Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MXenes for multispectral electromagnetic shielding

Abstract

Electromagnetic interference (EMI) between unwanted electromagnetic (EM) waves and electronic circuits can lead to device malfunctions. The advancement of electronic, telecommunication and medical devices operating across a broad spectrum of EM waves (from ultralow kilohertz to high terahertz frequency) necessitates effective EMI shielding materials. MXenes — two-dimensional transition metal carbides, nitrides and carbonitrides — have emerged as EMI shielding materials that offer excellent metallic conductivity, large surface area, abundant surface terminations and facile solution processability. In composites with dielectric polymers, conducting carbons, magnetic particles and iontronic heterosystems, MXenes provide excellent multispectral EMI shielding against radiofrequency, gigahertz and terahertz or infrared-frequency waves at minimal thicknesses and in various structural forms. This Review delves into both theoretical and experimental aspects of the EMI shielding mechanisms of MXenes, showcasing their interaction with EM waves ranging from ultralow gigahertz to high terahertz frequency. The nanometre-thin pristine MXene films exhibit exceptionally low infrared emissivity, crucial for selective thermal management, infrared camouflage, stealth and anti-counterfeiting. MXene composites with polymers and magnetic inclusions not only enhance mechanical properties but also tune EMI shielding mechanisms. The Review also addresses challenges in developing MXene-based EMI shielding materials, offering insights into strategies and opportunities for their practical applications in electronics.

Key points

  • Two-dimensional MXenes, comprising transition metal carbides, nitrides and carbonitrides, are known for their high electrical conductivity, low infrared emissivity, tunable chemical composition and electromagnetic interference properties, and ease of post-synthesis processing.

  • Two-dimensional MXenes effectively shield against electromagnetic waves across a broad frequency spectrum, ranging from radiofrequency and gigahertz-range microwaves to terahertz and infrared frequencies.

  • Owing to their high electrical conductivity, MXenes exhibit the highest radiofrequency and gigahertz shielding efficiency among synthetic nanomaterials, rivalling that of pure metal films.

  • The hydrophilic terminations on MXene surfaces make them adaptable to various structural designs and suitable for use in MXene-tronic or MXene-iontronic systems, enhancing their shielding capabilities and providing additional modulation and gating functionalities.

  • MXenes exhibit compelling characteristics for infrared applications, including shielding, camouflage and anti-counterfeiting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures and electronic properties of MXenes.
Fig. 2: EMI shielding mechanism and multiple reflections inside a shield.
Fig. 3: EMI shielding characteristics of MXene films.
Fig. 4: MXene composites and hybrids for EMI shielding.
Fig. 5: EMI shielding mechanism of aqueous and ionic systems, and related measurements.
Fig. 6: Terahertz and infrared shielding capabilities of MXenes.

Similar content being viewed by others

References

  1. Chung, D. D. L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001).

    CAS  Google Scholar 

  2. Kumar, P. et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94, 494–500 (2015).

    CAS  Google Scholar 

  3. Kumar, P. et al. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101, 120–128 (2016).

    CAS  Google Scholar 

  4. Hong, S. K. et al. Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23, 455704 (2012).

    ADS  PubMed  Google Scholar 

  5. Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). This study investigates the absorption-dominant EMI shielding of Ti3CNTx MXene, which outperforms all other materials at comparable thickness.

    ADS  CAS  PubMed  Google Scholar 

  6. Han, M. et al. Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18, 373–379 (2023). This study explains the incorporation of mobile cations into the negative layers of MXenes for achieving reversible EMI shielding, controlled by electrochemically driven ion intercalation and de-intercalation.

    ADS  CAS  PubMed  Google Scholar 

  7. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). This is the first report on the EMI shielding of Ti3C2Tx MXene and its composites, demonstrating a reduction in thickness from millimetres to micrometres.

    ADS  CAS  PubMed  Google Scholar 

  8. Van der Togt, R. et al. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment. J. Am. Med. Assoc. 299, 2884–2890 (2008).

    Google Scholar 

  9. Dang, S., Amin, O., Shihada, B. & Alouini, M.-S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Google Scholar 

  10. Solkin, M. Electromagnetic interference hazards in flight and the 5G mobile phone: review of critical issues in aviation security. Transp. Res. Procedia 59, 310–318 (2021).

