Abstract
Germanium telluride (GeTe)-based compounds have drawn attention as one of the most promising thermoelectrics for mid-to-high-temperature applications such as heat recovery from automotive exhaust emissions and radioisotope thermoelectric generators. The thermoelectric performance of GeTe-based materials can be improved by general methods such as band engineering and phonon engineering. However, further progress has been made to optimize thermoelectric performance using targeted strategies that take advantage of the structural properties of GeTe. We consider the targeted phase, defect and entropy engineering strategies used to optimize the electrical and thermal properties of GeTe-based materials. We also showcase the potential of GeTe-based materials for practical thermoelectric applications. Finally, we discuss the existing challenges and prospects for GeTe thermoelectrics and their modules in future research.
Key points
-
GeTe thermoelectrics exhibit high thermoelectric performance, which can be further enhanced through targeted methods driven by a deeper understanding of their atomic structure.
-
Phase engineering of GeTe can leverage the high Seebeck coefficient and low lattice thermal conductivity of the near-cubic phase to increase thermoelectric efficiencies.
-
Quantum gaps formed by Ge vacancies in GeTe can decouple carrier and phonon transport, which improves thermoelectric performance.
-
Entropy engineering in GeTe, capable of simultaneously augmenting the power factor and lowering the lattice thermal conductivity, can lead to improved thermoelectric performance in GeTe-based materials.
-
GeTe-based thermoelectric modules have reached an efficiency of more than 13%.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).
Nolas, G. S., Poon, J. & Kanatzidis, M. Recent developments in bulk thermoelectric materials. MRS Bull. 31, 199–205 (2006).
Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Edn Engl. 48, 8616–8639 (2009).
Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010).
Pichanusakorn, P. & Bandaru, P. Nanostructured thermoelectrics. Mater. Sci. Eng. R 67, 19–63 (2010).
Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147–5162 (2012).
Mehdizadeh Dehkordi, A., Zebarjadi, M., He, J. & Tritt, T. M. Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R 97, 1–22 (2015).
Zeier, W. G. et al. Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Edn Engl. 55, 6826–6841 (2016).
Mao, J. et al. Advances in thermoelectrics. Adv. Phys. 67, 69–147 (2018).
Jiang, M. et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds. Natl Sci. Rev. 10, nwad095 (2023).
Wu, S. J., Sun, Y. C., Xia, Q. C., Gai, X. T. & Yang, C. J. Improving the efficiency and pressure resistance of inorganic sealant-filled thermoelectric module. J. Electron. Mater. 52, 5000–5012 (2023).
Song, K., Yin, D. S. & Schiavone, P. Conversion efficiency and effective properties of particulate-reinforced thermoelectric composites. Z. Angew. Math. Phys. 71, 54 (2020).
Karbaschi, H., Nouri, N., Rezaei, M. & Rashedi, G. Thermoelectric power generation efficiency of zigzag monolayer nanoribbon of bismuth. Nanotechnology 31, 375403 (2020).
Shtern, M. Y. Current trends in improving the efficiency of thermoelectric generators. In Proc. 2019 IEEE Conf. Russian Young Researchers In Electrical and Electronic Engineering (EIConRus) 1914–1919 (IEEE, 2019).
Zhu, Q., Song, S. W., Zhu, H. T. & Ren, Z. F. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials. J. Power Sources 414, 393–400 (2019).
Liu, W., Bai, L. & Wang, Y. H. Thermodynamic efficiency of mesoscopic thermoelectric generators with broken time-reversal symmetry: insights from an ecological optimization. Mod. Phys. Lett. B 34, https://doi.org/10.1142/S0217984920502620 (2020).
Rogolino, P. & Cimmelli, V. A. Thermal conductivity and enhanced thermoelectric efficiency of composition-graded SicGe1-c alloys. Z. Angew. Math. Phys. 71, https://doi.org/10.1007/s00033-020-01311-x (2020).
Lee, M. Y., Seo, J. H., Lee, H. S. & Garud, K. S. Power generation, efficiency and thermal stress of thermoelectric module with leg geometry, material, segmentation and two-stage arrangement. Symmetry 12, https://doi.org/10.3390/sym12050786 (2020).
Li, W. J. et al. Toward high conversion efficiency of thermoelectric modules through synergistical optimization of layered materials. Adv. Mater. 35, e2210407 (2023).
Zhang, D. et al. High thermoelectric performance in earth-abundant Cu3SbS4 by promoting doping efficiency via rational vacancy design. Adv. Funct. Mater. 33, https://doi.org/10.1002/adfm.202214163 (2023).
Nazri, N. S. et al. Electrical efficiency enhancement of thermal-thermoelectric photovoltaic hybrid solar system (PVT-TE) by thermoelectric effect. Sains Malaysiana 51, 4111–4124 (2022).
