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Abstract

The miniaturization of metal–oxide–semiconductor field-effect 
transistors (MOSFETs) has been the driving force behind the 
development of integrated circuits over the past 60 years; however, 
owing to short channel effect, reducing the gate length of MOSFETs 
to sub-10 nm represents a fundamental challenge. Two-dimensional 
materials (2DMs) with atomic scale thicknesses and non-dangling 
bonds interface enable sub-10 nm scale length, making them suitable 
candidates for advanced tech nodes beyond sub-3 nm. Although 
the performance metrics of a single 2DMs transistor have equalled 
or surpassed those of silicon, leaving no doubt about the potential 
of 2DMs at the laboratory level, the way of moving 2DMs from ‘lab 
to fab’ remains unclear. In this Review, we analyse the similarities 
and differences between 2DMs MOSFETs and silicon MOSFETs in the 
integrated circuits engineering process; we present potential solutions 
for channel, contact and dielectric engineering using 2DM to address 
the scaling challenges faced by a silicon-based device at the advanced 
tech node. Finally, we summarize the challenges in translating the 
performance of individual 2DMs devices into large-scale integrated 
circuits, including large-scale and stable transfer technology,  
high-quality material synthesis with controllable layers. Once these 
technical issues are properly solved, 2DMs can take full advantage  
of their properties at a farther scaling.
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integration, including the manufacturing process of MOSFET, large-
scale transfer and high-quality material synthesis, in delivering the 
future industrialization of the advanced tech node.

Channel engineering for ultimate scaling
Dennard’s law, which has informed the scaling of integrated circuits 
for many decades19,35, states that the size of transistors shrinks by 30% 
(0.7 times) in each generation of technology, reducing their area by 50%. 
In terms of performance, for each technological iteration, 30% lower 
latency and 40% increase in operating frequency would be expected36. 
Moreover, to keep the electric field constant, the voltage, energy and 
power have to be reduced by 30%, 65% and 50%, respectively37. To keep 
Moore’s law going and to increase the number of devices per chip, the 
scaling of transistors has to follow the suit. According to the scale length 
theory, to improve performance and reduce power consumption, the 
key device parameters, such as gate length, channel thickness and 
oxide thickness, need to be scaled down with a uniform ratio. When 
applied to the planar transistor, this guiding principle has provided 
a long-term economically viable and resource-efficient solution for 
the semiconductor technology development. However, the SCE issue 
prevents further scaling of planar transistors.

In a traditional CMOS with a planar gate structure, the characteristic  
gate length for the onset of SCEs can be calculated as38:

λ t t=
ε
ε

⋅ch

ox
ch ox

in which tch is the thickness of a semiconducting channel, tox is the thick-
ness of the gate dielectric and εch and εox are the dielectric constants 
of the channel and gate dielectric, respectively. To suppress SCE and 
to enhance the electrostatic gate control, fin FET and gate-all-around 
structures have been successively adopted. In the multigates transis-
tor structure, the characteristic gate length can be smaller, which can 
be expressed as39:

λ t t=
ε

2ε
⋅ch

ox
ch ox

This means that for the same effective gate length, the multi-
gates structure would have better subthreshold behaviour than a 
planar structure. The minimum channel length could be reduced by 
30% and could obtain better subthreshold characteristics. However, 
according to the technical path diagram of the International Roadmap 
for Devices and Systems (IRDS), the channel thickness in the sub-5 nm 
node is limited to a minimum of 6 nm (ref. 31). It can be seen that even if 
the structural design is adopted to reduce the SCE, the physical thick-
ness of silicon limits the effective mobility, thus making it impossible 
for the device to scale further (Fig. 2a). Owing to the flat surface of the 
2DM, lattice scattering is suppressed at the atomic thickness, thus 
maintaining high mobility at a sub-1 nm thickness. This quality repre-
sents a prominent advantage for the ultimate transistor scaling. Addi-
tionally, 2DMs are particularly suited for future potential transistor 
architectures such as multibridge-channel FETs and complementary 
FETs40–43. A typical monolayer 2D semiconductor, such as MoS2, has a 
low dielectric constant (~4) and a sizable bandgap (~1.8 eV), which can 
enhance electrostatic controllability and ensure low leakage44. Follow-
ing the aforementioned equations, the characteristic gate length for 
2DM transistors can be optimized to ~1–2 nm by using a thinner channel 
and a thinner gate dielectric layer45.

Introduction
Metal–oxide–semiconductor field-effect transistors (MOSFETs) and 
complementary metal–oxide–semiconductor (CMOS) circuits are 
the cornerstone of integrated circuits and have been the driving force 
behind modern technological advancement1,2. For large-scale inte-
grated circuit applications, the continuous reduction in physical size 
of MOSFETs enables higher overall efficiency3–5 through the gains in 
performance, power, area, cost and so on.