    Google Scholar 

  11. Peymanfar, R., Selseleh-Zakerin, E., Ahmadi, A., Saeidi, A. & Tavassoli, S. H. Preparation of self-healing hydrogel toward improving electromagnetic interference shielding and energy efficiency. Sci. Rep. 11, 16161 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iqbal, A., Kwon, J., Kim, M.-K. & Koo, C. MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021).

    CAS  Google Scholar 

  13. International Agency for Research on Cancer. IARC classifies radiofrequency electromagnetic fields as possibly cancinogenic to humans. International Agency for Research on Cancer https://www.iarc.who.int/pressrelease/iarc-classifies-radiofrequency-electromagnetic-fields-as-possibly-carcinogenic-to-humans/ (2011).

  14. De Temmerman, L. New metallized materials for EMI/RFI shielding. J. Coat. Fabr. 21, 191–198 (1992).

    Google Scholar 

  15. Fan, Y. et al. Utilization of stainless-steel furnace dust as an admixture for synthesis of cement-based electromagnetic interference shielding composites. Sci. Rep. 7, 15368 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S. H. et al. Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction. Compos. Sci. Technol. 182, 107778 (2019).

    CAS  Google Scholar 

  17. Lee, S. H. et al. Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Compos. Sci. Technol. 144, 57–62 (2017).

    CAS  Google Scholar 

  18. Choi, Y.-S., Yoo, Y.-H., Kim, J.-G. & Kim, S.-H. A comparison of the corrosion resistance of Cu–Ni–stainless steel multilayers used for EMI shielding. Surf. Coat. Technol. 201, 3775–3782 (2006).

    CAS  Google Scholar 

  19. Cao, M.-S., Wang, X.-X., Cao, W.-Q. & Yuan, J. Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C. 3, 6589–6599 (2015).

    CAS  Google Scholar 

  20. Thomassin, J.-M. et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng.: R: Rep. 74, 211–232 (2013).

    Google Scholar 

  21. Al-Saleh, M. H. & Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009).

    CAS  Google Scholar 

  22. Liang, J. et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009).

    CAS  Google Scholar 

  23. Pavlou, C. et al. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, H. et al. Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14, 380 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022).

    ADS  Google Scholar 

  26. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    CAS  PubMed  Google Scholar 

  27. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 1–17 (2017).

    Google Scholar 

  28. Shayesteh Zeraati, A. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13, 3572–3580 (2021).

    CAS  PubMed  Google Scholar 

  29. Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, M. & Gogotsi, Y. Perspectives for electromagnetic radiation protection with MXenes. Carbon 204, 17–25 (2023).

    CAS  Google Scholar 

  31. Feng, W. et al. MXenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 9, 3957 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  32. Iqbal, A., Sambyal, P. & Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). This review article summarizes different structural designs of MXenes and their polymeric composites to improve their intrinsic EMI shielding properties for different applications.

    CAS  Google Scholar 

  33. Cao, M.-s et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019).

    CAS  Google Scholar 

  34. He, P., Cao, M.-S., Cao, W.-Q. & Yuan, J. Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021).

    ADS  Google Scholar 

  35. Yun, T. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020). This study explains EMI shielding of monolayer Ti3C2Tx MXene along with the highest SSE / t value, promising for ultrathin and lightweight shielding materials.

    CAS  Google Scholar 

  36. Wan, S. et al. High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021). A novel densification strategy involving non-covalent and covalent bonding was adopted in this study to reduce thickness, enhance EMI shielding, improve oxidative stability and achieve the highest tensile strength in Ti3C2Tx MXene films.

    ADS  CAS  PubMed  Google Scholar 

  37. Sun, R. et al. Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017).

    Google Scholar 

  38. Wan, S. et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Z., Cheng, Z., Fang, C., Hou, X. & Xie, L. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Compos. Part. A: Appl. Sci. Manuf. 136, 105956 (2020).

    CAS  Google Scholar 

  40. Shukla, V. The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 1, 3104–3121 (2020).

    CAS  Google Scholar 

  41. Ma, M. et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem. Eng. J. 452, 139471 (2023). This study explains the effect of magnetic nanoparticle loading on the EMI shielding of Ti3C2Tx MXene.