Song, K. et al. Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium. Energy 239, 122440 (2022).
Olivares-Robles, M. A., Badillo-Ruiz, C. A. & Ruiz-Ortega, P. E. Iso efficiency in nanostructured thermoelectric materials. Energy Convers. Manag. 266, 115857 (2022).
Lee, N. et al. Method for predicting thermoelectric module efficiency using MATLAB/Simulink. Kor. J. Met. Mater. 59, 829–837 (2021).
Inoue, H., Kato, M., Udono, H. & Kobayashi, T. Power generation efficiency of thermoelectric elements with a trapezoidal section. J. Electron. Mater. 50, 346–351 (2021).
Cui, C. F. et al. Bayesian optimization-based design of defect gamma-graphyne nanoribbons with high thermoelectric conversion efficiency. Carbon 176, 52–60 (2021).
He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).
Zhu, T. et al. Compromise and synergy in high‐efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017).
Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012).
Xiao, Y. & Zhao, L.-D. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quant. Mater. 3, 55 (2018).
Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J.-P. & Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003).
Li, M. et al. Ultrahigh figure-of-merit of Cu2Se incorporated with carbon coated boron nanoparticles. Infomat 1, 108–115 (2019).
Huang, Z. Y. et al. Achieving high thermoelectric performance of Ni/Cu modified Bi0.5Sb1.5Te3 composites by a facile electroless plating. Mater. Today Energy 9, 383–390 (2018).
Peng, K. L. et al. Ultra-high average figure of merit in synergistic band engineered SnxNa1-xSe0.9S0.1 single crystals. Mater. Today 21, 501–507 (2018).
Luo, Z. Z. et al. Valence disproportionation of GeS in the PbS matrix forms Pb5Ge5S12 inclusions with conduction band alignment leading to high n-type thermoelectric performance. J. Am. Chem. Soc. 144, 7402–7413 (2022).
Gu, J. M., Han, D., Zheng, M. R., Si, Z. T. & Chen, J. J. Design and experiments of a thermoelectric generator coupled to a gas cooker with energy storage module and thermosyphon cooling system. Energy Sources A https://doi.org/10.1080/15567036.2020.1745960 (2020).
Uysal, F. et al. Estimating Seebeck coefficient of a p-type high temperature thermoelectric material using bee algorithm multi-layer perception. J. Electron. Mater. 46, 4931–4938 (2017).
Tani, J. I. & Ishikawa, H. Thermoelectric properties of La- and Sc-doped Mg3Sb2 synthesized via pulsed electric current sintering. J. Mater. Sci. Electron. 31, 7724–7730 (2020).
Liu, Z. Y., Yang, T., Wang, Y. G., Xia, A. L. & Ma, L. B. Energy band and charge-carrier engineering in skutterudite thermoelectric materials. Chin. Phys. B 31, https://doi.org/10.1088/1674-1056/ac6ee8 (2022).
Tan, X. J. et al. Improving thermoelectric performance of α-MgAgSb by theoretical band engineering design. Adv. Energy Mater. 7, https://doi.org/10.1002/aenm.201700076 (2017).
Xi, L. L., Yang, J., Wu, L. H., Yang, J. H. & Zhang, W. Q. Band engineering and rational design of high-performance thermoelectric materials by first-principles. J. Mater. 2, 114–130 (2016).
Khan, J. et al. High performance thermoelectric materials based on metal organic coordination polymers through first-principles band engineering. J. Comput. Chem. 39, 2582–2588 (2018).
Lee, K. H., Kim, S. I., Kim, H. S. & Kim, S. W. Band convergence in thermoelectric materials: theoretical background and consideration on Bi-Sb-Te Alloys. ACS Appl. Energy Mater. 3, 2214–2223 (2020).
Xin, N., Li, Y. F., Shen, H., Shen, L. Y. & Tang, G. H. Realizing high thermoelectric performance in hot-pressed polycrystalline AlxSn1-xSe through band engineering tuning. J. Mater. 8, 475–488 (2022).
Xiao, Y. et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci. 11, 2486–2495 (2018).
König, J. D. et al. Titanium forms a resonant level in the conduction band of PbTe. Phys. Rev. B 84, 205126 (2011).
Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).
Zhu, T. J., Hu, L. P., Zhao, X. B. & He, J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv. Sci. 3, 1600004 (2016).
Zhang, Q. et al. Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering. Chem. Asian J. 15, 2775–2792 (2020).
Liu, Y. F., Zhou, M. H. & He, J. Towards higher thermoelectric performance of Bi2Te3 via defect engineering. Scr. Mater. 111, 39–43 (2016).
Zheng, Y. et al. Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. 50, 9022–9054 (2021).