Device scaling informed by Moore’s law has been the primary 
means by which the semiconductor industry has achieved unprece-
dented advances in productivity and performance. Traditionally, these 
advances have been driven by the development of new lithographic 
tools, masks, photoresist materials and key-size etching processes6,7. 
In the early days of integrated circuit development, the efforts were 
focused on reducing the physical gate oxide thickness and engineer-
ing the source, drain and channel doping profile. However, owing to 
short channel effect (SCE), the planar scaling of the transistor faces 
stagnation8. Novel device architectures such as silicon-on-insulator9–11, 
fin field-effect transistors (FETs)12–14 and gate-all-around FETs15–17 have 
been introduced to improve the gate control capability and to suppress 
SCE. However, owing to the large parasitic capacitance induced by the 
3D structure, the structural instability with high-aspect-ratio channel 
stack and the small spacing that makes high-k metal gate formation 
and source/drain epitaxy very difficult, the physical gate length is hard 
to get smaller than ~10 nm (ref. 18), below which the devices face fun-
damental limitations, that is, critical parts of the device cannot scale  
down below a few atoms in length and thickness19. At the atomic  
scale, strong charge scattering and quantum effects arise in a silicon 
transistor, making the material itself the main limitation6. Therefore, 
continued device scaling requires the introduction of new materials20.

Two-dimensional semiconductors are layered materials consist-
ing of single or few layers of atoms, the atoms in the layers are held 
together by saturated covalent bonds and typically the thickness of the 
monolayer 2D materials (2DMs) is less than 1 nm (refs. 21,22). Owing to 
the inert and dangling-bond-free surface, the interface between differ-
ent 2DMs is nearly defect-free. As a result, the charge carrier mobility 
in ultra-thin 2D semiconductors can be potentially very high owing 
to minimized lattice defects and charge scattering23,24. In addition, 
the phonon scattering mechanism of 2DMs also contributes to high 
intrinsic mobility25. Typical 2DMs, such as MoS2, WS2, WSe2, MoTe2, InSe 
and so on, have shown excellent electronic performance in ultra-short 
gate length or ultra-thin channel FETs26–30. Because the SCE is largely 
suppressed, 2DMs provide an opportunity for the continued physical 
scaling of transistors, making them a potential material choice for 
future advanced nodes31. Exploring 2DMs in prototype devices has 
shown much promise32–34 but these laboratory-scale technologies are 
yet to be tested in real industrial settings. Drawing on experience from 
silicon MOSFET technologies can provide valuable insights into ensur-
ing 2DMs compatibility with the existing production lines towards 
large-scale integration (Fig. 1).

In this Review, we compare silicon-based MOSFET and 2DMs-
based MOSFET technologies to reveal the key scientific issues and the 
corresponding performance optimization routes to achieve further 
scaling. On the basis of the structure of a typical transistor, we analyse 
the device engineering from three perspectives: channel engineering, 
contact engineering and dielectric engineering. In each section, we 
fully discuss the advantages of 2DM under ultimate scaling and prom-
ising solutions to different engineering problems. In addition, we dis-
cuss the challenges of bringing 2DMs transistor devices to large-scale 
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The device mobility versus materials bandgap (Fig. 2b) provides 
an important metric when comparing the most promising 2DMs with 
silicon. MoS2 is the most studied 2D n-type semiconductor with a theo-
retically predicted electron mobility of 410 cm2 V−1 s−1 for a monolayer46. 
Provided that defects are inevitably introduced in the device fabrication 
process, the field-effect mobility is often degraded. Even so, the experi-
mentally verified MoS2 electron mobility exceeds 200 cm2 V−1 s−1 at room 
temperature, which meets the IRDS requirements for sub-3 nm nodes22. 
Two-dimensional InSe has experimentally demonstrated to exhibit 
ultra-high electron mobility exceeding 1,000 cm2 V−1 s−1 for a few-layer 
InSe (three layers ~2.4 nm), but it drops sharply to 0.02 cm2 V−1 s−1 in a 
monolayer32,47. The mobility degradation may be related to moisture 
and oxygen in the environment47, and more experiments are needed to 
improve the performance of monolayer InSe FET. Another promising 2D 
semiconductor, Bi2O2Se, has a bandgap and electron mobility similar 
to silicon, and differs from silicon in that its performance metric is not 
degraded even at a monolayer thickness of 0.61 nm (ref. 48). In addition, 
the native oxide Bi2SeO5 can serve as a gate dielectric for Bi2O2Se, which 
provides a promising route for further scaling33,48,49.

As a 2D p-type semiconductor, monolayer WSe2 shows a hole 
mobility of more than 140 cm2 V−1 s−1, satisfying the IRDS requirement 
for the nodes beyond 3 nm (refs. 47,50–52). P-type boron phosphide 
has attracted attention owing to its high mobility, but the mobility 

degrades severely at the thickness below 3 nm (ref. 53). The synthesis 
of high-quality, few-layer boron phosphide films on the centimetre 
scale was demonstrated by the controlled pulsed laser deposition 
strategy54. However, for the practical application, more research is 
needed to solve its instability in the atmosphere55,56. Overall, 2DMs 
show promising results for ultimate scaling with both n-type and p-type 
materials, demonstrating good mobility at a channel thickness below 
3 nm. Figure 2c,d compares the performance metrics of 2DM and silicon 
transistors, including the on-state current, off-state leakage current, 
mobility, gate length and operating voltage. It is worth noting that for 
n-type devices, the performance of 2DMs fully complies with the IRDS 
standard requirements. Moreover, because the gate length can reach 
the limit of 1 nm (refs. 57–59), n-type devices have the potential to be 
applied in sub-1 nm nodes. However, the superior performance of 
N-channel metal–oxide–semiconductor (NMOS) cannot compensate 
for the performance shortcomings of 2D P-channel metal–oxide–
semiconductor (PMOS) devices. Despite its high mobility, monolayer 
WSe2, the on-state current does not match NMOS devices owing to 
the lack of appropriate metal contact engineering. Although basic 
CMOS functions can be achieved on a small scale by means of electro-
static regulation, contact metal work function regulation and selective 
growth channels, the performance of PMOS under the ultimate size is 
not ideal at present60–63. As a result, 2D CMOS devices with superior 
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performance for advanced tech nodes are yet to be demonstrated. We 
believe that the development of PMOS should receive more attention 
in the future study of 2D channel engineering.