    CAS  Google Scholar 

  42. Chen, W., Liu, L.-X., Zhang, H.-B. & Yu, Z.-Z. Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643–16653 (2020).

    CAS  PubMed  Google Scholar 

  43. Zhu, Y. et al. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465–1474 (2021).

    CAS  PubMed  Google Scholar 

  44. Yu, Y. et al. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022).

    ADS  CAS  Google Scholar 

  45. Choi, G. et al. Enhanced terahertz shielding of MXenes with nano-metamaterials. Adv. Opt. Mater. 6, 1701076 (2018). This study explores the terahertz EMI shielding of thin MXene films.

    Google Scholar 

  46. Zhao, Z., Huang, W., Qin, H. & Li, L. An insight into terahertz electromagnetic interference shielding of two-dimensional titanium carbide thin film: the key role of functional groups. Appl. Phys. A 129, 144 (2023).

    ADS  CAS  Google Scholar 

  47. Pan, J. et al. Recent progress in two-dimensional materials for terahertz protection. Nanoscale Adv. 3, 1515–1531 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, T. et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17, 622–628 (2023).

    ADS  CAS  Google Scholar 

  49. Han, M. et al. Versatility of infrared properties of MXenes. Mater. Today 64, 31–39 (2023). This study reports infrared emissivity of various MXene thin films, explaining its relationship with their corresponding electrical conductivity values.

    CAS  Google Scholar 

  50. Wang, J., Shen, M., Liu, Z. & Wang, W. MXene materials for advanced thermal management and thermal energy utilization. Nano Energy 97, 107177 (2022).

    CAS  Google Scholar 

  51. Li, Y. et al. 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, 2103054 (2021).

    CAS  Google Scholar 

  52. Li, X., Li, M., Li, X., Fan, X. & Zhi, C. Low infrared emissivity and strong stealth of Ti-based MXenes. Research 2022, 9892628 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding, H. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023).

    ADS  CAS  PubMed  Google Scholar 

  54. Wang, D. et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 379, 1242–1247 (2023).

    ADS  CAS  PubMed  Google Scholar 

  55. Björk, J., Halim, J., Zhou, J. & Rosen, J. Predicting chemical exfoliation: fundamental insights into the synthesis of MXenes. npj 2D Mater. Appl 7, 5 (2023).

    Google Scholar 

  56. Naguib, M. et al. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  PubMed  Google Scholar 

  57. Nikkhah, A. et al. MXene: from synthesis to environment remediation. Chin. J. Chem. Eng. 61, 260–280 (2023).

    Google Scholar 

  58. Zhang, T., Shuck, C. E., Shevchuk, K., Anayee, M. & Gogotsi, Y. Synthesis of three families of titanium carbonitride MXenes. J. Am. Chem. Soc. 145, 22374–22383 (2023).

    CAS  PubMed  Google Scholar 

  59. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78 (2014).

    ADS  CAS  PubMed  Google Scholar 

  60. Oh, T. et al. Fast and high-yield anhydrous synthesis of Ti3C2Tx MXene with high electrical conductivity and exceptional mechanical strength. Small 18, 2203767 (2022).

    CAS  Google Scholar 

  61. Yoon, J. et al. Biocompatible and oxidation-resistant Ti3C2Tx MXene with halogen-free surface terminations. Small Methods 7, e2201579 (2023).

    PubMed  Google Scholar 

  62. Liu, L. et al. In situ synthesis of MXene with tunable morphology by electrochemical etching of MAX phase prepared in molten salt. Adv. Energy Mater. 13, 2203805 (2023).

    CAS  Google Scholar 

  63. Arole, K. et al. Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience 24, 103403 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    ADS  CAS  PubMed  Google Scholar 

  65. Li, K. et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun. 13, 6884 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shao, Y. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13, 3223 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  67. Lee, C. et al. Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets. Nat. Commun. 13, 5615 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shahzad, F., Iqbal, A., Kim, H. & Koo, C. M. 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, 2002159 (2020).

    CAS  Google Scholar 

  69. Hong, S. et al. Ion-selective separation using MXene-based membranes: a review. ACS Mater. Lett. 5, 341–356 (2023).

    CAS  Google Scholar 

  70. Caffrey, N. M. Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10, 13520–13530 (2018).

    CAS  PubMed  Google Scholar 

  71. Anasori, B. et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 1, 227–234 (2016).

    ADS  CAS  PubMed  Google Scholar 

  72. Nemani, S. K. et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021).

    CAS  PubMed  Google Scholar 

  73. Nemani, S. K., Torkamanzadeh, M., Wyatt, B. C., Presser, V. & Anasori, B. Functional two-dimensional high-entropy materials. Commun. Mater. 4, 16 (2023).