Kim, W., Lee, W., Lee, S. M., Kim, D. & Park, J. Enhanced thermoelectric performance of defect engineered monolayer graphene. Nanotechnology 33, https://doi.org/10.1088/1361-6528/ac4aa6 (2022).
Sun, Y. X. et al. Defects engineering driven high power factor of ZrNiSn-based half-Heusler thermoelectric materials. Chem. Phys. Lett. 755, 137770 (2020).
Lee, K. H. & Kim, S. W. Design and preparation of high-performance bulk thermoelectric materials with defect structures. J. Kor. Ceram. Soc. 54, 75–85 (2017).
Anno, Y., Imakita, Y., Takei, K., Akita, S. & Arie, T. Enhancement of graphene thermoelectric performance through defect engineering. 2D Mater 4, 025019 (2017).
Guelou, G. et al. A scalable synthesis route for multiscale defect engineering in the sustainable thermoelectric quaternary sulfide Cu26V2Sn6S32. Acta Mater. 195, 229–239 (2020).
Zhang, Y. M. et al. Enhanced thermoelectric performance of ternary compound Cu3PSe4 by defect engineering. Rare Met. 39, 1256–1261 (2020).
He, J., Kanatzidis, M. G. & Dravid, V. P. High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 16, 166–176 (2013).
Yu, Y. et al. Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics. Nat. Commun. 13, 5612 (2022).
Jiang, B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).
Lyu, W. Y. et al. The effect of rare earth element doping on thermoelectric properties of GeTe. Chem. Eng. J. 446, 137278 (2022).
Zhang, X. et al. GeTe thermoelectrics. Joule 4, 986–1003 (2020).
Liu, W. D. et al. High-performance GeTe-based thermoelectrics: from materials to devices. Adv. Energy Mater. 10, 2000367 (2020).
Gayner, C. & Kar, K. K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382 (2016).
Beretta, D. et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R 138, 210–255 (2019).
Shi, X., Zou, J. & Chen, Z. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).
Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).
Yan, Q. & Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022).
Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).
Yu, Y., Wu, H. & He, J. Synergistic strategies to boost lead telluride as prospective thermoelectrics. In Thin Film and Flexible Thermoelectric Generators, Devices and Sensors (eds Skipidarov, S. & Nikitin, M.) 155–189 (Springer, 2021).
Wang, J. et al. Synergy of valence band modulation and grain boundary engineering leading to improved thermoelectric performance in SnTe. ACS Appl. Energy Mater. 4, 14608–14617 (2021).
Xu, X. et al. Enhanced thermoelectric performance achieved in SnTe via the synergy of valence band regulation and Fermi level modulation. ACS Appl. Mater. Interf. 13, 50037–50045 (2021).
Liu, S. et al. Coherent Sb/CuTe core/shell nanostructure with large strain contrast boosting the thermoelectric performance of n‐type PbTe. Adv. Funct. Mater. 31, 2007340 (2021).
Fu, L. et al. Achieving a fine balance between the strong mechanical and high thermoelectric properties of n-type PbTe–3% Sb materials by alloying with PbS. J. Mater. Chem. A 7, 6304–6311 (2019).
Qi, X. et al. Enhanced thermoelectric performance in GeTe-Sb2Te3 pseudo-binary via lattice symmetry regulation and microstructure stabilization. Mater. Today Phys. 21, 100507 (2021).
Liu, S. et al. Strained endotaxial PbS nanoprecipitates boosting ultrahigh thermoelectric quality factor in n‐type PbTe as‐cast ingots. Small 17, 2104496 (2021).
Fu, C. et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 4–10 (2015).
Xia, K. et al. Short-range order in defective half-Heusler thermoelectric crystals. Energy Environ. Sci. 12, 1568–1574 (2019).
Liu, C. et al. Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials. Sci. Adv. 9, eadh0713 (2023).
Xu, X. et al. Microstructural manipulation for enhanced average thermoelectric performance: a case study of tin telluride. ACS Appl. Mater. Interf. 15, 9656–9664 (2023).
Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).
Wu, H. J. et al. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014).
Hu, L., Zhu, T., Liu, X. & Zhao, X. Point defect engineering of high‐performance bismuth‐telluride‐based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014).
Nshimyimana, E. et al. Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. J. Mater. Chem. A 8, 1193–1204 (2020).
Hong, M. et al. Realizing zT of 2.3 in Ge1−x−ySbxInyTe via reducing the phase‐transition temperature and introducing resonant energy doping. Adv. Mater. 30, 1705942 (2018).
Misra, S. et al. Band structure engineering in Sn1.03Te through an In-induced resonant level. J. Mater. Chem. C 8, 977–988 (2020).
Perumal, S., Roychowdhury, S. & Biswas, K. High performance thermoelectric materials and devices based on GeTe. J. Mater. Chem. C. 4, 7520–7536 (2016).