Contact engineering for ultra-thin channel
With further device miniaturization, the size of the gate, source and 
drain active regions of a transistor will become smaller, whereas their 
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equivalent series resistance is expected to increase, adversely affecting 
the performance of the transistor64. To reduce the contact resistance, 
a technique has been developed in which a metal layer is deposited on 
the contact area, followed by a subsequent heat treatment to form a 
silicide, a metal silicon alloy65,66. Silicides show stable properties even 
upon high-temperature heat treatment after alloying, which can signifi-
cantly reduce defects at the metal–silicon interface, lower the Schottky 
barrier and drive dopant atoms towards the interface67.

Increasing the depth of the silicide results in the reduced doping 
concentration at the interface between silicide and silicon, which in 
turn leads to a higher contact resistance. Therefore, in the manufactur-
ing process, the depth of the silicide should not exceed half the depth 
of the junction. Because of the continuous scaling, both the junction 
depth and contact length decrease with the gate length (Fig. 3a). To 
maintain the drive current for optimal device operation, the doping in 
the source–drain area should be used to reduce the contact resistance, 
which means that a higher doping concentration within shallower junc-
tion depths is needed. Thus, continued reliance on the conventional 
source–drain structure will inevitably challenge the manufacturing 
process in its capability of producing doped contact regions.

In a 2DMs FET, the contact between the metal and the 2D semi-
conductor is different from that of a silicon FET, and the depth of the 
2DM contact region is ultra-shallow (<1 nm). To achieve a high perfor-
mance 2DM transistor, contact engineering on ultra-thin 2DMs must 
be considered68. Different from the solution of silicides in bulk Si, the 
interface between metals and 2DMs in a top-contacted FET configura-
tion can be formed, in most case, only via a van der Waals (vdW) gap. 
As such, a tunnelling barrier is introduced between the metal and the 
channel, suppressing charge injection, which manifests in a contact 
resistance several orders of magnitude higher than the theoretical 
quantum limit69. Therefore, much effort has been dedicated to the 
issue of contact resistance in 2DMs. In earlier research, metals with low 
work functions, such as XX, were used to form metal–semiconductor 
(M–S) junctions with low Schottky barriers to ensure low contact resist-
ance70. However, experimentally this approach proved hard to realize, 
because of the inevitable chemical disorder and Fermi-level pinning at 
a typical M–S interface. For improved transistor performance, a good 
metal–channel interface is as important as that between the dielectric 
and the channel. Standard device fabrication methods often introduce 
additional defect-induced states, hence the Fermi-level pinning71. 
One effective low-energy and damage-free metal integration strategy 
entails transferring metals onto 2DMs, which yields a good M–S inter-
face and de-pinning of the Fermi level72. However, the contact resistance 
of 2DMs MOSFETs is still much higher than that of silicon MOSFETs31.

Several studies have shown that another source of degradation of 
the contact resistance in 2DMs is metal-induced gap states (MIGSs)73,74. 
MIGSs are formed in the junction owing to the decaying metallic wave-
function with the nanometre penetration depth into the semiconduc-
tor. The corresponding solution to this is to use semimetals as M–S 
contacts. Semimetals are characterized by a density of states near zero 

at the Fermi level. If the Fermi level of the semimetal is close to the bot-
tom of the semiconductor conduction band, the MIGS contributed by 
the conduction band can be substantially reduced. Bismuth is a suitable 
semimetal as a contact metal for MoS2, showing experimental contact 
resistance Rc of 123 Ω μm (ref. 34). Similarly, by using semimetal anti-
mony (Sb) (0112), the contact resistance can be further reduced to 
42 Ω μm, coming close to the quantum limit for a metal–2DMs contact75. 
Heavy doping of the contact region could result in an ohmic con-
tact, but it is challenging to achieve in an ultra-thin 2DMs channel. 
Another promising approach relies on ultra-shallow contact doping 
technology, and the doping depth in ultra-thin 2DMs is below 1 nm 
(ref. 32). Through theoretical calculations, yttrium (Y) has been found 
to be the most suitable replacement doping metal in 2D InSe. The 
yttrium-doping-induced phase transition could lead to an ohmic 
contact InSe MOSFET and the contact resistance as low as 62 Ω μm.