    CAS  Google Scholar 

  74. Iqbal, A., Hong, J., Ko, T. Y. & Koo, C. M. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 1–22 (2021).

    Google Scholar 

  75. Han, M. et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 142, 19110–19118 (2020).

    CAS  PubMed  Google Scholar 

  76. Hantanasirisakul, K. et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019).

    CAS  Google Scholar 

  77. Lipatov, A. et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016).

    Google Scholar 

  78. Koo, C. M., Shahzad, F., Iqbal, A. & Kim, H. in 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications (eds Babak A. & Yury G.) 399–416 (Springer International, 2019).

  79. Peng, M. & Qin, F. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021).

    ADS  CAS  Google Scholar 

  80. Liu, J. et al. Hydrophobic, flexible, and lightweight MXene foams for high‐performance electromagnetic‐interference shielding. Adv. Mater. 29, https://doi.org/10.1002/adma.201702367 (2017).

  81. Fan, Z. et al. Lightweight three-dimensional cellular MXene film for superior energy storage and electromagnetic interference shielding. ACS Appl. Energy Mater. 3, 8171–8178 (2020).

    CAS  Google Scholar 

  82. Iqbal, A. et al. Enhanced absorption of electromagnetic waves in Ti3C2Tx MXene films with segregated polymer inclusions. Compos. Sci. Technol. 213, 108878 (2021).

    CAS  Google Scholar 

  83. Cao, W.-T. et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). This study reports improved tensile strength and EMI shielding values for Ti3C2Tx MXene/CNF composite papers.

    CAS  PubMed  Google Scholar 

  84. Lee, G. S. et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14, 11722–11732 (2020).

    CAS  PubMed  Google Scholar 

  85. Liu, R. et al. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018).

    ADS  CAS  PubMed  Google Scholar 

  86. Jin, X. et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020).

    CAS  Google Scholar 

  87. Zhao, M. Q. et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na‐ion storage. Adv. Mater. 29, 1702410 (2017).

    Google Scholar 

  88. Zhao, Q. et al. Flexible 3D porous MXene foam for high‐performance lithium‐ion batteries. Small 15, 1904293 (2019).

    CAS  Google Scholar 

  89. Fan, Z. et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10, 9642–9652 (2018).

    CAS  PubMed  Google Scholar 

  90. Zhang, Y. et al. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175, 271–280 (2021).

    CAS  Google Scholar 

  91. Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). This study enlists 16 different types of MXene, manifesting the effect of electrical conductivity and chemical composition on the EMI shielding properties.

    CAS  PubMed  Google Scholar 

  92. Deng, Z. et al. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022).

    CAS  PubMed  Google Scholar 

  93. Habib, T. et al. Heating of Ti3C2Tx MXene/polymer composites in response to radio frequency fields. Sci. Rep. 9, 1–7 (2019).

    Google Scholar 

  94. Menéndez, J. A. et al. Microwave heating processes involving carbon materials. Fuel Proces. Technol. 91, 1–8 (2010).

    Google Scholar 

  95. Han, M. et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8, 21011–21019 (2016). This study explores the effect of surface modification by rapidly annealing on the EMI shielding and absorption of Ti3C2Tx MXene.

    CAS  PubMed  Google Scholar 

  96. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    ADS  CAS  PubMed  Google Scholar 

  97. He, S. et al. Preparation strategies and applications of MXene–polymer composites: a review. Macromol. Rapid Commun. 42, 2100324 (2021).

    CAS  Google Scholar 

  98. Li, R. et al. Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity. Carbon 183, 301–312 (2021).

    CAS  Google Scholar 

  99. Amin, I. et al. Ti3C2Tx MXene polymer composites for anticorrosion: an overview and perspective. ACS Appl. Mater. Interfaces 14, 43749–43758 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, M.-K. et al. Electrically conductive Ti3C2Tx MXene/polypropylene nanocomposites with an ultralow percolation threshold for efficient electromagnetic interference shielding. Ind. Eng. Chem. Res. 60, 4342–4350 (2021).