Zheng, Z. et al. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J. Am. Chem. Soc. 140, 2673–2686 (2018).
Wu, D., Xie, L., Xu, X. & He, J. High thermoelectric performance achieved in GeTe–Bi2Te3 pseudo‐binary via van der Waals gap‐induced hierarchical ferroelectric domain structure. Adv. Funct. Mater. 29, 1806613 (2019).
Xu, X., Xie, L., Lou, Q., Wu, D. & He, J. Boosting the thermoelectric performance of pseudo-layered Sb2Te3(GeTe)n via vacancy engineering. Adv. Sci. 5, 1801514 (2018).
Rabe, K. M. & Joannopoulos, J. D. Theory of the structural phase transition of GeTe. Phys. Rev. B 36, 6631–6639 (1987).
Jeong, K. et al. Evolution of crystal structures in GeTe during phase transition. Sci. Rep. 7, 955 (2017).
Bauer Pereira, P. et al. Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys. Status Solidi 250, 1300–1307 (2013).
Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).
Sun, Z., Zhou, J. & Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 96, 055507 (2006).
Tran, X. Q. et al. Real-time observation of the thermally-induced phase transformation in GeTe and its thermal expansion properties. Acta Mater. 165, 327–335 (2019).
Xing, T. et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 14, 995–1003 (2021).
Liu, W. et al. High‐performance GeTe‐based thermoelectrics: from materials to devices. Adv. Energy Mater. 10, 2000367 (2020).
Hong, M., Zou, J. & Chen, Z. G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv. Mater. 31, 1807071 (2019).
Hong, M., Li, M., Wang, Y., Shi, X. L. & Chen, Z. G. Advances in versatile gete thermoelectrics from materials to devices. Adv. Mater. 35, e2208272 (2023).
Yu, Y., Xie, L., Pennycook, S. J., Bosman, M. & He, J. Strain-induced van der Waals gaps in GeTe revealed by in situ nanobeam diffraction. Sci. Adv. 8, 7690 (2022).
Xu, X. et al. Highly tailored gap-like structure for excellent thermoelectric performance. Energy Environ. Sci. 15, 4058–4068 (2022).
Xu, X. et al. Realizing improved thermoelectric performance in BiI3-doped Sb2Te3(GeTe)17 via introducing dual vacancy defects. Chem. Mater. 32, 1693–1701 (2020).
Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).
Wu, D. et al. Realizing high figure of merit plateau in Ge1-xBixTe via enhanced Bi solution and Ge precipitation. J. Alloy. Compd. 805, 831–839 (2019).
Zhang, X. et al. Perspective GeTe thermoelectrics. Joule 4, 986–1003 (2020).
Bhat, D. K. & Shenoy, U. S. Resonance levels in GeTe thermoelectrics: zinc as a new multifaceted dopant. N. J. Chem. 44, 17664–17670 (2020).
Qiu, Y. et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature: via entropy engineering. J. Mater. Chem. A 7, 26393–26401 (2019).
Suwardi, A. et al. Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J. Mater. Chem. A 8, 18880–18890 (2020).
Hong, M. et al. Realizing zT of 2.3 in Ge1−x−ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv. Mater. 30, https://doi.org/10.1002/adma.201705942 (2018).
Zhang, Y. S. First-principles Debye–Callaway approach to lattice thermal conductivity. J. Mater. 2, 237–247 (2016).
Ma, H., Yang, C. L., Wang, M. S. & Ma, X. G. AgKTe: an intrinsic semiconductor material with high thermoelectric properties at room temperature. J. Alloy. Compd. 739, 35–40 (2018).
Schrade, M. & Finstad, T. G. Using the Callaway model to deduce relevant phonon scattering processes: the importance of phonon dispersion. Phys. Status Solidi. 255, https://doi.org/10.1002/pssb.201800208 (2018).
Yu, Y. et al. Ag-segregation to dislocations in PbTe-based thermoelectric materials. ACS Appl. Mater. Interf. 10, 3609–3615 (2018).
Qader, I. N., Qadr, H. M. & Ali, P. H. Calculation of lattice thermal conductivity for Si fishbone nanowire using modified Callaway model. Semiconductors 55, 960–967 (2021).
Lee, W. Y., Park, N. W., Yoon, S. G. & Lee, S. K. Analysis of thermal conductivity of antimony telluride thin films by modified Callaway and Sondheimer models. J. Nanosci. Nanotechnol. 16, 7567–7572 (2016).
Zhang, X. et al. Enhanced thermoelectric properties of YbZn2Sb2-xBix through a synergistic effect via Bi-doping. Chem. Eng. J. 374, 589–595 (2019).
Lee, K. H. et al. Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys. Mater. Today Energy 21, 100795 (2021).
Callaway, J. & von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149 (1960).
Chang, C. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778–783 (2018).
Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).
Brown, D. R. et al. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. APL Mater. 1, 052107 (2013).
Mi, W. et al. Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Appl. Phys. Lett. 104, 133903 (2014).
Zhang, Z. Y. et al. Simultaneously enhanced strength and ductility of AlSi7Mg alloy fabricated by laser powder bed fusion with on-line static magnetic field. Virtual Phys. Prototyp. 18, e2161918 (2023).
Jung, C. et al. Reduced lattice thermal conductivity through tailoring of the crystallization behavior of NbCoSn by V addition. J. Alloy. Compd. 962, 171191 (2023).
Yang, X. et al. Nanostructured n-type polycrystalline SnSe materials for thermoelectric applications. ACS Appl. Nano Mater. 6, 11754–11763 (2023).
Liu, Y. L. et al. Mg compensating design in the melting-sintering method for high-performance Mg3(Bi,Sb)2 thermoelectric devices. Small 19, e2303840 (2023).
Zhang, W. T. et al. Pressure induced bands convergence and strength enhancement in thermoelectric semiconductor β-InSe. J. Alloy. Compd. 947, 169687 (2023).
Nehra, M. et al. Catalytic applications of phosphorene: computational design and experimental performance assessment. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2023.2224614 (2023).
Shalini, V. et al. Investigating the effect of defect states and to enhance the electrical conductivity of p-type Vanadium-doped MoS2 for wearable thermoelectric application. J. Alloys Compd. 960, 170317 (2023).
Han, G. Y. et al. Combinatorial screening via high-throughput preparation: thermoelectric performance optimization for n-type Bi-Te-Se film with high average ZT > 1. J. Mater. Sci. Technol. 160, 18–27 (2023).
Xiao, Y. H. et al. Engineering Cu1.96S/Co9S8 with sulfur vacancy and heterostructure as an efficient bifunctional electrocatalyst for water splitting. J. Mater. Sci. Technol. 154, 1–8 (2023).
Ma, X. et al. Identifying the point defects in single-crystalline Mg3Sb2. Chem. Mater. 35, 5640–5647 (2023).
Lyu, W. Y. et al. Condensed point defects enhance thermoelectric performance of rare-earth Lu-doped GeTe. J. Mater. Sci. Technol. 151, 227–233 (2023).
Lee, J. E. et al. Enhanced thermoelectric performance of SnSe by controlled vacancy population. Nano Converg. 10, 32 (2023).
Jin, Y., Ren, D., Qiu, Y. & Zhao, L. Electrical and thermal transport properties of Ge1–xPbxCuySbyTeSe2y. Adv. Funct. Mater. 33, https://doi.org/10.1002/adfm.202304512 (2023).
Zhang, D. et al. Sb alloying for engineering high‐thermoelectric zT of CuGaTe2. Adv. Energy Sustain. Res. https://doi.org/10.1002/aesr.202300069 (2023).
Biswas, K. et al. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011).
Moghaddam, A. O., Fereidonnejad, R. & Cabot, A. Semi-ordered high entropy materials: the case of high entropy intermetallic compounds. J. Alloy. Compd. 960, 170802 (2023).
Banko, L. et al. Microscale combinatorial libraries for the discovery of high-entropy materials. Adv. Mater. 35, e2207635 (2023).
Gaboardi, M. et al. Local structure in high-entropy transition metal diborides. Acta Mater 239, 118294 (2022).
Li, Y. et al. Preliminary exploration of a WTaVTiCr high-entropy alloy as a plasma-facing material. Nucl. Fusion 62, https://doi.org/10.1088/1741-4326/ac8fa5 (2022).
Dippo, O. F. & Vecchio, K. S. A universal configurational entropy metric for high-entropy materials. Scr. Mater. 201, 113974 (2021).
Huang, Y., Yeh, J. W. & Yang, A. C. M. ‘High-entropy polymers’: a new route of polymer mixing with suppressed phase separation. Materialia 15, https://doi.org/10.2139/ssrn.3708726 (2021).
Wang, Q. S., Velasco, L., Breitung, B. & Presser, V. High-entropy energy materials in the age of big data: a critical guide to next-generation synthesis and applications. Adv. Energy Mater. 11, 2102355 (2021).
Qin, M. D. et al. High-entropy monoborides: towards superhard materials. Scr. Mater. 189, 101–105 (2020).
Li, H. N. et al. Nano high-entropy materials: synthesis strategies and catalytic applications. Small Struct 1, 2000033 (2020).
Chang, S. et al. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Mater. Lett. 272, 127832 (2020).