In the context of scaling, the contact length decreases along with 
the gate length76. The contact length of silicon-based transistors has 
reached ~10 nm at the latest tech node31. In transistor devices, contact 
resistance is closely related to the contact area or contact length. In 
the weak-coupling limit, the contact resistance can be estimated by77–79











R ρ r L

ρ
r

= cothc
2D

c cont

2D

c

in which ρ 2D is the semiconductor sheet resistivity, rc is the M–S inter-
face resistivity and Lcont is the contact length. Owing to the current 
crowding, the contact resistance does not depend linearly on the con-
tact length. When the contact length is much larger than the transmis-
sion length r

ρ

c
2D

, the contact resistance is constant and independent 

of the length. Therefore, to determine conclusively whether the new 
metal contact strategy is suitable for transistors of ultimate size, it is 
instrumental to study and fabricate contacts with ultra-short lengths. 
However, the scaling behaviour of metal–2D semiconductor contacts 
has been largely neglected. Most studies in contacting 2DMs report 
Lcont dimensions from hundreds of nanometres to a few micrometres. 
These advanced 2D contact works are a good demonstration of pos-
sible future contact engineering and solution strategies for 2DMs. 
Although excellent performance of contact resistance has been 
achieved (Fig. 3b), there is still room for improvement in the ultimate 
scaling of the contact length. In particular, edge contact could provide 
a path towards ultra-short contact length scaling80,81. Density functional 
theory calculations show that the edge contact leads to a shorter bond-
ing distance with stronger hybridization. However, because the thick-
ness of the 2DMs is limited to one to several atomic layers, it is 
technically problematic to form pure edge contacts in a large-scale 
circuit with the existing lithography techniques. For example, 2D edge 
contact and a low Rc of 670 Ω μm have been achieved on monolayer 
WS2 (ref. 82). Owing to its ultra-short contact length, this approach 

Fig. 2 | Channel engineering of the 2DM transistors. a, Silicon-based transistor 
scale paths. Device scaling is shifting from structural innovation to material 
innovation. The mismatch among channel thickness, gate length and tech 
node becomes more and more intense from the ~22 nm node. Since 3 nm node, 
channel thickness limits the scaling of the physical gate length. b, The relationship 
between mobility and bandgap in different 2D materials (2DMs)22,27,46,47,49,52–54,136–140.  
c, The radar chart comparison of N-channel metal–oxide–semiconductor 

(NMOS) performance between the 2DM trend and the silicon trend. The 
parameters represented by each edge are mobility, Vdd, leakage, gate length 
and Ion. The biggest advantage of 2DM lies in its ultimate physical gate length. 
d, The radar chart comparison of P-channel metal–oxide–semiconductor 
(PMOS) performance between the 2DM trend and the silicon trend. IRDS, 
International Roadmap for Devices and Systems.
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provides a possibility for the applications of 2DMs devices with 
ultra-short contact length.

Recently, metallic single-walled carbon nanotubes (SWCNTs) 
have been demonstrated to be a good contact material choice for 
2DMs83,84. Owing to the perfect quasi-1D single-crystal structure, long-
distance ballistic transport behaviour and high-current-carrying capac-
ity, SWCNTs can serve as a contact with a sub-1 nm contact length. 
Using SWCNTs as a contact in MoS2 FETs results in the realization of the 

tunable Schottky barrier height85. According to the theoretical calcula-
tions, the resistance of the CNT contact can be reduced to 419 Ω μm at 
the ultimate contact length of 1 nm, which can be further optimized by 
improving the interface quality.

These approaches in advanced 2DM contact engineering have 
independently demonstrated their scaling potential at ultra-low con-
tact resistance and ultra-short contact length for optimum perfor-
mance (Fig. 3b). However, it is worth noting that the reported examples 
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are mainly based on NMOS. To build high-performance CMOS, PMOS 
with compatible performance is essential. However, the research on 
high-performance PMOS is lacking. Although there are fewer suitable 
p-type 2DMs than n-type ones, the developed contact engineering 
can theoretically be extended to p-type materials. Apart from scaling, 
the contact of 2D PMOS requires metals with high work function86. The 
fundamental challenge in achieving ultra-clean p-type vdW contacts 
by standard electron beam evaporation on single-layer TMDs is high 
energy for sublimation required by high work function metals. The 
deposition of metal atoms onto 2D TMD layers leads to the formation 
of defects. For example, the formation of p-type FETs with low contact 
resistances of 3,300 Ω μm and 1,250 Ω μm has been obtained utilizing 
high work function metal and Se sacrifice layer52,87.

Finally, with the back-end-of-line thermal budget of ~400 °C in 
mind, the metal used for contact must have a high melting point and 
thermal stability because of the temperature. Some commonly used 
contact metals are listed in Fig. 3c, classified according to their work 
function and suitability for NMOS and PMOS. However, none of the 
existing demonstrations of ultra-low contact resistance, such as the 
semimetal contact (Bi, Sb (0112)), ultra-shallow Y-doping contact, 
contains the verification of the device performance above the back-
end-of-line temperature. Therefore, the emphasis of the 2DMs contact 
research should be both on contact resistance and on thermal 
stability.

Dielectric engineering for 2DM–insulator interface
The insulating dielectric layer, bridging the gate and the channel, is 
implemented to prevent leakage and transmit the gate electric field. 
Surface conductive channel between the source and drain electrodes is 
generated under the control of this electric field. The physical proper-
ties of the channel material, such as conductivity, carrier mobility and 
impurity concentration, have a direct impact on the current transfer 
efficiency and the switching speed of the MOSFET. Additionally, the 
quality of the dielectric and the interface affects the controllability 
of the gate to the channel, which in turn affects key parameters such as 
the threshold voltage of the MOSFET, subthreshold slope and leakage 
current. Therefore, the performance of a MOSFET depends not only 
on the characteristics of the channel material but also on the quality 
of the gate insulator interface and the overall performance of the gate 
insulator.