    CAS  Google Scholar 

  101. Lee, G. S. et al. Maximized internal scattering in heterostack Ti3C2Tx MXene/graphene oxide film for effective electromagnetic interference shielding. 2D Mater. 10, 035022 (2023).

    Google Scholar 

  102. Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).

    ADS  CAS  Google Scholar 

  103. Luo, J. et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11, 2459–2469 (2017).

    CAS  PubMed  Google Scholar 

  104. Luo, J. et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29, 1805946 (2019).

    Google Scholar 

  105. Liu, L.-X. et al. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022).

    ADS  CAS  Google Scholar 

  106. Luo, J.-Q. et al. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019).

    CAS  Google Scholar 

  107. Cheng, Y. et al. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tang, T. et al. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 111, 66–75 (2022).

    CAS  Google Scholar 

  109. Gao, Q. et al. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid. Mater. 4, 274–285 (2021).

    CAS  Google Scholar 

  110. Liu, Z. et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C. 8, 1673–1678 (2020).

    CAS  Google Scholar 

  111. Jia, F. et al. Robust, flexible, and stable CuNWs/MXene/ANFs hybrid film constructed by structural assemble strategy for efficient EMI shielding. Chem. Eng. J. 452, 139395 (2023).

    CAS  Google Scholar 

  112. Miao, M. et al. Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C. 8, 3120–3126 (2020).

    CAS  Google Scholar 

  113. Vu, M. C. et al. Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites. Compos. Part. A: Appl. Sci. Manuf. 149, 106574 (2021).

    CAS  Google Scholar 

  114. Xu, D. et al. Experimental design of composite films with thermal management and electromagnetic shielding properties based on polyethylene glycol and MXene. Carbon 202, 1–12 (2023).

    CAS  Google Scholar 

  115. Kumar, S., Kumar, P., Singh, N. & Verma, V. Steady microwave absorption behavior of two-dimensional metal carbide MXene and polyaniline composite in X-band. J. Magn. Magn. Mater. 488, 165364 (2019).

    CAS  Google Scholar 

  116. Li, Y. et al. Flexible MXene/graphene oxide films with long-lasting electromagnetic interference shielding performance. Ceram. Int. 48, 37032–37038 (2022).

    CAS  Google Scholar 

  117. Guo, Z. et al. Poly(vinyl alcohol)/MXene biomimetic aerogels with tunable mechanical properties and electromagnetic interference shielding performance controlled by pore structure. Polymer 230, 124101 (2021).

    CAS  Google Scholar 

  118. Wu, X. et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020).

    CAS  Google Scholar 

  119. Habibpour, S. et al. Greatly enhanced electromagnetic interference shielding effectiveness and mechanical properties of polyaniline-grafted Ti3C2Tx MXene–PVDF composites. ACS Appl. Mater. Interfaces 14, 21521–21534 (2022).

    CAS  PubMed  Google Scholar 

  120. Wang, L. et al. Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part. B: Eng. 171, 111–118 (2019).

    CAS  Google Scholar 

  121. Wang, L., Song, P., Lin, C.-T., Kong, J. & Gu, J. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Weng, G. M. et al. Layer‐by‐layer assembly of cross‐functional semi‐transparent MXene‐carbon nanotubes composite films for next‐generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1083360 (2018).

    Google Scholar 

  123. Cheng, M. et al. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022).

    CAS  PubMed  Google Scholar 

  124. Han, M. et al. Efficient microwave absorption with Vn+1CnTx MXenes. Cell Rep. Phys. Sci. 3, 101073 (2022).

    CAS  Google Scholar 

  125. Liu, J. et al. Additive manufacturing of Ti3C2‐MXene–functionalized conductive polymer hydrogels for electromagnetic‐interference shielding. Adv. Mater. 34, 2106253 (2022). In this study, Ti3C2Tx/PEDOT:PSS-based conductive hydrogels are developed for EMI shielding applications.

    CAS  Google Scholar 

  126. Hong, J. et al. Electromagnetic shielding of optically-transparent and electrically-insulating ionic solutions. Chem. Eng. J. 438, 135564 (2022).