Hsiao, Y. T., Tung, C. H., Lin, S. J., Yeh, J. W. & Chang, S. Y. Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: roles of enthalpy and mixing entropy. Acta Mater. 199, 107–115 (2020).
Zhou, N. X. et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics. Sci. Bull. 64, 856–864 (2019).
Tunes, M. A. et al. From high-entropy alloys to high-entropy ceramics: the radiation-resistant highly concentrated refractory carbide (CrNbTaTiW)C. ACTA Mater. 250, 118856 (2023).
Zhang, F., Lou, H. B., Cheng, B. Y., Zeng, Z. D. & Zeng, Q. S. High-pressure induced phase transitions in high-entropy alloys: a review. Entropy 21, 239 (2019).
Lu, Y. P. et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 35, 369–373 (2019).
Krapivka, M. O., Myslyvchenko, O. M. & Karpets, M. V. Base alloy concept in the development of high-entropy materials. Powder Metall. Met. Ceram. 56, 589–598 (2018).
Gao, M. C. et al. High-entropy functional materials. J. Mater. Res. 33, 3138–3155 (2018).
Wu, C. S., Tsai, P. H., Kuo, C. M. & Tsai, C. W. Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys. Entropy 20, 967 (2018).
Zhou, Y., Shen, X., Qian, T., Yan, C. & Lu, J. A review on the rational design and fabrication of nanosized high-entropy materials. Nano Res. 16, 7874–7905 (2023).
Pan, Y. T., Liu, J. X., Tu, T. Z., Wang, W. Z. & Zhang, G. J. High-entropy oxides for catalysis: a diamond in the rough. Chem. Eng. J. 451, 138659 (2023).
Nemani, S. K., Torkamanzadeh, M., Wyatt, B. C., Presser, V. & Anasori, B. Functional two-dimensional high-entropy materials. Commun. Mater. 4, https://doi.org/10.1038/s43246-023-00341-y (2023).
Ying, T. P., Yu, T. X., Qi, Y. P., Chen, X. L. & Hosono, D. O. High entropy van der Waals materials. Adv. Sci. 9, https://doi.org/10.1002/advs.202203219 (2022).
Lin, L. et al. High-entropy sulfides as electrode materials for Li-ion batteries. Adv. Energy Mater. 12, https://doi.org/10.1002/aenm.202103090 (2022).
De Marco, M. L. et al. High-entropy-alloy nanocrystal based macro- and mesoporous materials. ACS Nano 16, 15837–15849 (2022).
Edalati, P. et al. High-entropy alloys as anode materials of nickel - metal hydride batteries. Scr. Mater. 209, 114387 (2022).
Chang, C. & Kanatzidis, M. G. High-entropy thermoelectric materials emerging. Mater. Lab. 2, 220048 (2023).
Mahmat, A. M., Koysal, Y., Yakut, Y., Atalay, T. & Ozbektas, S. Experimental and theoretical analysis of thermoelectric energy generating system collecting concentrated solar energy. Energy Sources A 44, 9184–9203 (2022).
Liu, R. H. et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-35290-6 (2022).
Tong, Y. F. et al. Enhanced thermoelectric properties of p-type Bi0.5Sb1.5Te3-Cu8GeSe6 composite materials. ACS Appl. Mater. Interf. 14, 55780–55786 (2022).
Xia, Z. X. et al. Enhancement effect of the C60 derivative on the thermoelectric properties of n-type single-walled carbon nanotube-based films. ACS Appl. Mater. Interf. 14, 54969–54980 (2022).
Ding, F. L. et al. Modeling the gradual RESET of phase change memory with confined geometry. IEEE Trans. Electron. Devices 69, 6662–6668 (2022).
Bai, G. et al. Boron strengthened GeTe‐based alloys for robust thermoelectric devices with high output power density. Adv. Energy Mater. 11, 2102012 (2021).
Vasil’ev, E. N. The effect of thermal resistances on the coefficient of performance of a thermoelectric cooling system. Tech. Phys. 66, 815–819 (2021).
Jacob, S. et al. High-performance flexible thermoelectric modules based on high crystal quality printed TiS2/hexylamine. Sci. Technol. Adv. Mater. 22, 907–916 (2021).
Zhao, W. C., Hsu, S. N., Boudouris, B. W. & Dou, L. T. Two-dimensional organic semiconductor-incorporated perovskite (OSiP) electronics. ACS Appl. Electron. Mater. 3, 5155–5164 (2021).
Qiu, J. H. et al. Enhancing the thermoelectric and mechanical properties of Bi0.5Sb1.5Te3 modulated by the texture and dense dislocation networks. ACS Appl. Mater. Interf. 13, 58974–58981 (2021).
Basit, A. et al. Recent advances, challenges, and perspective of copper‐based liquid‐like thermoelectric chalcogenides: a review. EcoMat https://doi.org/10.1002/eom2.12391 (2023).
Yusuf, A. et al. Experimental and theoretical investigation of the effect of filler material on the performance of flexible and rigid thermoelectric generators. ACS Appl. Mater. Interf. 13, 61275–61285 (2021).
Wu, G. et al. Optimized thermoelectric properties of Bi0.48Sb1.52Te3 through AgCuTe doping for low-grade heat harvesting. ACS Appl. Mater. Interf. 13, 57514–57520 (2021).
Yan, Z. P. et al. Effects of interfacial properties on conversion efficiency of Bi2Te3-based segmented thermoelectric devices. Appl. Phys. Lett. 119, 233902 (2021).
Dadhich, A. et al. Physics and technology of thermoelectric materials and devices. J. Phys. D 56, 333001 (2023).
Arıcıoğlu, A. K., Yakar, G. & Gürcan, A. Different-sized thermoelectric cooler modules operated by a thermoelectric generator system. Numer. Heat Transf. A https://doi.org/10.1080/10407782.2023.2235075 (2023).
Wu, X. et al. Interface engineering boosting high power density and conversion efficiency in Mg2Sn0.75Ge0.25‐based thermoelectric devices. Adv. Energy Mater. https://doi.org/10.1002/aenm.202301350 (2023).
You, J. X., Wang, D. D., Yan, Y. F., He, Z. Q. & Xue, Z. G. A novel two-stage thermophotovoltaic-thermoelectric system based on micro combustion. Appl. Therm. Eng. 232, 121018 (2023).
Salah, N., Abdullahi, S., Baghdadi, N., Alshahrie, A. & Koumoto, K. High thermoelectric power generation below room temperature by TiS 2 compact pellet. ACS Appl. Electron. Mater. https://doi.org/10.1021/acsaelm.3c00442 (2023).
Sok, R. et al. Thermoelectric generation from exhaust heat in electrified natural gas trucks: modeling and analysis of an integrated engine system performance improvement. J. Energy Resour. Technol. ASME 145, 071702 (2023).
Quan, R., Wang, J. H. & Li, T. Compatibility optimization of a polyhedral-shape thermoelectric generator for automobile exhaust recovery considering backpressure effects. Heliyon 8, e12348 (2022).
Zhang, Q. H. et al. Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater. 18, 194–213 (2016).
Jaziri, N., Boughamoura, A., Mueller, J., Mezghani, B. & Ismail, M. A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6, 264–287 (2019).
Saber, H. H., El-Genk, M. S. & Caillat, T. Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manag. 48, 555–567 (2007).
El-Genk, M. S., Saber, H. H., Caillat, T. & Sakamoto, J. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manag. 47, 174–200 (2006).
Wang, H., McCarty, R., Salvador, J. R., Yamamoto, A. & König, J. Determination of thermoelectric module efficiency: a survey. J. Electron. Mater. 43, 2274–2286 (2014).
Hu, X. et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci. 9, 517–529 (2016).
Perumal, S. et al. Realization of high thermoelectric figure of merit in GeTe by complementary co-doping of Bi and In. Joule 3, 2565–2580 (2019).
Zhang, Q. et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10, 956–963 (2017).
Xing, Y. et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy Environ. Sci. 12, 3390–3399 (2019).
Jiang, Y. et al. Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nat. Commun. 13, 6087 (2022).
Samanta, M., Ghosh, T., Arora, R., Waghmare, U. V. & Biswas, K. Realization of both n- and p-type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying. J. Am. Chem. Soc. 141, 19505–19512 (2019).
Zhang, M. et al. Realizing n-type gete through suppressing the formation of cation vacancies and Bi-doping. Chinese Phys. Lett. 38, 127201 (2021).
Xing, T. et al. Superior performance and high service stability for GeTe-based thermoelectric compounds. Natl Sci. Rev. 6, 944–954 (2019).
Pei, J., Cai, B., Zhuang, H.-L. & Li, J.-F. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. Natl Sci. Rev. 7, 1856–1858 (2020).
Hu, C., Xia, K., Chen, X., Zhao, X. & Zhu, T. Transport mechanisms and property optimization of p-type (Zr, Hf)CoSb half-Heusler thermoelectric materials. Mater. Today Phys. 7, 69–76 (2018).
Peng, S. et al. Enhanced thermoelectric and mechanical properties of p-type skutterudites with: in situ formed Fe3Si nanoprecipitate. Inorg. Chem. Front. 4, 1697–1703 (2017).
Rogl, G. et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12-xXx (X = Ge, Sn) reaching ZT > 1.3. Acta Mater. 91, 227–238 (2015).
Xu, X. et al. Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials. Energy Environ. Sci. 13, 5135–5142 (2020).
Zhang, Q. et al. High‐performance thermoelectric material and module driven by medium‐entropy engineering in SnTe. Adv. Funct. Mater. 32, 2205458 (2022).
Liu, Y. et al. Improved solubility in metavalently bonded solid leads to band alignment, ultralow thermal conductivity, and high thermoelectric performance in SnTe. Adv. Funct. Mater. 32, 2209980 (2022).
Zhu, Y. et al. Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe. Energy Environ. Sci. 15, 3958–3967 (2022).
Tan, G. et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 7, 12167 (2016).
Liu, Z. et al. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc. Natl Acad. Sci. USA 115, 5332–5337 (2018).
Li, J., Zhang, X., Lin, S., Chen, Z. & Pei, Y. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 29, 605–611 (2017).
Dong, J. et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ. Sci. 12, 1396–1403 (2019).
Samanta, M. & Biswas, K. Low thermal conductivity and high thermoelectric performance in (GeTe)1-2x(GeSe)x(GeS)x: competition between solid solution and phase separation. J. Am. Chem. Soc. 139, 9382–9391 (2017).
Jin, Y. et al. Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scr. Mater. 183, 22–27 (2020).
Hong, M. et al. Rashba effect maximizes thermoelectric performance of GeTe derivatives. Joule 4, 2030–2043 (2020).
Li, J. et al. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. J. Am. Chem. Soc. 140, 16190–16197 (2018).
Jeong, C., Kim, R., Luisier, M., Datta, S. & Lundstrom, M. On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 02370 (2010).
Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).
Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M. & Chen, G. Enhancing the thermoelectric power factor by using invisible dopants. Adv. Mater. 25, 1577–1582 (2013).
Tian, Z., Lee, S. & Chen, G. Comprehensive review of heat transfer in thermoelectric materials and devices. Annu. Rev. Heat. Transf. 17, 425–483 (2014).
Wu, H. et al. Advanced electron microscopy for thermoelectric materials. Nano Energy 13, 626–650 (2015).
Shi, X., Chen, L. & Uher, C. Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 61, 379–415 (2016).
Wu, H., Zhang, Y., Ning, S., Zhao, L.-D. & Pennycook, S. J. Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Mater. Horiz. 6, 1548–1570 (2019).
Tan, G., Zhao, L.-D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).
Toberer, E. S., May, A. F. & Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2009).
Franz, R. & Wiedemann, G. Ueber die Wärme‐Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853).
Yu, I., Ravich, B. A. E. & Smirnov, I. A. Semiconducting Lead Chalcogenides. (1970).
Kakani, S. L. Material Science (New Age, 2004).
He, J. et al. Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials. Adv. Mater. 24, 4440–4444 (2012).
Hull, D. & Bacon, D. J. (eds) Introduction to Dislocations 5th edn (Elsevier, 2011).
Pennycook, S. J. & Jesson, D. E. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991).
Seki, T. et al. Quantitative electric field mapping in thin specimens using a segmented detector: revisiting the transfer function for differential phase contrast. Ultramicroscopy 182, 258–263 (2017).
Ozdol, V. B. et al. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl. Phys. Lett. 106, 253107 (2015).
Xu, X. et al. Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nat. Mater. 19, 887–893 (2020).
Formanek, P. & Bugiel, E. On specimen tilt for electron holography of semiconductor devices. Ultramicroscopy 106, 292–300 (2006).
Latychevskaia, T., Formanek, P., Koch, C. T. & Lubk, A. Off-axis and inline electron holography: experimental comparison. Ultramicroscopy 110, 472–482 (2010).
Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012).
Toyama, S. et al. Quantitative electric field mapping of a p–n junction by DPC STEM. Ultramicroscopy 216, 113033 (2020).
Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 159, 124–137 (2015).
Saldin, D. K. & Spence, J. C. H. On the mean inner potential in high- and low-energy electron diffraction. Ultramicroscopy 55, 397–406 (1994).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant number 11934007), the Science and Technology Innovation Committee Foundation of Shenzhen (grant number JCYJ20200109141205978) and the Outstanding Talents Training Fund in Shenzhen (grant number 202108). We acknowledge support from the Singapore Ministry of Education via the Academic Research Fund (grant number MOE-T2EP50122-0016).
Author information
Authors and Affiliations
Contributions
Y.Y. and X.X. researched data for this article. Y.Y. and X.X. wrote the article. J.H. reviewed and edited the manuscript before submission. Y.Y., X.X. and J.H. contributed substantially to the discussion of content. M.B. and K.N. offered advice on this article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yu, Y., Xu, X., Bosman, M. et al. Germanium-telluride-based thermoelectrics. Nat Rev Electr Eng 1, 109–123 (2024). https://doi.org/10.1038/s44287-023-00013-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44287-023-00013-6