In particular, the excellent interface of Si–SiO2 is one of the main 
reasons why silicon has become the material of choice in the semicon-
ductor technology (Fig. 4a). The number of silicon dangling bonds at 
the interface can be reduced to the levels below 1010 cm−2 via gas pas-
sivation88,89. Apart from Si–SiO2, there has been a glaring lack of suitable 
insulating materials, which limits other channel materials from enter-
ing the mass market. Similarly, finding a suitable insulator for 2DMs is a 
big challenge because of their inert surface that provides no nucleation 
sites. For this reason, the standard oxides deposition techniques cannot 
be used for 2DMs channels owing to the formation of multiple defects 
at the 2DM–oxide interface90,91 (Fig. 4b). Growing oxide films directly 
by atomic layered deposition (ALD) results in uneven structures that 
cannot completely cover the surface, which leads to at least two kinds 
of defects: the interface and dielectric defects. Although these defects 
can be reduced by various annealing steps, their density is still much 
higher than that at the ideal Si–SiO2 interface. To fully exploit the advan-
tages of 2DMs, it is crucial to develop effective strategies to improve 
the quality of the 2DMs–insulator interface (Fig. 4c). One strategy 
is to construct a fully 2D vdW-stacked gate dielectric (Fig. 4c, left).  

As the layers of different 2DMs are connected by vdW forces, the inter-
face traps and defects between the channel and the insulator can be 
greatly reduced, thus achieving good dielectric extension92. The second 
strategy relies on a seeding layer between the 2D channel and the bulk 
insulator. For example, a seeding layer can be introduced as a medium 
for the oxide during ALD growth (Fig. 4c, middle). Another approach 
is via partial oxidation of few layers of 2DMs and their transformation 
into native oxides, which maintains the vdW heterostructure between 
the channel and the oxide (Fig. 4c, right). This process can potentially 
lead to atomically abrupt and defect-free interfaces, as promising as 
the Si–SiO2 interface.

Although the aforementioned technical paths can, in principle, 
achieve good 2D interfaces, the feasibility of different strategies needs 
proper engineering evaluation. As far as the interface and dielectric 
defects are concerned, we use two parameters: density of the interface 
states (Dit) and gate leakage current density to evaluate the three afore-
mentioned strategies. The continuous power scaling requires a device 
to operate at the lowest possible voltage. To this end, subthreshold 
swing (SS) has to be small to keep the device in the on state in a low volt-
age range. The SS of the device is directly related to the interface quality 
between the insulator and the channel, which can be described as91:











k T
q

C qD
C

SS = ln(10) 1 +
+B channel it

insulator

in which Cchannel and Cinsulator are capacitances of the channel and the 
insulator of the dielectric, respectively. The smaller the density of 
the interface states Dit, the closer the SS of the device to the ideal value 
of 60 mV per decade at room temperature. For Dit over 1010 cm−2 eV−1, 
the SS requirement for power scaling cannot be perfectly met.

Aggressive scaling of the gate insulator increases direct tunnelling 
and thus results in large leakage currents even at low voltages. In addi-
tion to direct tunnelling through the insulator, the Fowler–Nordheim 
tunnelling through the bent barrier and trap-assisted tunnelling, which 
becomes dominant at high defect density, are all performance-limiting 
factors to consider93.

On the basis of the existing literature, we compare the perfor-
mance metrics in three different technological paths (Fig. 4d). The 
seed-layer-inducing strategy provides closely distributed sites for ALD 
nucleation, the method of constructing a seed layer including oxidized 
metal layers, organic molecules, plasma treatment and so on. However, 
all these approaches are not without drawbacks. For example, widely 
used metal oxidation processes are affected by the inherent roughness 
of evaporating metal films as well as by the destruction of high-energy 
metal ions, which leads to a threshold voltage drift94. Plasma and ozone 
surface treatments involve energetic and reactive substances, which 
can also introduce defects and interface states. Using 3,4,9,10-perylene-
tetracarboxylic dianhydride has been proposed as the molecular seed-
ing layers95. Ultra-thin equivalent oxide thickness (EOT) and good 
dielectric performance can be achieved on a single device, but because 
the intrinsic dielectric constant of 3,4,9,10-perylene-tetracarboxylic 
dianhydride is not high, there is still room for improvement in achieving 
thinner EOT. Additionally, owing to these layers being formed by dis-
crete molecules, the large-scale homogeneous film integration may be 
challenging. More recently, a kind of inorganic molecular crystal Sb2O3 
has been tested as the compatible oxide seeding layer between 2D MoS2 
and high-κ HfO2 (ref. 42). By means of thermal evaporation, an ultra-thin 
(1 nm) Sb2O3 buffer layer is uniformly grown on the surface of the 2DMs 
at a slow speed. Using this strategy, a good semiconductor-to-insulator 
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Fig. 4 | Dielectric engineering of the 2DMs transistors. a, Typical bulk 
silicon oxide dielectric integration. The silicon and the oxide are connected 
by covalent bonds. b, The two kinds of defects when the conventional atomic 
layered deposition method is used to directly grow the insulation layer on 
the surface of 2D materials (2DMs): the interface defects and the dielectric 
defects. c, Schematic diagram of the effective strategies for the integration of 
dielectrics on 2DMs, including van der Waals (vdW) stack dielectric, seed-layer 
inducing strategy and in situ oxidation. d, The quality of the dielectric under 

several different strategies is summarized, the ball represents the density of the 
interface state and the column represents the gate leakage current33,95,96,98–100,148. 
e, Diagram of the relationship between dielectric constant and bandgap value 
of different dielectrics. The black colour block represents the traditional bulk 
material oxide dielectric, and the colourful blocks are the dielectrics that have 
verified the integration with 2DMs149,150. hBN, hexagonal boron nitride; PTCDA, 
3,4,9,10-perylene-tetracarboxylic dianhydride.
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interface can be formed providing a hydrophilic surface for the depo-
sition of the high-κ dielectric. This type of a seed layer is a promising 
candidate for the combination of 2DMs and high-κ dielectric. However, 
it needs to be experimentally verified in small-footprints devices and 
large-scale circuits. Another strategy of in situ oxidation, which is the 
partial oxidation of specific 2DMs with the same heterostructure, is 
also a promising solution for high-quality 2D dielectric engineering 
for large-scale integration. A relatively new material Bi2O2Se with its 
Bi2SeO5 native oxide is one representative system. The most notable 
point apart from the superior quality of the dielectric Bi2SeO5 has a 
high κ constant (~21), which makes it ideal for the scaling of transistors 
with small equivalent oxide layer thickness33,49.

All the aforementioned strategies increase the chances of dielec-
tric integration, but Dit remains much higher than that of the Si–SiO2 
interface. Therefore, as the molecular structure of 2DMs is intrinsically 
different from silicon, we believe that the most potent dielectric engi-
neering strategy is via vdW bonding. Applying 2D crystalline insula-
tors such as hexagonal boron nitride (hBN) to stack vdW dielectric is 
a promising solution for 2D devices. As an inert and dangling bond-
free 2D insulator, hBN has been used as an excellent encapsulation 
of 2D devices to improve their mobility. Using post-annealing of an 
MoS2 channel sandwiched between hBN gate dielectric layers, excel-
lent switching characteristics have been observed with SS of 63 mV 
per decade and Dit of 5 × 109 cm−2 eV−1, on par with silicon technology 
standards96. However, hBN has low dielectric constant (~6) and its 
bandgap (~6 eV) in bulk is not ideal, which leads to high leakage current 
at ultra-thin EOT97. Therefore, it is difficult to envisage the use of hBN in 
advanced technology nodes that require ultra-thin insulator thickness. 
Thus, the defect-free ionic crystal insulators, such as CaF2 and SrTiO3, 
have been considered as an alternative to hBN98,99. Compared with 
hBN, these ionic crystals have a higher dielectric constant for further 
scaling; however, the density of states is significantly increased at the 
same time, which results in a decrease of the gate capacitance and an 
increase in the leakage current. Recently, a dry dielectric integration 
strategy compatible with large areas of 2D devices has been reported100. 
By using polyvinyl alcohol as a sacrificial layer, ultra-thin Al2O3 and HfO2 
of sub-3 nm thickness can be pre-deposited and then mechanically 
dry-released and dry-laminated onto wafer-scale monolayer MoS2. 
The 2DMs–insulator interface achieved in this way is different from 

that obtained by the ALD method. In particular, owing to a weakly 
coupled vdW dielectric interface, Dit is reduced to 7.6 × 109 cm−2 eV−1, 
which is comparable with the Si–SiO2 interface. As the dry-transfer 
process of the dielectric is universal, more bulk materials of high-κ 
oxide dielectric are expected to be integrated into 2D devices. However, 
the dielectric layer integration in this strategy is achieved by transfer, 
which is challenging for high-density integration. The oxide insulators 
suitable for using as dielectric layer are listed in Fig. 4e. In general, to 
obtain thinner EOT and smaller leakage, it is necessary to consider a 
tradeoff between the κ constant and bandgap. As a general rule, most 
good oxide dielectric materials have a bandgap between 4 eV and 8 eV.

Overall, the existing examples of 2DMs dielectric engineering have 
proved potent in forming high-quality interfaces, but more systematic 
optimization schemes are required to explore the validity of these 
strategies for large-scale transistor circuits. Among the proposed 
approaches, the use of vdW stack dielectric enables the best interface, 
but, once again, achieving high-density device integration presents a 
serious challenge. To this end, seed-layer inducing and in situ oxidation 
methods have potential to support high-density device integration, 
but the interface quality has to be improved.

The challenges of bringing 2DMs transistor 
devices to large-scale integration
Table 1 summarizes the benchmarks of different device engineer-
ing technologies from the compatibility to large-scale integration. 
As mentioned earlier, despite the solid performance of n-type 
2DMs MOSFETs, the demonstration of high-performance p-type 2DMs 
MOSFETs is still lacking. Therefore, going from a single device demon-
stration to large-scale integration is not a straightforward process. The 
ultra-thin body and inert surface of the 2DMs makes it impossible to 
directly integrate them into silicon MOSFETs manufacturing technol-
ogy. Although the semimetal contact technology and the ultra-shallow 
doping of a contact region strategy have yielded low contact resistance 
at a long contact length, the demonstration of good thermal stability of 
these new technologies is still lacking. Another major challenge is the 
quality of the 2DM–insulator interface, which needs to be improved 
to support high-density device integration.

To achieve large-scale integration, the entire front-end process for 
circuits must be taken into consideration. To this end, it is worthwhile 

Table 1 | Benchmarking methods in different transistor engineering

Methods Mobility Gate length Current Ready to integrate

Channel engineering NMOS ★★★ ★★★ ★★★ ★★

PMOS ★★ – ★★ –

Contact engineering Methods Contact resistance Contact length Thermal stability Ready to integrate

Ultra-shallow doping ★★★ ★★ ★ ★★

Semimetal ★★★ ★★ ★ ★★

Edge contact ★ ★★★ ★★ ★

Dielectric engineering Methods Density Interface quality Leakage Ready to integrate

vdW stack ★ ★★★ ★★★ ★★

Seed-layer inducing ★★ ★★ ★★ ★★

In-situ oxidation ★★★ ★★ ★★ ★★

Two-dimensional device integration technologies, including the channel engineering, contact engineering and dielectric engineering. The number of stars represents the potential of each 
technical path on the corresponding parameter index. NMOS, N-channel metal–oxide–semiconductor; PMOS, P-channel metal–oxide–semiconductor; vdW, van der Waals.
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to compare the fabrication process of silicon-based and 2DMs-based 
large-scale circuits (Fig. 5).

Self-aligned gates are used to fabricate transistors in silicon-based 
semiconductor processes and are still used in most modern integrated 
circuits101,102. In the silicon front-end process flow, the relative positions 
of the gate and source–drain electrodes are defined by the self-aligned 
process (Fig. 5a). The gate dielectric layer is formed at the beginning 
of the process and the patterned gate is then deposited on it. The 
source–drain region is then doped; in the case of polysilicon gate, 
the gate is doped at the same time. After the doping of the source–drain 
region, the edge of the doping region defines the channel. The defined 
channel is always placed perfectly under the control gate, which greatly 
reduces the parasitic capacitance.

In the 2DMs-based front-end process flow (Fig. 5b), the source 
and drain electrode regions are defined first, then the dielectric oxide 
is grown or transferred onto the 2DM channel and electrodes. Finally, 
a gate electrode is formed on the oxide layer. In this process, to ensure 
the ability of the gate to control the entire channel, a considerable 
overlap region is formed between the gate region and the source–drain 
region. This results in a large parasitic capacitance between the gate and 
source–drain regions and increases the gate leakage current. According 
to the Miller effect, the greater the parasitic capacitance Cgd, the lower 
the switching speed103,104. Although some researchers have studied the 
self-aligned process of 2DMs, the performance of oxides integrated 
in this way needs to be further improved to meet the requirements of 
IRDS for sub-3 nm nodes105,106.

Different from the silicon-integrated process, the synthesized 2DMs 
films are usually transferred to a target substrate. Therefore, the stable 

synthesis and transfer of wafer-level 2DMs film should also be considered 
for commercialization of 2DM technology43,47,54,99,107–125 (Fig. 6a).

Chemical vapour deposition (CVD) is a powerful approach to syn-
thesize 2DMs films on a range of substrates that has been used to grow 
large-area 2DMs films with controllable thicknesses. Graphene, MoS2, 
MoSe2, WS2, WSe2, Bi2O2Se and hBN films have been successfully grown 
through well-designed CVD systems at wafer scale99,112,126–131. At present, 
CVD technique enables the growth of single-crystal monolayer films as 
opposed to earlier demonstration of polycrystalline 2DMs. Recently, 
the highest room temperature mobility of 232.7 cm2 V–1 s–1 in a 4-inch 
CVD MoS2 has been reported, showing the feasibility of large-area films 
with high mobility123. An improved CVD synthesis method has been 
reported that involves a controlled release of precursors and substrates 
pre-deposited with amorphous Al2O3 to ensure uniform synthesis of 
monolayer MoS2 as large as 12 inch, suitable for commercialization124. The 
semiconductor industry has been exploring the compatibility of 2DMs 
with back-end-of-line processes, which practically limits the growth tem-
perature of 2D flakes to that below 450 °C. ALD is a versatile tool suitable 
for low temperatures. Moreover, because the growth can be controlled at 
an atomic layer thickness, and the reaction is self-limited to the surface 
of the substrate, it is, theoretically at least, suitable for the synthesis of 
2DMs132. At present, only a handful of 2D flakes synthesized by direct 
growth can meet the IRDS requirements for channel mobility (Fig. 6b).

In small-scale laboratory settings, high-quality 2DM films are 
still obtained via mechanical exfoliation, which yields random thick-
nesses and small flake size. Hence, there has been significant motiva-
tion to adapt the conventional mechanical exfoliation method to a 
larger scale. One alternative approach has been to introduce a metal 
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Fig. 5 | Transistor manufacturing flow of silicon and 2DMs. a, Schematic 
diagram of the typical silicon-based device integration process. The channel is 
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and polycrystalline silicon mask etching and, finally, self-aligned contact area 

doping and metallization are achieved. b, Schematic diagram of the 2D material 
(2DM)-based device integration process. Large-scale 2DM channel material 
growth, the channel is then defined by etching and metallization, the gate 
dielectric is grown and, finally, the gate electrode is deposited.
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(for example, Au) or polymeric intermediate substrate to improve the 
exfoliation yield and lateral size of 2D flakes133. With this method, a few 
millimetre uniform and high-quality 2D flakes can be obtained, which 
could be used in small-scale circuit function verification. The liquid-
phase exfoliation is another well-established laboratory-scale method 
to obtain 2DMs. However, these methods are not fit for large-scale 
integrated circuits.

Transferring 2D films onto desired substrates is a key step for the 
integration of 2DM. Depending on whether chemical solvents are used 
in the transfer process, they can be broadly divided into two categories: 
dry transfer and wet transfer. For dry transfer, the usual process involves 
stripping of a 2DM from its substrate onto an organics stamp (usually 
polydimethylsiloxane) and then, with the use of a microscope, affixing 
the stamp with the adhered 2DM to a target substrate. Finally, a heat 
treatment is used to remove the stamp from the substrate, thus complet-
ing the transfer. Dry transfer technique is suitable for most 2DMs and 
avoids the introduction of unwanted contaminants as the process does 
not rely on chemical solvents. However, limited by the adhesion between 
the organic stamps and the 2DMs, the sample size of the transferred 
flakes does not exceed several centimetres. To this end, a modified dry 
transfer method has been proposed100. The method proceeds through 
the following steps: first, an organic sacrificial layer is covered on the 
original substrate, then insulator is pre-deposited on the sacrificial layer 
and finally the insulator is mechanically dry-released from the original 
substrate and laminated on the top of wafer-scale MoS2 through the 
sacrificial layer. Through this approach, 2-inch 2DM-compatible dry 
dielectric transfer can be achieved, enabling 2DM dielectric integration.

Wet transfer is usually used in conjunction with CVD technology. 
2DMs obtained via CVD are typically grown on metal substrates or foils; 
therefore, they tend to adhere more strongly to the original substrate, 

a peel-off step hard to perform. Wet transfer involves spin-coating of 
an organic layer onto 2DM grown on a metal substrate. Then, the sub-
strate is etched with a chemical solution and dried to obtain an organic 
support layer in contact with the 2DMs film. Finally, the 2DM film is 
transferred onto the target substrate following the same method as 
dry transfer. Compared with dry transfer, wet transfer is more suitable 
for large-area film transfer of 2DMs because the strength of adhesion 
of the substrate to the 2DMs is not a consideration. However, because 
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Table 2 | Benchmarking methods in materials synthesis and 
wafer-scale transfer

Methods Scale Quality Integration 
compatibility

Materials 
synthesis

Chemical vapour 
deposition

★★★ ★★★ ★★★

Atomic layered deposition ★★ ★★ ★★

Mechanical exfoliated ★ ★★★ ★

Solution exfoliated ★★ ★★ ★

Methods Scale Yield Integration 
compatibility

Wafer-scale 
transfer

Dry transfer ★★ ★★ ★★★

Wet transfer ★★ ★★ ★★

Wafer bonding ★★★ ★★ ★★

Metal assistant ★ ★ ★

A summary table of different material synthesis methods and wafer-level transfer processes. 
The number of stars represents the potential of each technical path on the corresponding 
parameter index.
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chemical solvents are introduced in the transfer process, it is likely to 
lead to film breaking, wrinkling and bending. Owing to the different 
wettability of 2DM films and the growth substrates, 2DM films can be 
easily and quickly delaminated by deionized water at room tempera-
ture. As a result, an improved wet transfer method has been reported 
showing good transfer at a 6-inch size134. Drawing on the principle of 
wet transfer, a metal-assisted transfer approach has also been recently 
proposed, which is well suited for basic device performance verification 
in the laboratory owing to the ability to consistently obtain high-quality 
monolayer 2DMs133. In particular, wet transfer technology has been 
proposed based on wafer-bonding machines for large-scale semicon-
ductor manufacturing lines135. The study claims to have successfully 
transferred monolayer WS2 and some other 2DMs between 300 mm 
wafers by utilizing bisbenzocyclobutene as an adhesive sacrificial layer, 
which could prove promising if extended to other 2DMs. In principle, 
both dry and wet transfer methods can be used for wafer-scale 2DM 
transfer. More commercial equipment and technical methods need 
to be developed to improve transfer efficiency. Finally, the material 
synthesis and transfer techniques are summarized in Table 2. To accel-
erate the ‘lab-to-fab’ transition of 2DMs, work on large-scale growth and 
wafer-scale transfer processes should be intensified.

Outlook
Owing to high performance at atomic thicknesses, 2DMs open up the 
possibility of further transistor miniaturization beyond the limits of 
bulk materials. Building upon the extensive experience of the continued 
innovation in silicon MOSFET technology and through the optimi-
zation and further development of channel, contact and dielectric 
engineering approaches, 2DMs could deliver a breakthrough in the 
device performance at the ultimate scale. For that, the optimization 
of 2D transistors has to be approached holistically, by considering 
different types of device engineering. As far as the overall front-end 
process is concerned, the self-aligned integration process, high-quality 
wafer-scale 2DMs synthesis and transfer should be completed.

Published online: 30 April 2024
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