    CAS  Google Scholar 

  127. Lin, Z. et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14, 2109–2117 (2020).

    CAS  PubMed  Google Scholar 

  128. Deng, Y. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019).

    CAS  Google Scholar 

  129. Miles, P., Westphal, W. & Von Hippel, A. Dielectric spectroscopy of ferromagnetic semiconductors. Rev. Mod. Phys. 29, 279 (1957).

    ADS  CAS  Google Scholar 

  130. Guo, H. et al. State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: a review. Nano Res. 16, 10287–10325 (2023).

    ADS  Google Scholar 

  131. Zhang, Z. et al. The recent progress of MXene-based microwave absorption materials. Carbon 174, 484–499 (2021).

    CAS  Google Scholar 

  132. Li, S., Xu, S., Pan, K., Du, J. & Qiu, J. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film. Carbon 194, 127–139 (2022).

    CAS  Google Scholar 

  133. Song, R. et al. Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl Acad. Sci. USA 120, e2209807120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu, N. et al. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 13, 5551 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  135. Gallo, M., Mescia, L., Losito, O., Bozzetti, M. & Prudenzano, F. Design of optical antenna for solar energy collection. Energy 39, 27–32 (2012).

    CAS  Google Scholar 

  136. He, D. et al. Multispectral electromagnetic shielding using ultra-thin metal-metal oxide decorated hybrid nanofiber membranes. Commun. Mater. 2, 1–9 (2021).

    Google Scholar 

  137. Rajavel, K., Hu, Y., Zhu, P., Sun, R. & Wong, C. MXene/metal oxides–Ag ternary nanostructures for electromagnetic interference shielding. Chem. Eng. J. 399, 125791 (2020).

    CAS  Google Scholar 

  138. Qu, Y., Li, X., Wang, X. & Dai, H. Multifunctional AgNWs@MXene/AgNFs electromagnetic shielding composites for flexible and highly integrated advanced electronics. Compos. Sci. Technol. 230, 109753 (2022).

    CAS  Google Scholar 

  139. Wang, Z., Cheng, Z., Xie, L., Hou, X. & Fang, C. Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 47, 5747–5757 (2021).

    CAS  Google Scholar 

  140. Liang, L. et al. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019).

    CAS  PubMed  Google Scholar 

  141. Guo, Z. et al. Multifunctional CoFe2O4@MXene–AgNWs/cellulose nanofiber composite films with asymmetric layered architecture for high-efficiency electromagnetic interference shielding and remarkable thermal management capability. ACS Appl. Mater. Interfaces 14, 41468–41480 (2022).

    CAS  PubMed  Google Scholar 

  142. Fan, K. et al. Multifunctional double-network Ti3C2Tx MXene composite hydrogels for strain sensors with effective electromagnetic interference and UV shielding properties. Polymer 273, 125865 (2023).

    CAS  Google Scholar 

  143. Yang, Y. et al. Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022).

    CAS  PubMed  Google Scholar 

  144. Ma, W. et al. Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 11, 25369–25377 (2019).

    CAS  PubMed  Google Scholar 

  145. Zou, Q. et al. Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti3C2Tx MXene fiber membranes. Nanotechnology 32, 415204 (2021).

    ADS  CAS  Google Scholar 

  146. Wan, H., Liu, N., Tang, J., Wen, Q. & Xiao, X. Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 15, 13646–13652 (2021).

    CAS  PubMed  Google Scholar 

  147. Zou, Q. et al. MXene-based ultra-thin film for terahertz radiation shielding. Nanotechnology 31, 505710 (2020).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science, ICT, and Future Planning (grants 2021M3H4A1A03047327, 2022R1A2C3006227, CRC22031-000) and by the Fundamental R&D Program (20020855) from the Ministry of Trade, Industry, and Energy, Republic of Korea, and partially supported by POSCO. Research at Drexel University was supported by the US National Science Foundation (NSF) (grant ECCS-2034114).

Author information

Authors and Affiliations

Authors

Contributions

A.I., T.H. and S.M.N. conducted the literature review and prepared a manuscript under the supervision of C.M.K. Y.G. and C.M.K edited and shaped the manuscript. All of the authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Chong Min Koo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Polina Kuzhir, Jianmin Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Hassan, T., Naqvi, S.M. et al. MXenes for multispectral electromagnetic shielding. Nat Rev Electr Eng 1, 180–198 (2024). https://doi.org/10.1038/s44287-024-00024-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-024-00024-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing