benmeziane3, Kaoutar El Maghraoui   4, Abu Sebastian3,
Wei D. Lu5, Mario Lanza   6, Hai Li   7, Fadi Kurdahi8, Suhaib A. Fahmy1, Ahmed Eltawil   1 & Khaled N. Salama   1

Abstract

The rapid growth of artificial intelligence and the increasing complexity
of neural network models are driving demand for efficient hardware
architectures that can address power-constrained and resource-
constrained deployments. In this context, the emergence of in-memory
computing (IMC) stands out as a promising technology. For this
purpose, several IMC devices, circuits and architectures have been
developed. However, the intricate nature of designing, implementing
and deploying such architectures necessitates a well-orchestrated
toolchain for hardware–software co-design. This toolchain must
allow IMC-aware optimizations across the entire stack, encompassing
devices, circuits, chips, compilers, software and neural network design.
The complexity and sheer size of the design space involved renders
manual optimizations impractical. To mitigate these challenges,
hardware-aware neural architecture search (HW-NAS) has emerged as
a promising approach to accelerate the design of streamlined neural
networks tailored for efficient deployment on IMC hardware. This
Review illustrates the application of HW-NAS to the specific features
of IMC hardware and compares existing optimization frameworks.
Ongoing research and unresolved issues are discussed. A roadmap
for the evolution of HW-NAS for IMC architectures is proposed.

Sections

Introduction

In-memory computing
background

Hardware-aware neural
architecture search

HW-NAS for IMC architectures

Outlook and
recommendations

1Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science
and Technology, Thuwal, Saudi Arabia. 2Rain Neuromorphics, San Francisco, CA, USA. 3IBM Research Europe,
Ruschlikon, Switzerland. 4IBM T. J. Watson Research Center, Yorktown Heights, NY, USA. 5Electrical Engineering
and Computer Science Department, University of Michigan, Ann Arbor, MI, USA. 6Physical Science and
Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. 7Electrical and
Computer Engineering Department, Duke University, Durham, NC, USA. 8Electrical Engineering and Computer
Science Department, University of California at Irvine, Irvine, CA, USA.  e-mail: ok@ieee.org; khaled.salama@
kaust.edu.sa

https://doi.org/10.1038/s44287-024-00052-7
http://crossmark.crossref.org/dialog/?doi=10.1038/s44287-024-00052-7&domain=pdf
http://orcid.org/0000-0001-8038-4558
http://orcid.org/0000-0002-1967-8749
http://orcid.org/0000-0003-4756-8632
http://orcid.org/0000-0003-3228-6544
http://orcid.org/0000-0003-1849-083X
http://orcid.org/0000-0001-7742-1282
mailto:ok@ieee.org
mailto:khaled.salama@kaust.edu.sa
mailto:khaled.salama@kaust.edu.sa

Nature Reviews Electrical Engineering

Review article

a neural network while considering the characteristics and constraints
of the hardware on which this neural network is deployed. Depending on
the goal and problem setting, HW-NAS can also be used to optimize the
hardware parameters themselves, such as the design features contrib-
uting to hardware efficiency. The parameter space for state-of-the-art
neural network models can easily reach the order of 1035 (ref. 8), making
it impossible to search for the optimal parameters manually. Traditional
NAS frameworks are efficient at automating the search for optimum
network parameters (for example network layers, blocks and kernel
sizes)9. However, they do not consider hardware constraints, nor can
they optimize the parameters of the hardware itself. HW-NAS extends
conventional NAS by seamlessly integrating hardware parameters and
characteristics, streamlining the efforts of hardware designers and soft-
ware programmers alike10. HW-NAS can automate the optimization of
neural network models given hardware constraints such as energy,
latency, silicon area and memory size. Moreover, certain HW-NAS frame-
works have the capability to optimize the parameters of the hardware
architecture that is best suited for deploying a given neural network.
HW-NAS can also help to identify trade-offs between performance and
other hardware parameters11. Moreover, conventional NAS frameworks
often incorporate operations that are not suited to IMC hardware and
disregard inherent IMC hardware non-idealities such as noise or tem-
poral drift within the search framework12. The absence of established
IMC NAS benchmarks compounds these challenges. To close these gaps,
since the beginning of the 2020s, several HW-NAS frameworks for IMC
architectures have been proposed13–17, some of which support a joint
search of neural network parameters and IMC hardware parameters.
These IMC hardware parameters include crossbar size, the resolu-
tion of the analog-to-digital converter or digital-to-analog converter
(ADC/DAC), buffer size and device precision.

Existing NAS surveys focus on the software and algorithmic per-
spectives, discussing search approaches, optimization strategies and
search-space configurations18–20. Reviews related to HW-NAS discuss a
taxonomy of HW-NAS methods, search strategies, optimization tech-
niques, hardware parameters relating to different types of hardware,
such as central processing units (CPUs), GPUs, field-programmable
gate arrays (FPGAs) and traditional application-specific integrated
circuits (ASICs)9–11,20,21. However, an in-depth review of HW-NAS spe-
cifically for IMC, with consideration for its unique properties and the
available hardware frameworks is not available.

In this Review, we discuss HW-NAS methods and frameworks focus-
ing on IMC architecture search space. We compare existing frameworks
and identify research challenges and open problems in this area. A road-
map for HW-NAS for IMC is outlined. Moreover, we provide recommen-
dations and best practices for effective implementation of HW-NAS
frameworks for IMC architectures. Finally, we show where HW-NAS
stands in the context of IMC hardware–software co-design, highlight-
ing the importance of incorporating IMC design optimizations into
HW-NAS frameworks.

In-memory computing background
In traditional von Neumann architectures (Supplementary Fig. 1a),
the energy cost of moving data between the memory and the comput-
ing units is high. Processor parallelism can alleviate this problem to
some extent by performing more operations per memory transfer,
but the cost of data movement remains an issue4. Moreover, von Neu-
mann architectures suffer from the memory wall problem — that is,
the speed of processing has improved at a much faster rate than that
of traditional memories (such as dynamic random access memory

Key points

 • Hardware-aware neural architecture search (HW-NAS) is an efficient
tool in hardware–software co-design, and it can be combined with
other architecture-level and system-level optimization techniques
to design efficient in-memory computing (IMC) hardware for deep
learning accelerators.

 • HW-NAS for IMC can be used for optimizing deep learning models
for a specific IMC hardware, and co-optimizing a model and hardware
design searching for the most efficient implementation.

 • In HW-NAS, it is important to define a search space, select an
appropriate problem formulation technique, and consider the trade-
off between performance, search speed, computation demands and
scalability when selecting a search strategy and a hardware evaluation
technique.

 • In addition to neural network model hyperparameters and
quantization and pruning policies, HW-NAS for IMC can include the
circuit-level and architecture-level hardware parameters in the search.

 • The main challenges in HW-NAS for IMC include a lack of unified
framework to support different types of neural network models
and different IMC hardware architectures, HW-NAS benchmarks and
efficient software–hardware co-design techniques and tools.

 • Fully automated NAS methods capable of constructing new deep
learning operations and algorithms suitable for IMC with minimal
human design are needed.

Introduction
The proliferation of the Internet of things is fuelling an unprecedented
surge in data generation and advanced processing capabilities to cater
to the intricate demands of applications leading to rapidly developing
artificial intelligence (AI) systems. The design and implementation of
efficient hardware solutions for AI applications are critical, as modern
AI models are trained using machine learning (ML) and deep learning
algorithms processed by graphic processing unit (GPU) accelerators
on the cloud1. However, high energy consumption, latency and data
privacy issues associated with cloud-based processing have increased
the demand for developing efficient hardware for deep learning accel-
erators, especially for on-edge processing2. One of the most promising
hardware architectures executing deep learning algorithms and neu-
ral networks at the edge is in-memory computing (IMC)3. This entails
carrying out data processing directly within or in close proximity
to the memory. The cost related to data movement is thus reduced,
and notable enhancements in both latency and energy efficiency for
 computation and data transfer operations are obtained4–6.

Efficient and functional IMC systems require the optimization of
the design parameters across devices, circuits, architectures and algo-
rithms. Effective hardware–software co-design toolchains are needed
to connect the software implementation of neural networks with IMC
hardware design7. Hardware–software co-design requires optimizations
at each level of the process, which involves hundreds of parameters and
is difficult to perform manually. Hardware-aware neural architecture
search (HW-NAS) is a hardware–software co-design method to optimize

Nature Reviews Electrical Engineering

Review article

(DRAM)), resulting in overall application performance being limited
by memory bandwidth4,22. Power efficiency has also ceased scaling with
technology node advances, resulting in stalled gains in performance
computational density23.

In in-memory computing (IMC), one approach proposed to over-
come the von Neumann bottleneck, data processing is performed
within memory, by incorporating processing elements (Supplementary
Fig. 1b). This alleviates the cost of data movement and improves the
latency and energy required for both computation and data trans-
fer4,24–26. Tiled architectures for IMC27 are based on a crossbar array of
memory devices which can perform multiply–accumulate (MAC) or
matrix–vector multiplication (MVM) operations efficiently. Because
MVMs constitute the vast majority of their associated operations,
the tiled architecture is ideal for hardware realization of deep neural
networks28. To implement an efficient IMC system, device-level4,29–32,
circuit-level33–35 and architecture-level36 design aspects should be
considered37.

In-memory computing devices and technologies
IMC can be built using charge-based memories, such as static random
access memory (SRAM) and flash memory, or using resistance-based
memories, such as resistive random access memory (RRAM), phase-
change memory (PCM), magnetoresistive random access memory
(MRAM), ferroelectric random access memory (FeRAM) and ferroelec-
tric field-effect transistors (FeFETs)4 (Supplementary Fig. 1c). SRAM is
a well-developed volatile memory used for IMC applications, whereas
the other IMC devices mentioned are non-volatile. Overall, non-volatile
memories are less mature than traditional SRAM-based memories
but have promising potential for IMC-based neural network hardware
due to high storage density, scalability and non-volatility properties.
The configuration and operating principle of volatile and non-volatile
memories are described in Supplementary Note 1.

The important criteria used to select devices for IMC architectures
are access speed for read and write operations, write energy, endur-
ance, scalability, cell area, and cost (Supplementary Fig. 1d). To imple-
ment state-of-the-art neural networks, both read and write operation
speeds of IMC devices are important for both training and inference,
especially considering dynamic operations in some models, such as
transformer-based neural networks38. SRAM has the lowest write latency
(<1 ns) and highest endurance (>1016 cycles), compared with non-volatile
IMC memory devices (Supplementary Fig. 1d). SRAM and some non-
volatile memories, such as MRAM, FeRAM and FeFET, have low write
energy (<0.1 nJ for SRAM and <1 nJ for non-volatile memories), which can
contribute to faster neural network training and dynamic operations.
Non-volatile memories, such as RRAM, PCM and Flash memories, have
the smallest cell area (approximately 10–16F2, where F is the minimum
lithography feature size) and higher scalability and storage density
due to the possibility of multilevel storage. In most IMC architectures,
memories are organized in a 2D array, but 3D integration and 3D stacking
can offer higher storage density. Overall, the most common and scalable
memory devices for IMC architectures are SRAMs, RRAMs and PCMs39.
Flash-array-based IMC accelerators also show promising results for
neural networks and ML applications40. Other possible IMC devices
include spin-torque MRAM, electrochemical RAM and memtransistors29.
However, they are less common and are at an early stage of development.

Conventional IMC architectures for neural networks
A typical IMC architecture has several layers of hierarchy33,41–44
(Supplementary Fig. 1e). The highest layer is constituted by tiles

typically connected through a network-on-chip that includes the rout-
ers to transmit the signal between the tiles. The weight matrix of a neural
network can be stored inside a single tile or shared between several
tiles. This layer also includes peripheral and interface circuits, such as
the global accumulation unit, pooling unit and input–output interface
circuits. A tile consists of several computing elements42, also called MAC
units or MVM units41,43, and peripheral circuits, including accumulation
and activation units. Each computing element contains several crossbar
arrays (processing elements) and processing circuits, including multi-
plexers shared by several crossbar columns, shift-and-add circuits,
ADC converters, local registers and control circuits. A crossbar array
contains memory cells with one or more devices depending on IMC
memory type used in the design.

Some device technologies, such as RRAM and PCM, use a device
in series with a switching element to mitigate sneak path currents
from cell to cell (which would result in false cell programming or
reading) and limit the current in the low-resistance state (to avoid
damage and improve variability and endurance). This device can be
a two-terminal threshold-switching selector located above or below
the resistance-based memory (namely 1S1R); or a complementary
metal–oxide–semiconductor transistor (1T1R). This choice typically
increases the size of each cell (the resistance-based memory is inte-
grated on the via that comes from the drain and source contacts of
the transistor)30. State-of-the-art IMC architectures include ISAAC41,
PUMA/PANTHER43,45, TIMELY46, RIMAC47, PIMCA48, HERMES39 and
SAMBA49. ISAAC41 is a pipelined IMC accelerator with embedded DRAM
buffer banks to store intermediate outputs of the pipeline stages.
PUMA45 is a programmable eight-core accelerator with a special-
ized instruction set architecture and compiler supporting complex
workloads. PANTHER43 is an extension of PUMA architecture support-
ing efficient training for RRAM-based IMC architectures. TIMELY46
adopts analog local buffers inside the crossbar arrays to improve
data locality, and time-domain interfaces to improve energy effi-
ciency. RIMAC47 is an ADC/DAC-free IMC accelerator with analog cache
and computation modules. PIMCA48 is a capacitive-coupling-based
SRAM IMC accelerator with a flexible single-instruction, multiple-
data processor for non-MVM operations. SAMBA49 is a sparsity-aware
RRAM-based IMC accelerator with load balancing and optimized
scheduling.

An alternative to hierarchical architectures is one that combines
spatially distributed analog IMC tiles and heterogeneous digital com-
puting cores50. Such an architecture, based on 2D-mesh interconnect51,
is highly programmable and supports a wide range of workloads (map-
ping and pipelining). TAICHI51 is another example of a tiled RRAM-based
accelerator with mesh interconnect, local arithmetic units and global
co-processor targeting reconfigurability and efficiency.

Since the beginning of the 2020s, several fabricated IMC macros
have been demonstrated: a reconfigurable 48-core RRAM-based IMC
chip (NeuRRAM) suitable for various applications, such as image clas-
sification, speech recognition and image reconstruction52; eight-core
RRAM-based IMC macros53,54; a PCM-based fabricated eight-core chip55;
a flash-memory-based pipelined 76-core chip with analog computing
engine tiles40; a SRAM-based mixed-signal 16-core IMC accelerator with
configurable on-chip network, flexible dataflow and scalable cores56;
and a MRAM-based IMC core with readout circuits57. In 2023, a mixed-
signal IMC chip called the IBM HERMES Project Chip, comprising 64
cores of PCM-based crossbar arrays with integrated data converters,
on-chip digital processing and a digital communication fabric, was
presented39.

Nature Reviews Electrical Engineering

Review article

Weight mapping, computing precision and non-idealities
Several software and hardware parameters need to be considered to
map a software-based neural network model to IMC hardware. For
example, when mapping neural network weight matrices and inputs
or activations to IMC crossbars, important parameters are the matrix
size, the crossbar size, the precision of weights and inputs, the precision
of IMC devices, the resolution of the converters (ADCs and DACs) and
the peripheral circuits. In this case, the concept of partial sums should
be considered. Partial sums in IMC architectures are applied in three
different cases (Supplementary Fig. 1f): (1) when a large weight matrix
does not fit into a single crossbar array; (2) when high-precision weights
are mapped to low-precision crossbar cells; and (3) when high-precision
inputs are streamed to the crossbar sequentially58 (discussed in detail in
Supplementary Note 2). Partial sums require specific ADC resolution to
maintain the desirable computing precision (Supplementary Note 2),
which contributes to on-chip area and energy consumption overhead
of peripheral circuits43.

In IMC architectures with non-volatile memory devices, comput-
ing precision is also affected by non-idealities, including device-to-
device variability, circuit nonlinearity, and conductance variation
with time38,59. Such degradation of computing precision can be pre-
dicted and mitigated using hardware-aware training methods lead-
ing to robust IMC hardware designs38,60. The accuracy degradation
caused by non-idealities of the devices can also be improved by
periodically calibrating batch normalization parameters during
the inference59. Overall, it is necessary to conduct a comprehensive
analysis of noise effects when designing IMC hardware and include
mitigation and compensation techniques for non-idealities as part of
the design.

Model compression for IMC architectures
Model compression techniques used for neural network optimization,
such as quantization and pruning61, can be applied in implementations
on IMC architectures to reduce hardware costs. It is too expensive
to deploy full-precision neural network weights to IMC devices62, so
quantization is often used, reducing occupied memory, data trans-
mission and computation latency63. Network pruning, which removes
unnecessary neural network weights or groups of weights, can reduce
energy and latency64.

Quantization for IMC architectures. Quantization methods are
divided into uniform quantization and non-uniform quantization65.
In uniform quantization, the quantization intervals are equally dis-
tributed across the quantized range58. An example of non-uniform
quantization is logarithmic quantization, that is the power-of-two
method66 commonly used for SRAM-based IMC hardware or RRAM-
based binarized IMC architectures. More complex quantized weight
representations use bit-level sparsity to increase the number of zeros
in the bit representation of weights and activations to improve energy
efficiency in MAC operation during quantization67,68. Most quanti-
zation-related RRAM-based architectures focus on fixed-precision
quantization with a uniform quantizer62.

An alternative approach is based on mixed precision quantization,
where different quantization configurations are chosen for different
layers63,69. This method is effective because different neural network
layers and convolution filters have different sensitivity to quantiza-
tion62 and contribute differently to overall accuracy69. Flexible word
length quantization improves compression and reduces accuracy loss
compared with uniform quantization70.

In IMC architectures, quantization is performed by either chang-
ing the number of crossbar cells per weight or the number of bits per
crossbar cell. Analog weight storage (≥2 bits per cell) allows for higher
effective cell density (bits mm−2), leading to higher storage density39.
However, increasing the number of bits per cell increases the effect
of RRAM non-idealities and variabilities. ADC precision, and hence
overhead, also increases with the precision of crossbar weights63.

Pruning in IMC architectures. Pruning is divided into unstructured
and structured pruning. In unstructured pruning, the individual
connections (weights) are removed at a fine granularity. Structured
pruning implies coarse-grained pruning of groups of weights (kernel
or channel pruning)64,71. In IMC hardware, weight pruning (usually
unstructured pruning of individual weights) disconnects unnecessary
crossbar cells, leading to sparse neural network hardware implementa-
tion. Structured pruning is implemented by removing or disconnect-
ing whole rows or columns of the crossbar array and corresponding
peripheral circuits.

Sparsity due to unstructured pruning in IMC architectures can
improve energy efficiency and throughput, but it can also lead to
unnecessary computation overhead, difficulty in parallelizing process-
ing, and low hardware utilization. Nevertheless, mapping structured
row-wise or column-wise pruning to IMC architecture leads to higher
crossbar utilization than unstructured pruning64. One of the ways to
reach a desired compression ratio via structured pruning is to incorpo-
rate several rounds of weight grouping, determining the importance of
these groups, followed by fine-grained row-wise pruning64.

Most work on RRAM-based neural network pruning uses heuristics
or rules to prune network weights. This can sometimes prune non-
trivial weights and preserve trivial weights, leading to sub-optimal
solutions. Also, hardware constraints and hardware feedback are not
always considered in RRAM-based network pruning72.

Hardware-aware neural architecture search
In the hardware-aware neural architecture search (HW-NAS) process,
the inputs are neural network parameters, model compression param-
eters and hardware parameters (Fig. 1a). In some cases, the search space
includes hardware search space and model compression options to
be optimized. Optimal neural network designs and optimal hardware
parameters are searched for within this space using a search strat-
egy (algorithm or heuristic). The main difference between HW-NAS
and traditional NAS is the consideration of hardware limitations and
constraints in the search. Problem formulation methods are used to
define an objective function for the search and a method to incorporate
optimization constraints. Some frameworks search only for optimum
neural network designs considering hardware constraints, whereas
others can incorporate the search of optimal hardware parameters
to find the most efficient hardware design. Performance is evaluated
using performance metrics and hardware metrics. In this Review, per-
formance metrics refer to a neural network performance characteristic
such as accuracy or performance error, while hardware metrics refer
to the metrics describing hardware efficiency, such as energy, latency
and on-chip area. To evaluate hardware performance, various hardware
cost estimation methods can be used.

HW-NAS basics
HW-NAS for IMC incorporates four efficient deep learning methods for
design space exploration (Fig. 1b), which allow the optimal design of
neural network model and hardware to be found: model compression,

Nature Reviews Electrical Engineering

Review article

neural network model search, hyperparameter search and hardware
optimization. Model compression techniques, such as quantization and
pruning, can be viewed as HW-NAS problems and are often included
in HW-NAS flows9. Neural network model search implies searching
for neural network layers and corresponding operations, as well as
the connections between them73,74. Hyperparameter search includes
searching for the optimized parameters for a fixed network — that is,
the number of filters in a convolution layer or the kernel size9. Hard-
ware optimization is the optimization of hardware components such
as tiling parameters, buffer sizes and other parameters included in the

hardware search space. For IMC architectures, hardware optimization
may include crossbar-related parameters (such as ADC/DAC preci-
sion and crossbar size) that can have an effect on the performance of
the architecture, in terms of energy consumption, processing speed,
on-chip area and performance accuracy15,75.

The search space in HW-NAS refers to the set of network opera-
tions and hyperparameters searched to optimize the network and
hardware architecture. The search space can be fixed or hardware-
aware11. In a fixed search space, neural network operations are designed
manually without considering the hardware. In hardware-aware search,

a HW-NAS

b Design space exploration in HW-NAS for IMC

Input

Output

Neural network
model parameters

Sampled neural
network models

Quantization parameters and/or
pruning policies (optional)

Sampled hardware (optional)

Model compression
parameters (optional)

Hardware parameters
(optional)

Hardware constraints

Quantization Pruning

Optimal neural network design(s)
considering hardware constraints

Optimal hardware
parameters (optional)

Search space

Neural network model
search space

Search strategy
(algorithm)

Model compression
options

Hardware search space

Performance evaluation
with hardware metrics

Model compression

Can be presented as
HW-NAS problem Usually for a fixed architecture Hardware parameter search

Neural network block or entire architecture
search Hyperparameter search Hardware optimization

Input

Output

Layers
and
operators

Bl
oc

k

Bl
oc

k

Connections

...

n

m
k

Convolution layers Dense
layers

Convolution
kernels

E�icient deep learning methods involved in HW-NAS

...

...

...

...

...

S&H
ADC

Shift and add

m

n
DAC Crossbar cells...

Block

Fig. 1 | Fundamentals of hardware-aware neural architecture search. a, Overview of hardware-aware neural architecture search (HW-NAS). b, Efficient deep
learning methods for the design space exploration involved in HW-NAS for in-memory computing (IMC). ADC, analog-to-digital converter; DAC, digital-to-analog
converter; S&H, sample and hold.

Nature Reviews Electrical Engineering

Review article

the interlayer and intralayer operations in the network are adapted
 depending on the hardware.

From the perspective of the search parameters, the search space
can be divided into the neural network search space and hardware
architecture search space9. The first covers the selection of neural
network operations, blocks, layers and the connections between them.
The second considers the hardware design, for example IP core reuse
on FPGA, quantization schemes, tiling, or selection of buffer sizes.
The hardware architecture search space depends either on hardware
platform configurations or on predefined templates for different
operations to optimize certain hardware parameters9. For IMC archi-
tectures, the search space should be extended to include specific
hardware-related details, such as crossbar size and precision of the
converters (discussed later).

Depending on the HW-NAS objectives, frameworks can optimize a
specific neural network or set of network models for a specific or multi-
ple hardware architectures11. Depending on the target hardware, hard-
ware constraints can vary. Hardware constraints can be categorized
into implicit constraints and explicit constraints. Implicit constraints
are those that do not describe desired hardware metrics directly but
affect them implicitly, such as bits per operation. Explicit constraints
are the evaluated metrics related to hardware deployment, including
energy consumption, latency, on-chip area, memory and available
hardware blocks. Typical constraints for IMC architectures include
energy consumption, latency and the number of available resources
(for example crossbar tiles on a chip).

Problem formulation in HW-NAS
A problem formulation in HW-NAS defines the objective function,
optimization constraints and how the problem is formulated. The prob-
lem formulation method is selected according to the target output
and available information about hardware resources. For example,
the HW-NAS target can be either a single architecture with optimized
performance and hardware parameters or a set of architectures opti-
mizing hardware parameters with a certain priority. HW-NAS problem
formulation is divided into single-objective optimization and multi-
objective optimization methods (Fig. 2). The selection of a HW-NAS
problem formulation method depends on the objectives of the search.
Two-stage methods are suitable for deploying well-performing models
to a specific hardware or getting a sub-model from an existing model
followed by a specific hardware deployment. Constrained optimization
is useful for the case of specified hardware constraints or designing
a neural network model for a specific hardware platform. Scalariza-
tion methods could be used when setting up the priority of a certain
objective function and the Pareto-based optimization for finding the
trade-off between the performance metrics and hardware metrics.

Single-objective optimization. These methods are categorized into
two-stage methods and constrained optimization9. In two-stage opti-
mization, HW-NAS first selects a set of well-performing high-accuracy
network models and then performs hardware optimization and selects
the most hardware-efficient design. It is useful to transform well-
performing neural networks for implementation on different hardware
platforms, or to optimize networks for a specific hardware platform.
Hardware constraints are included in the second stage of HW-NAS. The
drawback of such methods is that the selected network models in
the first stage tend to be large to maximize accuracy and may not always
fit the hardware constraints of a specific platform. In constrained
optimization, hardware parameters are considered when searching

for a neural network model. This allows filtering out of network models
that do not fit within hardware constraints during the search process,
thus speeding up HW-NAS. The challenge of constrained optimization
is the difficulty of including hardware constraints directly in the search
algorithms, especially in gradient-based methods or reinforcement
learning. Therefore, the problem is often transformed into an uncon-
strained optimization that includes the hardware constraints in the
objective function9,76.

Multi-objective optimization. These methods are categorized into
scalarization methods and Pareto optimization typically using the
NSGA-II algorithm9. The first approach is a multi-objective optimization
method when several objective functions are combined via weighted
summation, weighted exponential sum or weighted product to set
up the significance of the objective term. This approach is useful to
set the priority for certain objective terms while not ignoring others,
and modifying this weighting based on requirements. During a search,
the weights are usually fixed, and multiple runs are required to find the
Pareto optimal set or to get a ‘truly’ optimum network model. There-
fore, speed is slow and depends on the number of search iterations with
different weights. In the second method, a set of Pareto optimal neural
network models is searched. The search can be implemented with the
evolutionary algorithm NSGA-II9, where the problem is formulated as
a linear combination of different objective functions. This method is
useful to find trade-offs between performance, accuracy and hardware
metrics, especially when searching for the optimal network model for
different hardware platforms. Search speed is slow compared with the
previous methods, as the whole set of network models on the Pareto
curve is searched.

Search strategies: algorithms for HW-NAS
After defining a problem formulation method, a search strategy should
be selected (Fig. 3). The search algorithm is a core component of NAS
and defines the flow of parameter search. There are three main optimi-
zation algorithms used for HW-NAS: reinforcement learning, evolution-
ary algorithms, and gradient-based methods, such as differentiable
search. Less common algorithms include random search and Bayesian
optimization. The search algorithm is independent of the problem
formulation methods shown in Fig. 2. For example, two different search
algorithms can be used in a two-stage problem formulation method
in different optimization stages, in a hybrid approach9. Constrained
optimization and scalarization method-based problem formulation can
be combined with most search strategies, for example reinforcement
learning, evolutionary algorithms and Bayesian optimization. Differ-
entiable search is easier to apply for differentiable parameters search,
for example, in the first stage of two-state methods when optimizing
the neural network model parameters, while using any other algorithm
(reinforcement learning or evolutionary algorithm) to optimize the
hardware or fine-tuning the model to fit hardware constraints8. Pareto
optimization problems are mainly addressed in the literature by evolu-
tionary algorithm approaches, such as NSGA-II77; however, the Pareto
optimal set can also be found using other methods78.

In reinforcement-learning-based NAS search, an agent interacts
with the environment and learns the best policy to take an action using
a trial-and-error approach. The environment is modelled with a Markov
decision process63. The algorithm aims to maximize the reward func-
tion. The main drawback of reinforcement learning is slow search speed
and high computational cost. Reinforcement learning can be applied
to RRAM-based architecture63 or used to find the best-performing

Nature Reviews Electrical Engineering

Review article

network models (considering the optimization of hardware resource
utilization in an RRAM-based architecture)69. Reinforcement-learning-
based automated weight pruning can also be applied for RRAM-based
crossbars72,79.

One of the best-known evolutionary algorithms is the genetic
algorithm, which is used in several HW-NAS frameworks9. The first

step of an evolutionary algorithm is the initialization of a population of
networks with a random combination of parameters to start the search.
The performance of the networks is then evaluated and scored based
on an objective function (also called the fitness function). The best-
performing networks are used in a mutation and crossover process,
where the parameters of these networks are mixed and some of the

Single-objective optimization

Multi-objective optimization

Two-state methods

Search for the best accuracy, then optimize for
hardware deployment

Constrained optimization

Consider the hardware cost as a constraint to
the optimization

Scalarization methods

One objective function with multiple objective terms
(power, area, etc.)

Pareto optimization (NSGA-II)

Find Pareto optimum with multiple objectives

max
α∈A

f (α,δ) max
α∈A

f (α,δ)

s.t. gi(α) ≤ Ti∀i ∈ I

max
α∈A

h(f1(α,δ), ..., fn(α,δ) max
α∈A

f1(α,δ), ..., fn(α,δ)

Architecture
parameters

Architecture
parameters

NN architecture
optimization

Hardware
optimization

Hardware optimization

Hardware
constraints

Optimum architecture

Optimum
architectureHW

parameters

HW
parameters

Objectives
coe�icients

Optimum architecture Pareto set of optimum architectures

Architecture
parameters

HW
parameters

Architecture
parameters

Best
architectures

HW
parameters

Accuracy

NN architecture and
hardware optimization NN architecture optimization

Accuracy

Accuracy

HW metrics

NN architecture
optimization

Accuracy

HW metrics

HW metrics

HW metrics

(multiple objectives)

HW performance

Ac
cu

ra
cy

When: Deploying well-performing model or getting
a sub-model for specific hardware

When: Defined priority of the objectives When: Trade-o� search and fitting to di�erent platforms

When: Known hardware constraints or specified platform

Hardware-aware neural architecture search methods

HW feedback

(objectives combined into one)

Fig. 2 | Problem formulation methods
in hardware-aware neural architecture
search. The methods search for a neural
network (NN) model α from the search
space A that maximizes a performance
metric f or several performance metrics fn
for a dataset δ. Constrained optimization
uses a hardware (HW) constraint gi with
a threshold Ti from a set of hardware
constraints I. h( ) is a combination of
several performance metrics that can
represent weighted summation, weighted
exponential sum or weighted product.
Data derived from ref. 9.

Nature Reviews Electrical Engineering

Review article

parameters are randomly changed to new ones to create a new popula-
tion. The process is repeated starting from evaluation for several itera-
tions, called generations, until convergence to a set of well-performing
network models70,80.

Gradient-based and differentiable search methods use the one-
shot NAS approach and weight sharing in a super-network (an over-
parametrized network)81. This approach combines all possible neural

network models with different parameters in a single super-network
using a weight-sharing technique. Compared with reinforcement learn-
ing and evolutionary algorithm methods, where the evaluated networks
are randomly sampled at the beginning of a search from the existing
parameters, the weights in a super-network in gradient-based methods
are trained at the same time as the search is performed. After train-
ing, the super-network is pruned to eliminate inefficient connections

State: St

Action: At

Reward: Rt

Rt+1

St+1

Environment

Agent

Initialization

Selection based on
an objective function

Mutation and/or
crossover

Termination

Layer 3

Layer 4

Layer 1

Layer 2

Layer 3

Layer 4

Layer 1

Layer 2

Trial and error
• Action/decision
• Interaction with environment
• Maximizing the reward

Reinforcement learning

• Initialization
• Mutation
• Compute the fitness function until

reaching an optimized set

Evolutionary algorithms

• Supernetwork using weights
 sharing methods
• One-shot NAS

Gradientbased methods

• Random search and Bayesian optimization:
 optimizing the hyperparameters mostly
 within the fixed micro-architecture

Other methods

Search space
Speed
Computational demand

Scalability
Memory requirements

Search space
Speed
Computational demand

Scalability
Memory requirements

Search space
Speed
Computational demand

Scalability
Memory requirements

Search space
Speed
Computational demand

Scalability
Memory requirements

Discrete
Slow
High

Not scalable
Small

Discrete
Average
Average

Not scalable
Small

Di�erentiable
Fast
Low

Scalable
Large

Discrete
Slow
High

Not scalable
Small

Advantages

EvaluationRandom sampling
of parameters

Random search

Bayesian optimization
(Bayesian probabilistic models to
eliminate the unwanted parameters)

Search strategies

Fig. 3 | Search strategies in hardware-aware neural architecture search.
Summary and comparison of search strategies and their performance parameters,
computation and resource requirements. Search strategies in hardware-
aware neural architecture search (HW-NAS) refer to the algorithms and search
techniques used in the search for the optimum parameters. Scalability refers
to how scalable the algorithm is when the search space grows. Even though the
evolutionary algorithms are not scalable when the search space increases, they

are often used as a second step in a two-state optimization, where the first step is
a scalable gradient-based method with a super-network search space. Gradient-
based methods are scalable, as the search time does not increase exponentially
with search space size. Computational demand and memory requirements refer
to the resources required to run the algorithm. The scalability of each algorithm
in terms of memory consumption depends on the specific algorithm and may
vary within the same subset of methods.

Nature Reviews Electrical Engineering

Review article

and blocks, creating a single optimum network. Differentiable search
is the only scalable approach with a differentiable search space, where
the search space does not grow exponentially with the increased num-
ber of searched hyperparameters. This approach is faster than other
methods, as it does not require the training of every single neural net-
work model and therefore has low computational demand. However,
differentiable search has high memory requirements for storing an
over-parameterized network. An example of differentiable NAS applied
to RRAM-based architecture is CMQ62. The super-network search can
be performed by evolutionary algorithm or Bayesian optimization
methods, which are also suitable for a discrete search space8.

Bayesian optimization82 excels in managing complex search spaces
by constructing and iteratively refining a probabilistic model of the
objective function. It balances exploration of new architectures and
exploitation of known effective configurations. This makes Bayesian
optimization a strong contender for optimizing hyperparameters
within a set macro-architecture of a neural network. However, it is
important to note that the search speed of Bayesian optimization
is relatively slow, comparable to that of reinforcement learning meth-
ods. Complementing Bayesian optimization, other strategies, such as
random search83, the multi-armed bandit approach84 and simulated
annealing85, also contribute to the field. Random search, with its sim-
plicity and unpredictability, offers a baseline performance metric
and can be effective in certain high-dimensional search spaces. The
multi-armed bandit approach, adept at efficiently navigating decisions
under uncertainty, and simulated annealing, inspired by metallurgical
cooling processes, both provide unique mechanisms for exploring the
search space. These methods are valuable for their distinctive ways of
handling search space complexities and often find use in scenarios
where more advanced techniques may not be as suitable or necessary.

Overall, reinforcement learning16 and evolutionary algorithms12
can produce good results, but they are slow and not scalable. The
search space and search time required for reinforcement learning and
evolutionary algorithms increase exponentially with the number of
searched hyperparameters. This problem is addressed by differentiable
search14, which is scalable and faster than reinforcement learning and
evolutionary algorithms. Therefore, differentiable search is useful for
a large search space with many parameters. However, it is important
to consider the gradient estimation techniques for non-differentiable
parameters. Bayesian optimization is also a promising search strat-
egy. Nevertheless, the application of Bayesian optimization for IMC
 hardware has not been explored yet.

Hardware cost estimation methods
A major factor in HW-NAS is the estimation methods for hardware
performance. There are four different methods for evaluation of a
hardware cost (Fig. 4): real-time estimation, lookup table (LUT)-based
methods, analytical estimation, and prediction models.

In real-time measurement-based methods, the hardware evalu-
ation is performed directly on target hardware in real time. In FPGA-
based or microcontroller-based designs, this implies the deployment
of the network model to real or simulated hardware9. For IMC architec-
tures, this can be performed directly on IMC chip or using circuit-level
simulations such as SPICE, which is difficult to automate. This method
ensures highly accurate performance estimation, and it is also scalable
for different models and across different hardware platforms; however,
it is slow, inefficient and impractical.

LUT-based methods involve the separate evaluation of hardware
metrics for every hardware parameter and its storage in a large LUT8,86.

During hardware evaluation in HW-NAS, LUTs are used to calculate the
total hardware metrics, which are the total energy, the latency or
the on-chip area, using the stored results. LUT-based methods are less
accurate than real-time measurements and prediction methods, espe-
cially when the communication between crossbar tiles or other hardware
blocks in IMC architecture is not considered. LUT-based methods are
less scalable than other methods, as with the increased search space, the
number of required measurements grows combinatorically with
the number of parameters. In addition, LUT-based methods are mod-
erately scalable across different neural network models and require
regeneration when transferred to other hardware platforms.

Analytical estimation methods imply computing rough esti-
mates of hardware metrics using mathematical equations (such as
DNN+NeuroSim87, MNSIM88,89, AIHWKit90 and PUMAsim45 for IMC-based
hardware). Such a method is fast and highly scalable when the search
space is increased. The scalability of this method across different
neural network models depends on how similar a new model is to the
already estimated one. The transferability across hardware platforms
also depends on the similarity of the hardware architectures. However,
it still is not as accurate as real-time measurements. It also requires
the initial estimation of hardware metrics from real-time hardware or
circuit-level simulations.

Prediction-based methods are based on ML and are trained to
use a linear regression or neural-network-based approach to predict
hardware metrics91–93. These methods require an initial set of hardware
parameters and hardware metrics stored in LUTs to train ML models and
are fast and highly scalable when adding new hyperparameters to the
search space. The scalability across neural network models depends
on the similarity of the models. Prediction-based methods support
differentiable NAS methods and are more accurate than analytical
estimation and LUT-based methods.

Other HW-NAS considerations
Each search strategy and algorithm contains a sampling part, where
the neural network models are sampled. In evolutionary algorithm and
reinforcement learning-based optimization frameworks, the network
models are sampled before the search. In contrast, in differentiable
NAS, the best-performing models are sampled after training a supernet.
The most common sampling method is uniform and random-uniform
sampling, which is simple and effective94. Other methods include Monte
Carlo sampling, which guarantees good performance and diversity
owing to the randomness of the sampling process, and the Stein vari-
ational gradient descent algorithm with regularized diversity, which
provides a controllable trade-off between the single-model perfor-
mance and the predictive diversity95. More advanced sampling methods
include attentive sampling aiming to produce a better Pareto front,
such as AttentiveNAS framework96, and dynamic adaptive sampling97,
where the sampling probability is adjusted according to the hardware
constraints.

As search parameters of a neural network models can be non-
differentiable, one of the main issues in differentiable NAS is the
relaxation of non-differentiable parameters when applying differen-
tiable search methods. As these methods require gradient calculation,
the search space should be differentiable. When it comes to HW-NAS
and searching for the hardware parameters, this becomes an even
more critical issue, as most of the hardware parameters and hardware
metrics are non-differentiable98. These relaxation methods allow gradi-
ent computation over discrete variables. The most common methods
include estimated continuous function, the REINFORCE algorithm, and

Nature Reviews Electrical Engineering

Review article

application of the Gumbel Softmax function using random Gumbel
noise in a computation9.

The main challenge in HW-NAS is search speed and runtime perfor-
mance. To improve the search speed of HW-NAS, several techniques,
including early stopping, hot start, proxy datasets and accurate predic-
tion models, are used9. In early stopping, the change in a loss function
is monitored for the first few training iterations instead of training
the neural network modes completely. In the hot start technique, the
search starts from the well-performing efficient network models rather
than random ones. In the application of the proxy dataset, small simple
datasets are used in the search first, and then the search results are fine-
tuned for more complex datasets. To speed up the search, accuracy
prediction methods can also be used for accuracy estimation instead
of training every sampled network9.

HW-NAS for IMC architectures
State-of-the-art HW-NAS frameworks for IMC
Manually searching for both the optimum design and processing
of in-memory architecture is unrealistic, as a search space becomes
huge when adding the architecture parameters16 (Supplementary
Fig. 2a). Besides neural network blocks, hyperparameter search and
optimized compression techniques, the search space for IMC archi-
tectures can be expanded to search for IMC crossbar-related hardware

components15–17,63. The IMC hardware search space considered in these
frameworks includes IMC crossbar size, ADC/DAC precision, device
precision and buffer size.

Between 2020 and 2023, several HW-NAS frameworks for IMC-
based neural network architectures have been introduced (Supplemen-
tary Fig. 2b–d and Table 1). Based on which parameters are searched
(Supplementary Fig. 2b), the HW-NAS methods for IMC architectures
can be divided into three main categories: (1) frameworks contain-
ing the ‘true’ NAS searching for the neural network components and
hyperparameters12–17,80,99–101; (2) frameworks in which quantization is
presented as an HW-NAS problem, and optimum bit-width is searched
considering the hardware feedback62,69,70; and (3) frameworks search-
ing for optimum pruning, formulating the problem as HW-NAS72,79.
Compared with ‘true’ NAS approaches, frameworks focused on only
quantization or pruning search for optimized model compression
techniques while using HW-NAS problem formulation techniques.

Based on the consideration of hardware parameters in a search
(Supplementary Fig. 2c), HW-NAS frameworks for IMC can be divided
into three categories: (1) frameworks for a fixed IMC architecture opti-
mizing a neural network model for a fixed hardware12–14,62,69,70,72,79,80,99–101,
(2) frameworks with hardware parameters search for a fixed model
optimizing IMC hardware for a certain application102, and (3) frame-
works for optimum model and architecture search optimizing both

Executed on a target hardware

Target hardware

Real-time measurements Accuracy
Speed
Model scalability

Transferability
Preprocessing

Highest
Slow
High

High
No

Search scalability High

LUTs constructed beforehand on a
target hardware and used in a search

Lookup table models Accuracy
Speed
Model scalability

Transferability
Preprocessing

Average
Average
Moderate

Moderate
One-time measurements

Search scalability Low
Xbar
...
ADC

Power Latency Area
10 µW
...
10 mW

100 ns
...
1 ns

1 µm2

...
1 mm2

Computing a rough estimate
using the related equations

Analytical estimation Accuracy
Speed
Model scalability

Transferability
Preprocessing

Average
Fast
Moderate/high

Moderate/low
Initial/estimations

Search scalability High

Using ML models for hardware
cost prediction

Prediction models Accuracy
Speed
Model scalability

Transferability
Preprocessing

High
Fast
Moderate/high

Moderate
Model/pretraining

Search scalability Moderate

Advantages

Measured
hardware
metrics

Power P = P1 + P2 + ... + Pn

T = T1 + T2 + ... + Tn

... ...
Latency

Hardware
parameters

Predicted
hardware
cost

Supports di�erentiable NAS

Fig. 4 | Hardware cost estimation methods for hardware-aware
neural architecture search. Model scalability refers to the scalability
across different neural network models. In analytical estimation,
model scalability depends on how similar a new model is to the one
with already estimated hardware cost metrics. Transferability refers
to transferability across different hardware platforms. Transferability
of lookup table (LUT) models and prediction models is moderate, as it
requires regeneration of LUTs and machine learning (ML) models for
prediction, respectively. Transferability of the analytical estimation
depends on how similar new hardware is to the already estimated
one. Search scalability refers to the scalability with increasing size of
the search space, when the number of search hyperparameters grows.
ADC, analog to digital converter; NAS, neural architecture search;
Xbar, crossbar. Data derived from ref. 9.

Nature Reviews Electrical Engineering

Review article

Table 1 | State-of-the-art hardware-aware neural architecture search frameworks for in-memory computing

Framework Q P N Network model search
space

Hardware
search space

Hardware
considerations

Algorithm Hardware
non-idealities

C Performance gains
and outcomes

AnalogNAS12
(2023)

— — ✓ Number of blocks,
channels, branches, kernel
size, widening factor

— AIHWKit90 EA Device variations,
conductance drift

✓ 2% ↑ accuracy, 4× ↓
time, 1.2× ↑ energy eff.
(vs ResNet32a,b)

Pareto-based
NAS14 (2022)

— — ✓ Convolution layer width,
depth, expansion ratio

— DNN + NeuroSim87 DS — — Pareto front (accuracy
vs latency)

NAS4RRAM13
(2021)

— — ✓ Layers, output channels
(residual blocks)

— Simulator for
RRAM-based
accelerator

EA Device variations
(thermal/shot
noises, RTN)

— >6% ↑ accuracy
(vs ResNet32b)

FLASH99 (2021) — — ✓ Number of skip
connections, cells, layers
per cell, channels per layer

— NeuroSim87 and
BookSim119

SHGO — — >27,729× ↑ speed
than RL

UAE101 (2021) ✓ — ✓ Number of channels, filter
height/width, weights bit-
width (integer/fraction bits)

— Analytical RL Device variations
(thermal/shot
noises, RTN),
programming errors

— 6.3% ↑ accuracyb
(vs NACIM17), robust
to device variations

GA for IMC AI
hardware80,100
(2020)

— — ✓ Number of layers, neurons,
channels, activation
functions, kernel size

— Analytical GA Device variations
(Gaussian),
conductance
deviation, device
failure

— ∼2× ↑ speed vs
grid search for
small networks,
↑↑ accuracy vs
using NASc

NAX15 (2021) — — ✓ Kernel size Crossbar size GENIEx112
(non-idealities)

DS Wire resistances,
source/sink
resistances

— 0.8% ↑ accuracy 17%
↓ EDAP (vs ResNet20b)

Gibbon16 (2022) ✓ — ✓ Number of blocks, output
channels, groups (for
group convolution), kernel
size, weights/activations
bit-width

Crossbar size,
ADC/DAC
resolution,
device
precision

MNSIM89 EA Device variations — 8.4–41.3× ↑ speed,
10.7% ↑ accuracyb,
6.48x ↓ EDP
(vs refs. 13,17,101)

NACIM17 (2020) ✓ — ✓ Network hyperparameters,
weights bit-width (integer/
fraction bits)

Tile size, buffer
size, bandwidth

DNN + NeuroSim87 RL Device variations — 3% ↑ accuracyb (vs
VGG11), high accuracy
with device variations

CF-MESMO for
RRAM102 (2021)

— — — — Crossbar
size, device
precision,
frequency

DNN + NeuroSim87 CF- MESMO Device variations
(thermal/shot
noises, RTN)

— Pareto front
and 90.91% ↓ in
computation cost
(vs NSGA-II)

CMQ62 (2022) ✓ — — Quantization threshold and
weights bit-width

— MINT120 DS Device variations
(Gaussian)

— 2.04% ↑ accuracyb
(vs fixed-precision
model for ResNet20)

Mixed-precision
quantization63
(2021)

✓ — — Weights bit-width
(total + fraction), inputs
bit-width (total + fraction)

ADC precision PUMAsim45 RL — — 4.84× ↓ energy,
3.98× ↓ latency
(vs 16-bit LeNet model)

EGQ70 (2021) ✓ — — Weights/activations
bit-width

— DNN + NeuroSim87 GA — — 1.2–1.6 ↑ TOPs/Wd,
5–25% ↓ areab
(vs fixed-precision
model for VGG8)

RaQU69 (2021) ✓ — — Weights/kernels bit-width — Analytical RL — — 18% ↑ utilization,
3.3% ↑ accuracyb
(vs fixed-precision
model for ResNet18)

ASBP79 (2021) — ✓ — Bits of weights — Analytical RL — — 79% ↓ energy, 55% ↓
areab (vs unpruned bit
model for ResNet18)

Auto-prune72
(2021)

— ✓ — Weights (pruned
unimportant columns)

— MNSIM89 RL — — 9x ↑ area eff.,
12× ↑ energy eff.b
(vs unpruned bit
model for VGG16)

ADC/DAC, analog to digital or digital to analog converters; AI, artifical intelligence; C, available open-source code; DS, differentiable search; EA, evolutionary algorithm; EDAP, energy–delay–
area product; EDP, energy–delay product; eff., efficiency; GA, genetic algorithm; HW-NAS, hardware-aware neural architecture search; IMC, in-memory computing; N, neural architecture
search; P, automated pruning; Q, quantization search; RL, reinforcement learning; RRAM, resistive random-access memory;RTN, random telegraph noise. aHardware implementation of
ResNet32 with phase-change memory devices. bFor CIFAR-10. cWithout consideration of hardware non-idealities. dTOPs/W, tera operations per second per watt (energy efficiency).

Nature Reviews Electrical Engineering

Review article

neural network model parameters and hardware parameters15–17,63.
The frameworks for a fixed architecture are designed to optimize the
neural network model for a specific IMC hardware. This approach is
the most widespread method employed for adjusting a neural network
model for a specific ready IMC architecture considering hardware
constraints12–14,62,69,70,72,79,80,99–101. Frameworks for IMC hardware param-
eters search for a fixed neural network model formulate a hardware
optimization problem as a single- or multi-objective optimization
problem, rather than optimizing the design manually or using brute
force approaches102. The HW-NAS frameworks for both neural network
model and IMC hardware parameters search perform co-optimization
of software and hardware parameters. This approach is useful to obtain
optimum hardware solutions for a particular application, especially at
the initial design stages.

In addition, state-of-the-art HW-NAS frameworks can be catego-
rized based on the algorithm used in a search (Supplementary Fig. 2d).
The detailed description of each framework and mathematical repre-
sentation of the problem formulation can be found in Supplementary
Note 3.

An HW-NAS framework for IMC that can simultaneously prune,
quantize and perform NAS in one flow has not been reported yet. The
baseline and optimization functions for the state-of-the-art HW-NAS
frameworks for IMC are different, and these frameworks focus on dif-
ferent neural network models and different search strategies (Table 1).
Therefore, comparing the performance and search speed of these
frameworks is difficult. It is important to note that the state-of-the-
art frameworks for HW-NAS for IMC are mostly designed for different
types of convolutional neural networks, and it is still an open prob-
lem to apply HW-NAS techniques to other types of neural network
 architectures implemented on IMC hardware.

Two-stage optimization versus joint optimization
The HW-NAS can be divided into the search of an optimized model
for a specific hardware architecture taking hardware constraints into
account, and co-optimization of a neural network model and hardware
parameters (Supplementary Fig. 2c). The second is useful when design-
ing IMC hardware for a specific application, especially when hardware
efficiency is critical. As illustrated in Table 1, only a few HW-NAS frame-
works for IMC include hardware parameters in the search and perform
hardware–software co-optimization. The hardware parameter search
can help to design a more efficient hardware implementation of an IMC
architecture. To include IMC hardware parameters in the search, there
are two possible scenarios of HW-NAS frameworks: two-stage optimiza-
tion and joint optimization. Comparing it to the problem formulation
techniques of HW-NAS shown in Fig. 2, two-stage optimization falls
into the category of two-state methods, whereas joint optimization
refers to the rest of the HW-NAS problem formulation methods.

In the two-stage optimization, a neural network model search
space and hardware search space are separated. After defining the
neural network model search space, the set of networks is sampled
followed by HW-NAS to select a set of models with high-performance
accuracy using a certain search algorithm. When the best-performing
networks are selected, the set of networks is passed to the second
stage of optimization. In the second optimization stage, the optimum
hardware parameters are searched from the set of sampled hardware
parameters. Finally, the second search stage outputs the optimum
neural network model(s) and optimum hardware parameters.

In joint optimization, a large joint search space consisting of neural
network models and hardware parameters is sampled to create a set of

random neural network models. Then, HW-NAS is performed, search-
ing for the optimum neural network model and hardware parameters
simultaneously. Both performance accuracy and hardware metrics
are used to evaluate the performance sampled networks and find the
most optimum design.

Two-stage optimization can simplify the search, as the best-
performing models are selected in the first stage only based on per-
formance accuracy. This makes the search space smaller in the second
stage, where hardware parameters are selected. However, this approach
can lead to local optimization and might not explore the search space
fully. In joint optimization, the search space is large, which can make the
search slower and more complex. However, it also allows the selection
of the best-performing models considering design parameters and
has more probability of reaching the global solution. Also, as shown
in ref. 15, there is a correlation between the hardware parameters and
performance accuracy. In addition, the problem formulation methods
and end goal of HW-NAS should be considered when selecting the
methods to add the hardware parameters to the search.

Outlook and recommendations
Even though methods and frameworks for hardware–software
co-design techniques for IMC, and HW-NAS in particular, have already
been developed, there are still several open challenges in HW-NAS for
IMC to be addressed. This section covers the open issues and future
research directions for HW-NAS for IMC and provides recommenda-
tions for hardware evaluation techniques, mapping neural network
models to hardware, and IMC system co-optimization.

Open problems and challenges in HW-NAS for IMC
A roadmap for HW-NAS for IMC architectures, including state-of-the-
art frameworks, open problems and future development, is illustrated
in Fig. 5. One of the main challenges is the lack of a unified framework
searching for both neural network design parameters and hardware
parameters. Moreover, none of the reported HW-NAS frameworks
for IMC can prune, quantize and perform NAS in one flow. Combin-
ing these three optimizations in a single framework and optimizing
a search time for such a large search space is an open challenge for
IMC architectures. One example of a similar existing framework is
APQ, which targets a constrained NAS problem but for a digital neural
network accelerator8.

Different frameworks focus on different hardware implementa-
tions and parameters, and different neural network designs (Table 1).
Most of the frameworks focus only on specific issues without consider-
ing various HW aspects, such as the study of the correlation between
crossbar size and convolution kernel sizes in the search engine NAX15.
Therefore, a fair comparison between methods for HW-NAS for IMC is
not possible, which leads to a lack of benchmarking of various HW-NAS
techniques and search strategies. For the end user, it is still challenging
to understand which search algorithm will perform better, what possi-
ble speed-up could be provided by certain algorithms, and which tech-
niques of HW-NAS are the most efficient for IMC applications. There
is a lack of quantitative comparison of HW-NAS methods, especially
considering various hardware parameters in the search.

Moreover, state-of-the-art HW-NAS frameworks for IMC archi-
tectures focus mostly on different types of convolutional neural
networks for computer vision applications, such as ResNet or VGG.
However, there are many other neural network types to which the
HW-NAS approach for IMC architectures has not yet been applied,
such as transformer-based networks103 or graph networks104.

Nature Reviews Electrical Engineering

Review article

There are open challenges related to hardware–software co-design of
such models and IMC architectures for various applications, for example
biomedical tasks105, language processing106 or recommender systems81.

In addition to the lack of HW-NAS frameworks for IMC focus-
ing on diverse neural network models, the same applies to HW-NAS
benchmarks. In NAS, benchmarks are the datasets describing the
accuracy of all the sampled architectures in a certain search space107.
NAS benchmarks are important to ensure reproducibility of the experi-
ments and comparison of different methods and algorithms, avoid-
ing extensive computations when generating a search space. These
include NAS-Bench-101 (ref. 108), NAS-Bench-201 (ref. 109) and NAS-
Bench-360 (ref. 110). It is also important to extend such benchmarks to
the hardware domain. For example, HW-NAS benchmarks, including
energy and latency, for different types of edge devices, such as mobile
devices, ASIC and FPGA, have been demonstrated86. An HW-NAS bench-
mark for IMC architectures is still an open problem, which is essential
to be addressed for further development of HW-NAS algorithms for
IMC applications.

From the hardware perspective, most existing frameworks for
HW-NAS for IMC focus on the standard mixed-signal IMC architec-
ture14,17,70,99, because of the availability of open-source frameworks for
hardware evaluation, such as DNN+NeuroSim87. However, there are
a lot of other IMC architectures, where different design parameters,
devices and technologies are used. The main issue is the adaptation
of state-of-the-art HW-NAS frameworks for the other IMC hardware
architectures without implementing the frameworks from scratch.

Further development is required in hardware–software co-design
techniques to transfer the neural network model from software to hard-
ware. Techniques to speed up the hardware simulation are needed. Even
though most HW-NAS frameworks for IMC use software-level simula-
tions (such as Python or C++) to approximate and speed up simulations
of circuits and architectures (as for SPICE-level simulations), further
development and improvements in hardware–software co-design frame-
works are required7. Moreover, hardware–software co-design includes

IMC-related compiler optimizations, which can translate deep learning
operations to IMC-friendly hardware implementations.

The complexity and runtime issues of the search algorithms
should also be addressed. Although there are various methods to
speed up HW-NAS, the architecture search is still complex and slow,
especially when a lot of search parameters are considered. Moreover,
the complexity of HW-NAS increases even further when IMC hardware
search space is considered. In most of the search strategies, except
the differentiable search, the search time and search space increase
exponentially with the number of search parameters.

Finally, the step further is to create fully automated NAS methods
capable of constructing new deep learning operations and algorithms
suitable for IMC with minimal human design. One such approach for
general ML algorithms and neural networks is illustrated by AutoML-
Zero111, which automatically searches for the whole ML algorithm,
including the model, optimization procedures and initialization tech-
niques, with minimum restriction on the form and only simple math-
ematical operations. Such algorithms aim to reduce human intervention
in the design and allow constructing of an algorithm and neural network
model without predefined complex building blocks, which can adapt
to different tasks. Adding IMC-awareness to such methods is a step
 forward in fully automating IMC-based neural network hardware design.

Hardware evaluation frameworks
The frameworks for HW-NAS require the estimation of the hardware
metrics, even when not searching for the hardware parameters. Sev-
eral open-source hardware estimation frameworks can be used to
estimate hardware metrics for standard IMC architecture, such as
DNN+NeuroSim87 and PUMAsim45. Both frameworks allow setting up of
several computation cores (crossbars) and architecture-related param-
eters. NeuroSim also includes several hardware non-idealities and preci-
sion parameters. In addition, adding hardware non-idealities and noise
effects to the search framework is an essential step toward developing
highly effective surrogate models, as they can affect the performance

GA for IMC
AI hardware

UAE
NAS4RRAM
FLASH

NACIM

Pre-2020 2020 2021 2022 2023 Future

HW-NAS for CPUs,
GPUs, ASICs, FPGAs,
micro-architectures

CF-MESMO

ASBP
auto-prune
EGQ RaQU

NAX

Pareto-based
NAS

Mixed-precision
quantification

CMQ Gibbon Analog
NAS

Including IMC hardware non-idealities in the search

• Unified framework for
HW-NAS for IMC

• Di�erent networks and
HW-NAS benchmarks

• Fully automated HW-NAS
methods for IMC hardware
design

• Adapting existing HW-NAS
methods for di�erent IMC
hardware

• Improving software–hardware
co-design tools

• Solving complexity and
runtime issuesIMC hardware parameters search in HW-NAS frameworks

Including pruning and/or quantization in HW-NAS for IMC
Pareto-based optimization for IMC

HW-NAS methods
for di�erent types
of hardware State-of-the-art HW-NAS methods for IMC architectures

Future development of HW-NAS
for IMC architectures

Fig. 5 | Roadmap for hardware-aware neural architecture search for in-
memory computing. Summary of what has been accomplished by state-of-
the-art hardware-aware neural architecture search (HW-NAS) frameworks for
in-memory computing (IMC), and main perspectives and directions for future

development. AI, artificial intelligence; ASIC, application-specific integrated
circuit; CPU, central processing unit; FPGA, field-programmable gate array;
GPU, graphical processing unit; GA, genetic algorithm.

Nature Reviews Electrical Engineering

Review article

accuracy and hardware metrics, and also can be compensated by the
selected neural network model parameters15,80,100. One of the open-
source frameworks that can be used for IMC hardware non-idealities
simulations is GENIEx112. For the non-standard designs, there is still a
lack of open-source frameworks, so designers are still required to create
custom hardware evaluation frameworks for non-trivial IMC architec-
ture or customize the existing ones. This challenge can be addressed
by developing a framework generating IMC hardware description
automatically from a neural network model.

Mapping deep neural network models to IMC hardware
Another drawback of the state-of-the-art HW-NAS models for IMC is the
lack of consideration of dataflow optimization methods and mapping
techniques of ML model to the IMC hardware. Dataflow optimization
involves consideration of data movement, including transmission of
inputs, outputs, intermediate values and control instructions within the
IMC architecture and to the external system components, while map-
ping covers the split of the neural network model across the available
hardware resources. In addition to the several layers of the hierarchy of
the IMC architecture, including processing elements, computing ele-
ments, and tiles (Supplementary Fig. 1), which should be considered for
efficient mapping, the IMC accelerator is also connected to the external
memory and cache system (Supplementary Fig. 3). Global registers,
SRAM global buffer, cache and DRAM are used for storing and fetch-
ing inputs, outputs and neural network weights (in the case of larger
deep neural networks when all the layers cannot fit into the accelerator
processing elements). Some IMC systems can also have a local cache,
such as the RIMAC IMC accelerator that contains a local analog cache to
reduce the overhead of ADCs and DACs47. The benefits of IMC — energy
efficiency and low latency — can fully be exploited only if the data-path
and data-mapping to the external memory are optimized113.

Depending on the workloads and types of layers, the optimum
mapping varies. For example, there are several ways to map the con-
volution layer to the crossbar, including dense and sparse mapping75.
However, depth-wise separable convolution layers should be converted
to a dense layer form, which yields highly inefficient performance114.
Mapping of neural network layers to processing elements, computing
elements and tiles is considered in the existing IMC hardware simula-
tors. The design space exploration framework, for example, supports
different types of mapping and investigates its effects on the RRAM-
based IMC architecture performance75. HW-NAS frameworks based on

NeuroSim87 and AIHWKit90 consider the mapping to the real hardware
models, and NeuroSim performs the optimization of hardware utiliza-
tion. Nevertheless, the types of supported layers are still limited, and
the hardware architecture is fixed.

In contrast, optimization of data movement from and to the exter-
nal memory, fetching and storing inputs and outputs considering
different levels of the external memory hierarchy, is rarely done in the
existing frameworks113. The trade-off between the global buffer or cache
sizes and the data movement time affects IMC hardware efficiency.
Spatial and temporal data reuse can also reduce latency and improve
energy efficiency. Therefore, mapping ML and neural network models
to IMC hardware considering the data path and the external memory
based on the workloads is a separate optimization problem. One of the
existing frameworks that can be used for these purposes is ZigZag115,
which aims to optimize even and uneven mapping to large balanced
and unbalanced memory hierarchy design space and is suitable for
IMC hardware accelerators113.

HW-NAS and IMC co-optimization
As of the beginning of 2024, HW-NAS frameworks for IMC applications
mostly cover device-related, circuit-related and algorithm-related
optimizations (Fig. 6). However, to design the optimized IMC hardware,
the architecture- and system-level design should also be optimized.
Therefore, it is important to combine HW-NAS with other optimization
techniques.

In most state-of-the-art HW-NAS optimization frameworks, the
architecture is fixed, including mapping and communication between
tiles. However, architecture-related details in IMC architectures should
also be optimized. For example, effective on-chip communication and
optimized interconnect choice are critical for IMC hardware44.

The system-level design is the part responsible for translating the
algorithm to the hardware, which also requires optimization. From
the programming perspective, there are various high-level hard-
ware–software co-design concepts requiring design and optimiza-
tion, including communication of the IMC accelerator with the CPU,
programming commands and instructions, issues with shared off-chip
memory, and automated scheduling. These challenges related to accel-
erator programming are rarely considered by IMC hardware designers,
even though there are many design aspects to optimize116.

In most cases, IMC accelerators are not used as a standalone sys-
tem and are considered as co-processors that need to communicate

• Non-idealities
• Device precision
• Device choice
• Crossbar cell

• Circuit configuration
• Crossbar size
• ADC precision
• Mapping

•
• Mapping

Tile configuration

• Routing
• Communication
 between blocks

• Dataflow
• Scheduling
• ISA
• Synchronization with CPU,
 global memory, cache

• Network blocks
• Quantization
• Pruning
• Application

What is optimized

What is a�ected

Device Circuit blocks Architecture System
Algorithm and
neural network model

Hardware metrics (energy, latency, area, etc.)

Performance (accuracy, loss, etc.)

Covered by HW-NAS

Compiler

Fig. 6 | Place of hardware-aware neural architecture search in hardware–
software co-design. Hardware–software co-design flow covers the optimization
of devices, circuits, architectures, systems and algorithms. Hardware-aware
neural architecture search (HW-NAS) can be involved in device-level, circuit-level

and algorithm-level optimizations. Including optimization of architecture and
system-related parameters in HW-NAS is a potential direction of future research,
which could help to automate hardware–software co-design and further improve
the optimized solutions.

Nature Reviews Electrical Engineering

Review article

with the host CPU. Control and instruction units on both sides, CPU
and IMC accelerator, and extending instruction set architecture are
thus needed. Extending instruction set architecture is an abstraction
of hardware–software interface defining the main hardware opera-
tions and control commands. This interface is a key to support the
implementation of different algorithms on hardware117, including
mapping different types of neural networks to IMC hardware. Creat-
ing instruction set architectures and optimizing the programming of
an IMC architecture using high-level languages is important for IMC
architectures118. Hardware compilers and automated translation of
the software commands to hardware implementation are also open
challenges for IMC architectures.

Often external DRAM should be shared between the CPU and
IMC accelerator to support storage of large models and large tensors
that do not fit on on-chip memories. This point brings in other design
issues to consider and optimize, including data sharing, virtual address
translation (to translate the memory address used by IMC architecture
to the global DRAM address) and cache coherence (if the IMC accelera-
tor shares the cache with the CPU). Also, as swapping and re-loading
neural network weights to IMC architecture can reintroduce data move-
ment issues, it can be more practical to split the large network models
between the CPU and weight-stationary IMC architecture when it does
not fit an IMC accelerator. This point might require additional opti-
mization. Another optimization challenge is the automated runtime
scheduling of IMC tasks116. Therefore, consideration of the higher-level
programming perspective, automating and simplifying the translation
of the software algorithms to hardware, is the next optimization step in
IMC hardware accelerators for ML and neural network applications.
In general, it is crucial to combine HW-NAS with other optimization
techniques to design efficient IMC hardware for AI and ML applications.

Published online: xx xx xxxx

References
1. Bengio, Y., Lecun, Y. & Hinton, G. Deep learning for AI. Commun. ACM 64, 58–65 (2021).

This work provides an overview of deep learning methods for artificial intelligence
applications and related future directions.

2. Krestinskaya, O., James, A. P. & Chua, L. O. Neuromemristive circuits for edge computing:
a review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23 (2019).

3. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices.
Nat. Electron. 1, 333–343 (2018).

4. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and
applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
This work explains the importance of and highlights the application landscape of
in-memory computing, and also includes an overview of in-memory computing devices.

5. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater.
18, 309–323 (2019).

6. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing.
Nat. Nanotechnol. 8, 13–24 (2013).

7. Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).
This work benchmarks in-memory computing architectures, presents the
requirements for device metrics based on different applications and provides
an in-memory computing roadmap.

8. Wang, T. et al. Apq: joint search for network architecture, pruning and quantization
policy. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
2078–2087 (IEEE/CVF, 2020).

9. Benmeziane, H. et al. A comprehensive survey on hardware-aware neural architecture
search. Preprint at https://doi.org/10.48550/arXiv.2101.09336 (2021).

10. Chitty-Venkata, K. T. & Somani, A. K. Neural architecture search survey: a hardware
perspective. ACM Comput. Surv. 55, 1–36 (2022).

11. Benmeziane, H. et al. Hardware-aware neural architecture search: survey and taxonomy.
In Proc. Thirtieth International Joint Conference on Artificial Intelligence 4322–4329
(IJCAI, 2021).

12. Benmeziane, H. et al. AnalogNAS: a neural network design framework for accurate
inference with analog in-memory computing. In 2023 IEEE International Conference
on Edge Computing and Communications (EDGE) 233–244 (IEEE, 2023).

13. Yuan, Z. et al. NAS4RRAM: neural network architecture search for inference on
RRAM-based accelerators. Sci. China Inf. Sci. 64, 160407 (2021).

14. Guan, Z. et al. A hardware-aware neural architecture search Pareto front exploration for
in-memory computing. In 2022 IEEE 16th International Conference on Solid-State
& Integrated Circuit Technology (ICSICT) 1–4 (IEEE, 2022).

15. Negi, S., Chakraborty, I., Ankit, A. & Roy, K. NAX: neural architecture and memristive xbar
based accelerator co-design. In Proc. 59th ACM/IEEE Design Automation Conference
451–456 (IEEE, 2022).

16. Sun, H. et al. Gibbon: efficient co-exploration of NN model and processing-in-memory
architecture. In 2022 Design, Automation and Test in Europe Conference and Exhibition
(DATE) 867–872 (IEEE, 2022).

17. Jiang, W. et al. Device-circuit-architecture co-exploration for computing-in-memory
neural accelerators. IEEE Trans. Comput. 70, 595–605 (2020).

18. Elsken, T., Metzen, J. H. & Hutter, F. Neural architecture search: a survey. J. Mach. Learn.
Res. 20, 1997–2017 (2019).

19. Ren, P. et al. A comprehensive survey of neural architecture search: challenges and
solutions. ACM Comput. Surv. 54, 1–34 (2021).
This work provides a survey on neural architecture search from the software,
algorithms and frameworks perspective.

20. Sekanina, L. Neural architecture search and hardware accelerator co-search: a survey.
IEEE Access 9, 151337–151362 (2021).

21. Zhang, X., Jiang, W., Shi, Y. & Hu, J. When neural architecture search meets hardware
implementation: from hardware awareness to co-design. In 2019 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI) 25–30 (IEEE, 2019).

22. Efnusheva, D., Cholakoska, A. & Tentov, A. A survey of different approaches for
overcoming the processor-memory bottleneck. Int. J. Comput. Sci. Inf. Technol. 9,
151–163 (2017).

23. Liu, B. et. al. Hardware acceleration for neuromorphic computing: An evolving view.
In 15th Non-Volatile Memory Technology Symposium (NVMTS) 1–4 (IEEE, 2015).

24. Yantır, H. E., Eltawil, A. M. & Salama, K. N. IMCA: an efficient in-memory convolution
accelerator. IEEE Trans. Very Large Scale Integr. Syst. 29, 447–460 (2021).

25. Fouda, M. E., Yantır, H. E., Eltawil, A. M. & Kurdahi, F. In-memory associative processors:
tutorial, potential, and challenges. IEEE Trans. Circuits Syst. II Express Briefs 69,
2641–2647 (2022).

26. Yantır, H. E., Eltawil, A. M. & Salama, K. N. A hardware/software co-design methodology
for in-memory processors. J. Parallel Distrib. Comput. 161, 63–71 (2022).

27. Lotfi-Kamran, P. et al. Scale-out processors. ACM SIGARCH Comput. Archit. N. 40,
500–511 (2012).

28. Ali, M. et al. Compute-in-memory technologies and architectures for deep learning
workloads. IEEE Trans. Very Large Scale Integr. Syst. 30, 1615–1630 (2022).

29. Ielmini, D. & Pedretti, G. Device and circuit architectures for in‐memory computing.
Adv. Intell. Syst. 2, 2000040 (2020).
This work provides an extensive overview of in-memory computing devices.

30. Lanza, M. et al. Memristive technologies for data storage, computation, encryption,
and radio-frequency communication. Science 376, eabj9979 (2022).
This work reviews in-memory computing devices, related computations and their
applications.

31. Mannocci, P. et al. In-memory computing with emerging memory devices: status and
outlook. APL Mach. Learn. 1, 010902 (2023).

32. Sun, Z. et al. A full spectrum of computing-in-memory technologies. Nat. Electron.
https://doi.org/10.1038/s41928-023-01053-4 (2023).

33. Smagulova, K., Fouda, M. E., Kurdahi, F., Salama, K. N. & Eltawil, A. Resistive neural
hardware accelerators. Proc. IEEE 111, 500–527 (2023).
This work provides an overview of in-memory computing-based deep learning
accelerators.

34. Rasch, M. Neural network accelerator design with resistive crossbars: opportunities and
challenges. IBM J. Res. Dev. 63, 10:11–10:13 (2019).

35. Ankit, A., Chakraborty, I., Agrawal, A., Ali, M. & Roy, K. Circuits and architectures for
in-memory computing-based machine learning accelerators. IEEE Micro 40, 8–22 (2020).

36. Gebregiorgis, A. et al. A survey on memory-centric computer architectures. ACM J.
Emerg. Technol. Comput. Syst. 18, 1–50 (2022).

37. Aguirre, F. et al. Hardware implementation of memristor-based artificial neural networks.
Nat. Commun. 15, 1974 (2024).

38. Rasch, M. J. et al. Hardware-aware training for large-scale and diverse deep learning
inference workloads using in-memory computing-based accelerators. Nat. Commun. 14,
5282 (2023).

39. Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change
memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

40. Fick, L., Skrzyniarz, S., Parikh, M., Henry, M. B. & Fick, D. Analog matrix processor for edge
AI real-time video analytics. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC) 260–262 (IEEE, 2022).

41. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Comput. Archit. Netw. 44, 14–26 (2016).

42. Krishnan, G. et al. SIAM: chiplet-based scalable in-memory acceleration with mesh for
deep neural networks. ACM Trans. Embedded Comput. Syst. 20, 1–24 (2021).
This work provides an overview of the hierarchical system-level design of in-memory
computing accelerators for deep neural networks.

43. Ankit, A. et al. Panther: a programmable architecture for neural network training
harnessing energy-efficient reram. IEEE Trans. Comput. 69, 1128–1142 (2020).

44. Krishnan, G. et al. Impact of on-chip interconnect on in-memory acceleration of deep
neural networks. ACM J. Emerg. Technol. Comput. Syst. 18, 1–22 (2021).

https://doi.org/10.48550/arXiv.2101.09336
https://doi.org/10.1038/s41928-023-01053-4

Nature Reviews Electrical Engineering

Review article

45. Ankit, A. et al. PUMA: a programmable ultra-efficient memristor-based accelerator for
machine learning inference. In Proc 24th International Conference on Architectural
Support for Programming Languages and Operating Systems 715–731 (ACM, 2019).

46. Li, W. et al. TIMELY: pushing data movements and interfaces in PIM accelerators towards
local and in time domain. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA) 832–845 (IEEE, 2020).

47. Chen, P., Wu, M., Ma, Y., Ye, L. & Huang, R. RIMAC: an array-level ADC/DAC-free ReRAM-
based in-memory DNN processor with analog cache and computation. In Proc. 28th Asia
and South Pacific Design Automation Conference 228–233 (ACM, 2023).

48. Zhang, B. et al. PIMCA: a programmable in-memory computing accelerator
for energy-efficient dnn inference. IEEE J. Solid-State Circ. 58, 1436–1449 (2022).

49. Kim, D. E., Ankit, A., Wang, C. & Roy, K. SAMBA: sparsity aware in-memory computing
based machine learning accelerator. IEEE Trans. Comput. 72, 2615–2627 (2023).

50. Jain, S. et al. A heterogeneous and programmable compute-in-memory accelerator
architecture for analog-AI using dense 2-D mesh. IEEE Trans. Very Large Scale Integr.
Syst. 31, 114–127 (2022).

51. Wang, X. et al. TAICHI: a tiled architecture for in-memory computing and heterogeneous
integration. IEEE Trans. Circ. Syst. II Express Briefs 69, 559–563 (2021).

52. Wan, W. et al. A compute-in-memory chip based on resistive random-access memory.
Nature 608, 504–512 (2022).

53. Hung, J.-M. et al. A four-megabit compute-in-memory macro with eight-bit precision
based on CMOS and resistive random-access memory for AI edge devices. Nat. Electron.
4, 921–930 (2021).

54. Xue, C.-X. et al. A 22nm 4Mb 8b-precision ReRAM computing-in-memory macro with
11.91 to 195.7 TOPS/W for tiny AI edge devices. In IEEE International Solid-State Circuits
Conference (ISSCC) 245–247 (IEEE, 2021).

55. Khwa, W.-S. et al. A 40-nm, 2M-cell, 8b-precision, hybrid SLC-MLC PCM computing-in-
memory macro with 20.5-65.0 TOPS/W for tiny-Al edge devices. In IEEE International
Solid-State Circuits Conference (ISSCC) 1–3 (IEEE, 2022).

56. Jia, H. et al. Scalable and programmable neural network inference accelerator based on
in-memory computing. IEEE J. Solid State Circuits 57, 198–211 (2021).

57. Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory
computing. Nature 601, 211–216 (2022).

58. Krestinskaya, O., Zhang, L. & Salama, K. N. Towards efficient RRAM-based quantized
neural networks hardware: state-of-the-art and open issues. In IEEE 22nd International
Conference on Nanotechnology (NANO) 465–468 (IEEE, 2022).

59. Joshi, V. et al. Accurate deep neural network inference using computational phase-
change memory. Nat. Commun. 11, 2473 (2020).

60. Cao, T. et al. A non-idealities aware software–hardware co-design framework for edge-ai
deep neural network implemented on memristive crossbar. IEEE J. Emerg. Sel. Top.
Circuits Syst. 12, 934–943 (2022).

61. Wen, W., Wu, C., Wang, Y., Chen, Y. & Li, H. Learning structured sparsity in deep neural
networks. Adv. Neural Inf. Proc. Syst. 29, 2074–2082 (2016).

62. Peng, J. et al. CMQ: crossbar-aware neural network mixed-precision quantization via
differentiable architecture search. IEEE Trans. Comput. Des. Integr. Circuits Syst. 41,
4124–4133 (2022).

63. Huang, S. et al. Mixed precision quantization for ReRAM-based DNN inference
accelerators. In Proc. 26th Asia and South Pacific Design Automation Conference 372–377
(ACM, 2021).

64. Meng, F.-H., Wang, X., Wang, Z., Lee, E. Y.-J. & Lu, W. D. Exploring compute-in-memory
architecture granularity for structured pruning of neural networks. IEEE J. Emerg. Sel.
Top. Circuits Syst. 12, 858–866 (2022).

65. Krestinskaya, O., Zhang, L. & Salama, K. N. Towards efficient in-memory computing
hardware for quantized neural networks: state-of-the-art, open challenges and
perspectives. IEEE Trans. Nanotechnol. 22, 377–386 (2023).

66. Li, Y., Dong, X. & Wang, W. Additive powers-of-two quantization: an efficient non-
uniform discretization for neural networks. In International Conference on Learning
Representations (ICRL) (ICRL, 2020).

67. Karimzadeh, F., Yoon, J.-H. & Raychowdhury, A. Bits-net: bit-sparse deep neural network
for energy-efficient RRAM-based compute-in-memory. IEEE Trans. Circuits Syst. I: Regul.
Pap. 69, 1952–1961 (2022).

68. Yang, H., Duan, L., Chen, Y. & Li, H. BSQ: exploring bit-level sparsity for mixed-precision
neural network quantization. In International Conference on Learning Representations
(ICRL) (ICRL, 2020).

69. Qu, S. et al. RaQu: an automatic high-utilization CNN quantization and mapping
framework for general-purpose RRAM accelerator. In 2020 57th ACM/IEEE Design
Automation Conference (DAC) 1–6 (IEEE, 2020).

70. Kang, B. et al. Genetic algorithm-based energy-aware CNN quantization for
processing-in-memory architecture. IEEE J. Emerg. Sel. Top. Circuits Syst. 11,
649–662 (2021).

71. Li, S., Hanson, E., Li, H. & Chen, Y. Penni: pruned kernel sharing for efficient CNN
inference. In International Conference on Machine Learning 5863–5873 (PMLR, 2020).

72. Yang, S. et al. AUTO-PRUNE: automated DNN pruning and mapping for ReRAM-based
accelerator. In Proc. ACM International Conference on Supercomputing 304–315
(ACM, 2021).

73. Zhang, T. et al. Autoshrink: a topology-aware NAS for discovering efficient neural
architecture. In Proc. AAAI Conference on Artificial Intelligence 6829–6836 (AAAI, 2020).

74. Cheng, H.-P. et al. NASGEM: neural architecture search via graph embedding method.
in Proc. AAAI Conference on Artificial Intelligence 7090–7098 (AAAI, 2021).

75. Lammie, C. et al. Design space exploration of dense and sparse mapping schemes for
RRAM architectures. In 2022 IEEE International Symposium on Circuits and Systems
(ISCAS) 1107–1111 (IEEE, 2022).

76. Fiacco, A. V. & McCormick, G. P. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques (SIAM, 1990).

77. Lu, Z. et al. NSGA-Net: neural architecture search using multi-objective genetic
algorithm. In. Proc. Genetic and Evolutionary Computation Conference 419–427
(ACM, 2019).

78. Guo, Y. et al. Pareto-aware neural architecture generation for diverse computational
budgets. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
2247–2257 (IEEE, 2023).

79. Qu, S., Li, B., Wang, Y. & Zhang, L. ASBP: automatic structured bit-pruning for RRAM-
based NN accelerator. In 2021 58th ACM/IEEE Design Automation Conference (DAC)
745–750 (IEEE, 2021).

80. Krestinskaya, O., Salama, K. & James, A. P. Towards hardware optimal neural network
selection with multi-objective genetic search. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS) 1–5 (IEEE, 2020).

81. Zhang, T. et al. NASRec: weight sharing neural architecture search for recommender
systems. In Proc. ACM Web Conference 1199–1207 (ACM, 2023).

82. Stolle, K., Vogel, S., van der Sommen, F. & Sanberg, W. in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases 463–479 (Springer).

83. Li, L. & Talwalkar, A. Random search and reproducibility for neural architecture search.
In Uncertainty in Artificial Intelligence 367–377 (PMLR, 2020).

84. Huang, H., Ma, X., Erfani, S. M. & Bailey, J. Neural architecture search via combinatorial
multi-armed bandit. In 2021 International Joint Conference on Neural Networks (IJCNN)
1–8 (IEEE, 2021).

85. Liu, C.-H. et al. FOX-NAS: fast, on-device and explainable neural architecture search.
In Proc. IEEE/CVF International Conference on Computer Vision 789–797 (IEEE, 2021).

86. Li, C. et al. HW-NAS-Bench: hardware-aware neural architecture search benchmark.
In 2021 International Conference on Learning Representations (ICRL, 2021).

87. Peng, X., Huang, S., Luo, Y., Sun, X. & Yu, S. DNN+ NeuroSim: an end-to-end
benchmarking framework for compute-in-memory accelerators with versatile
device technologies. In 2019 IEEE International Electron Devices Meeting (IEDM)
32.35.31–32.35.34 (IEEE, 2019).

88. Xia, L. et al. MNSIM: Simulation platform for memristor-based neuromorphic computing
system. IEEE Trans. Comput. Des. Integr. Circuits Syst. 37, 1009–1022 (2017).

89. Zhu, Z. et al. MNSIM 2.0: a behavior-level modeling tool for memristor-based
neuromorphic computing systems. In Proc. 2020 on Great Lakes Symposium on VLSI
83–88 (ACM, 2020).

90. Rasch, M. J. et al. A flexible and fast PyTorch toolkit for simulating training and inference
on analog crossbar arrays. In 2021 IEEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS) 1–4 (IEEE, 2021).

91. Lee, H., Lee, S., Chong, S. & Hwang, S. J. Hardware-adaptive efficient latency prediction
for nas via meta-learning. Adv. Neural Inf. Process. Syst. 34, 27016–27028 (2021).

92. Laube, K. A., Mutschler, M. & Zell, A. What to expect of hardware metric predictors
in NAS. In International Conference on Automated Machine Learning 13/11–13/15
(PMLR, 2022).

93. Hu, Y., Shen, C., Yang, L., Wu, Z. & Liu, Y. A novel predictor with optimized sampling
method for hardware-aware NAS. In 2022 26th International Conference on Pattern
Recognition (ICPR) 2114–2120 (IEEE, 2022).

94. Guo, Z. et al. Single path one-shot neural architecture search with uniform sampling.
In Proc. Computer Vision — ECCV 2020: 16th European Conference Part XVI 16, 544–560
(Springer, 2020).

95. Shu, Y., Chen, Y., Dai, Z. & Low, B. K. H. Neural ensemble search via Bayesian sampling.
In 38th Conference on Uncertainty in Artificial Intelligence (UAI) 1803-1812 (PMLR, 2022).

96. Wang, D., Li, M., Gong, C. & Chandra, V. AttentiveNAS: improving neural architecture
search via attentive sampling. In Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition 6418–6427 (IEEE, 2021).

97. Yang, Z. & Sun, Q. Efficient resource-aware neural architecture search with dynamic
adaptive network sampling. In IEEE International Symposium on Circuits and Systems
(ISCAS) 1–5 (IEEE, 2021).

98. Lyu, B. & Wen, S. TND-NAS: towards non-differentiable objectives in differentiable neural
architecture search. In Proc. 3rd International Symposium on Automation, Information
and Computing (INSTICC, 2022).

99. Li, G., Mandal, S. K., Ogras, U. Y. & Marculescu, R. FLASH: fast neural architecture search
with hardware optimization. ACM Trans. Embedded Comput. Syst. 20, 1–26 (2021).

100. Krestinskaya, O., Salama, K. N. & James, A. P. Automating analogue AI chip design with
genetic search. Adv. Intell. Syst. 2, 2000075 (2020).

101. Yan, Z., Juan, D.-C., Hu, X. S. & Shi, Y. Uncertainty modeling of emerging device based
computing-in-memory neural accelerators with application to neural architecture
search. In Proc. 26th Asia and South Pacific Design Automation Conference 859–864
(ACM, 2021).

102. Yang, X. et al. Multi-objective optimization of ReRAM crossbars for robust DNN
inferencing under stochastic noise. In 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD) 1–9 (IEEE, 2021).

103. Chitty-Venkata, K. T., Emani, M., Vishwanath, V. & Somani, A. K. Neural architecture search
for transformers: a survey. IEEE Access 10, 108374–108412 (2022).

104. Oloulade, B. M., Gao, J., Chen, J., Lyu, T. & Al-Sabri, R. Graph neural architecture search:
a survey. Tsinghua Sci. Technol. 27, 692–708 (2021).

Nature Reviews Electrical Engineering

Review article

105. Al-Sabri, R., Gao, J., Chen, J., Oloulade, B. M. & Lyu, T. Multi-view graph neural
architecture search for biomedical entity and relation extraction. IEEE/ACM Trans.
Comput. Biol. Bioinform. 20, 1221–1233 (2022).

106. Klyuchnikov, N. et al. NAS-Bench-NLP: neural architecture search benchmark for natural
language processing. IEEE Access 10, 45736–45747 (2022).

107. Chitty-Venkata, K. T., Emani, M., Vishwanath, V. & Somani, A. K. Neural architecture search
benchmarks: insights and survey. IEEE Access 11, 25217–25236 (2023).

108. Ying, C. et al. NAS-Bench-101: towards reproducible neural architecture search.
In International Conference on Machine Learning 7105–7114 (PMLR, 2019).

109. Dong, X. & Yang, Y. NAS-Bench-201: extending the scope of reproducible neural
architecture search. In 2020 International Conference on Learning Representations (ICLR)
(ICLR, 2020).

110. Tu, R. et al. NAS-Bench-360: benchmarking neural architecture search on diverse tasks.
Adv. Neural Inf. Process. Syst. 35, 12380–12394 (2022).

111. Real, E., Liang, C., So, D. & Le, Q. AutoML-Zero: evolving machine learning algorithms
from scratch. In International Conference on Machine Learning 8007–8019
(PMLR, 2020).

112. Chakraborty, I., Ali, M. F., Kim, D. E., Ankit, A. & Roy, K. GENIEx: a generalized approach
to emulating non-ideality in memristive xbars using neural networks. In 2020 57th
ACM/IEEE Design Automation Conference (DAC) 1–6 (IEEE, 2020).

113. Houshmand, P. et al. Assessment and optimization of analog-in-memory-compute
architectures for DNN processing. In IEEE International Electron Devices Meeting
(IEEE, 2020).

114. Zhou, C. et al. ML-HW co-design of noise-robust tinyml models and always-on analog
compute-in-memory edge accelerator. IEEE Micro 42, 76–87 (2022).

115. Mei, L., Houshmand, P., Jain, V., Giraldo, S. & Verhelst, M. ZigZag: enlarging joint
architecture-mapping design space exploration for DNN accelerators. IEEE Trans.
Comput. 70, 1160–1174 (2021).

116. Ghose, S., Boroumand, A., Kim, J. S., Gómez-Luna, J. & Mutlu, O. Processing-in-memory:
a workload-driven perspective. IBM J. Res. Dev. 63, 1–3 (2019).

117. Liu, R. et al. FeCrypto: instruction set architecture for cryptographic algorithms based on
FeFET-based in-memory computing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
42, 2889–2902 (2023).

118. Mambu, K., Charles, H.-P. & Kooli, M. Dedicated instruction set for pattern-based data
transfers: an experimental validation on systems containing in-memory computing units.
IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 42, 3757–3767 (2023).

119. Jiang, N. et al. A detailed and flexible cycle-accurate network-on-chip simulator. In 2013
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)
86–96 (IEEE, 2013).

120. Jiang, H., Huang, S., Peng, X. & Yu, S. MINT: mixed-precision RRAM-based in-memory
training architecture. In 2020 IEEE International Symposium on Circuits and Systems
(ISCAS) 1–5 (IEEE, 2020).

Acknowledgements
This work was supported by the King Abdullah University of Science and Technology through
the Competitive Research Grant program under grant URF/1/4704-01-01.

Author contributions
O.K. researched data and wrote the article. O.K., M.E.F., K.E.M., A.S., A.M.E. and K.N.S.
contributed substantially to discussion of the content. O.K., M.E.F., H.B., K.E.M., A.S., W.D.L.,
M.L., H.L., F.K., S.A.F., A.M.E. and K.N.S. reviewed and/or edited the manuscript before
submission.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s44287-024-00052-7.

Peer review information Nature Reviews Electrical Engineering thanks Arun Somani and
Zheyu Yan for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms
of such publishing agreement and applicable law.

© Springer Nature Limited 2024

https://doi.org/10.1038/s44287-024-00052-7

	Neural architecture search for in-memory computing-based deep learning accelerators
	Introduction
	In-memory computing background
	In-memory computing devices and technologies
	Conventional IMC architectures for neural networks
	Weight mapping, computing precision and non-idealities
	Model compression for IMC architectures
	Quantization for IMC architectures
	Pruning in IMC architectures

	Hardware-aware neural architecture search
	HW-NAS basics
	Problem formulation in HW-NAS
	Single-objective optimization
	Multi-objective optimization

	Search strategies: algorithms for HW-NAS
	Hardware cost estimation methods
	Other HW-NAS considerations

	HW-NAS for IMC architectures
	State-of-the-art HW-NAS frameworks for IMC
	Two-stage optimization versus joint optimization

	Outlook and recommendations
	Open problems and challenges in HW-NAS for IMC
	Hardware evaluation frameworks
	Mapping deep neural network models to IMC hardware
	HW-NAS and IMC co-optimization

	Acknowledgements
	Fig. 1 Fundamentals of hardware-aware neural architecture search.
	Fig. 2 Problem formulation methods in hardware-aware neural architecture search.
	Fig. 3 Search strategies in hardware-aware neural architecture search.
	Fig. 4 Hardware cost estimation methods for hardware-aware neural architecture search.
	Fig. 5 Roadmap for hardware-aware neural architecture search for in-memory computing.
	Fig. 6 Place of hardware-aware neural architecture search in hardware–software co-design.
	Table 1 State-of-the-art hardware-aware neural architecture search frameworks for in-memory computing.

