Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chirality engineering for carbon nanotube electronics

Abstract

Carbon nanotubes (CNTs), tubular nanostructures consisting of rolled-up graphene, are promising materials for electronic devices at the nanometre and molecular regimes. Fundamentally, the electronic properties of CNTs and their junctions depend on global and local chiralities, as defined by quantum boundary conditions along the circumferential and longitudinal directions. As such, CNTs can behave as a metal, a semiconductor or a quantum dot in an electronic device. Much of the progress in CNT electronics, going from single resistors and transistors to complex functional logic and communication devices, thin films and flexible electronics, sensors and intelligent systems, has been achieved through control over the ‘global chirality’ of CNTs — the distribution of chiralities at the macroscale. In this Review, we summarize approaches to control global and local CNT chiralities by growth, separation and transformation strategies. We then discuss opportunities and challenges for chirality engineering towards surpassing the performance of conventional electronic devices, and development of unconventional CNT quantum electronics including coherent quantum transistors and quantum sensors.

Key points

  • The electrical properties of CNTs are determined by the chirality along the circumferential direction to be metallic or semiconducting, and by the confinement imposed along the longitudinal direction to be a quantum dot.

  • For large-scale applications of CNT electronics, approaches have been developed to control the global chirality distribution, including direct growth for defect-free nanotubes and post-growth separation for industrial applications.

  • For fabricating CNT molecular-junction-based electronic devices, modulated growth and chirality transformation techniques have been explored, but this development is still in its early stages.

  • Progress in controlling the global chirality distribution has led to advancements in CNT electronics ranging from transistors, amplifiers and microprocessors to transparent electrodes, flexible transistors and electronic skins.

  • Complete control of chirality would enable conventional CNT electronics to approach the performance limit and would create new opportunities for emerging quantum devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chirality and the electronic properties of carbon nanotubes.
Fig. 2: Global and local chirality engineering of carbon nanotubes.
Fig. 3: Progress in CNT electronics based on nanotube chirality.
Fig. 4: Perspective on chirality-engineered carbon nanotube (CNT) electronics.

Similar content being viewed by others

References

  1. Bohr, M. T. & Young, I. A. CMOS scaling trends and beyond. IEEE Micro 37, 20–29 (2017).

    Google Scholar 

  2. Cavin, R. K., Lugli, P. & Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 100, 1720–1749 (2012).

    Google Scholar 

  3. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992). Theoretical work on the chirality-dependent electronic structure of CNTs that predicted one-third of the CNTs to be metallic and two-thirds to be semiconducting.

    ADS  CAS  Google Scholar 

  4. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

    ADS  CAS  Google Scholar 

  5. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    ADS  CAS  Google Scholar 

  6. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    ADS  CAS  PubMed  Google Scholar 

  7. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    ADS  CAS  PubMed  Google Scholar 

  8. Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369 (2017).

    ADS  CAS  PubMed  Google Scholar 

  9. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    ADS  CAS  PubMed  Google Scholar 

  10. Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019). Demonstration of modern microprocessors fabricated from CNT transistors, showing the possibility of using CNTs for large-scale applications.

    ADS  CAS  PubMed  Google Scholar 

  11. Shi, H. et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat. Electron. 4, 405–415 (2021). Report on radiofrequency CNT transistors with maximum and cut-off frequencies in the THz range (540 and 306 GHz, respectively), showing the potential of CNT electronics for next-generation wireless communications.

    CAS  Google Scholar 

  12. Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003). Pioneering work on chirality-enriched CNTs from stable catalysts at high temperatures.

    CAS  PubMed  Google Scholar 

  13. Harutyunyan, A. R. et al. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116–120 (2009).

    ADS  CAS  PubMed  Google Scholar 

  14. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    ADS  CAS  PubMed  Google Scholar 

  15. Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    ADS  CAS  PubMed  Google Scholar 

  16. Zhang, S. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234 (2017).

    ADS  CAS  PubMed  Google Scholar 

  17. Zhang, S., Tong, L. & Zhang, J. The road to chirality — specific growth of single-walled carbon nanotubes. Natl Sci. Rev. 5, 310–312 (2018).

    CAS  Google Scholar 

  18. Yang, F. et al. Chirality pure carbon nanotubes: growth, sorting, and characterization. Chem. Rev. 120, 2693–2758 (2020).

    CAS  PubMed  Google Scholar 

  19. Liu, C. et al. Complementary transistors based on aligned semiconducting carbon nanotube arrays. ACS Nano 16, 21482–21490 (2022).

    CAS  PubMed  Google Scholar 

  20. White, C. T. & Mintmire, J. W. Density of states reflects diameter in nanotubes. Nature 394, 29–30 (1998).

    ADS  CAS  Google Scholar 

  21. Charlier, J.-C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    ADS  CAS  Google Scholar 

  22. White, C. T. & Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).

    ADS  CAS  Google Scholar 

  23. Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001). Observation of quantum coherent transport of electron waves through the CNT waveguide to form an interference oscillation of the transmittance and conductance.

    ADS  CAS  PubMed  Google Scholar 

  24. Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003).

    ADS  CAS  Google Scholar 

  25. Heinze, S., Radosavljević, M., Tersoff, J. & Avouris, P. Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors. Phys. Rev. B 68, 235418 (2003).

    ADS  Google Scholar 

  26. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M. & Avouris, P. The role of metal–nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).

    ADS  CAS  PubMed  Google Scholar 

  27. Rochefort, A., Salahub, D. R. & Avouris, P. Effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B 103, 641–646 (1999).

    CAS  Google Scholar 

  28. Chico, L., López Sancho, M. P. & Muñoz, M. C. Carbon-nanotube-based quantum dot. Phys. Rev. Lett. 81, 1278–1281 (1998). Theoretical investigations on the structure and electronic properties of CNT-based quantum dots by introducing pentagon–heptagon defects to form short CNT junctions.

    ADS  CAS  Google Scholar 

  29. Hyldgaard, P. & Lundqvist, B. I. Robust nanosized transistor effect in fullerene-tube heterostructure. Solid. State Commun. 116, 569–573 (2000).

    ADS  CAS  Google Scholar 

  30. Jorio, A. et al. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001). Experimental demonstration that even for isolated CNTs, it is possible to determine the diameter and chirality by measuring the radial breathing mode frequency, using resonant confocal micro-Raman spectroscopy.

    ADS  CAS  PubMed  Google Scholar 

  31. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    ADS  CAS  PubMed  Google Scholar 

  32. Liu, K. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotech. 7, 325–329 (2012).

    ADS  CAS  Google Scholar 

  33. Wilder, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998). The atomic structure, chirality and electronic structure of carbon nanotubes were characterized by scanning tunnelling microscopy.

    ADS  Google Scholar 

  34. Ouyang, M., Huang, J.-L., Cheung, C. L. & Lieber, C. M. Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291, 97–100 (2001).

    ADS  CAS  PubMed  Google Scholar 

  35. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    ADS  CAS  Google Scholar 

  36. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    ADS  CAS  PubMed  Google Scholar 

  37. Meyer, R. R. et al. A composite method for the determination of the chirality of single walled carbon nanotubes. J. Microscopy 212, 152–157 (2003).

    MathSciNet  CAS  Google Scholar 

  38. Krivanek, O. L. et al. Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945 (2010).

    CAS  Google Scholar 

  39. Sasaki, T. et al. Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J. Electron. Microsc. 59, S7–S13 (2010).

    CAS  Google Scholar 

  40. Qin, L.-C. Electron diffraction from carbon nanotubes. Rep. Prog. Phys. 69, 2761 (2006).

    ADS  CAS  Google Scholar 

  41. Sato, Y., Terauchi, M., Mukai, M., Kaneyama, T. & Adachi, K. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 111, 1381–1387 (2011).

    CAS  PubMed  Google Scholar 

  42. Franklin, A. D. The road to carbon nanotube transistors. Nature 498, 443 (2013).

    ADS  CAS  PubMed  Google Scholar 

  43. Peng, L.-M., Zhang, Z. & Qiu, C. Carbon nanotube digital electronics. Nat. Electron. 2, 499–505 (2019).

    CAS  Google Scholar 

  44. Ilatovskii, D. A., Gilshtein, E. P., Glukhova, O. E. & Nasibulin, A. G. Transparent conducting films based on carbon nanotubes: rational design toward the theoretical limit. Adv. Sci. 9, 2201673 (2022).

    CAS  Google Scholar 

  45. Segawa, Y., Yagi, A., Matsui, K. & Itami, K. Design and synthesis of carbon nanotube segments. Angew. Chem. Int. Ed. Engl. 55, 5136–5158 (2016).

    CAS  PubMed  Google Scholar 

  46. Yao, Y., Feng, C., Zhang, J. & Liu, Z. ‘Cloning’ of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett. 9, 1673–1677 (2009).

    ADS  CAS  PubMed  Google Scholar 

  47. Liu, J. et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 3, 1199 (2012).

    ADS  PubMed  Google Scholar 

  48. Reich, S., Li, L. & Robertson, J. Control the chirality of carbon nanotubes by epitaxial growth. Chem. Phys. Lett. 421, 469–472 (2006).

    ADS  CAS  Google Scholar 

  49. Zhang, F., Hou, P.-X., Liu, C. & Cheng, H.-M. Epitaxial growth of single-wall carbon nanotubes. Carbon 102, 181–197 (2016).

    CAS  Google Scholar 

  50. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotech. 1, 60–65 (2006). Successfully sorted CNTs by diameter, bandgap and electronic type through subtle differences in their buoyant densities, by the density gradient ultracentrifugation method.

    ADS  CAS  Google Scholar 

  51. Zheng, M. & Semke, E. D. Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 129, 6084–6085 (2007).

    CAS  PubMed  Google Scholar 

  52. Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011). Up to 13 different chiral species of CNTs were separated through a single surfactant multicolumn gel chromatography method, showing the potential for industrial-scale application of chirality-separated CNTs.

    ADS  PubMed  Google Scholar 

  53. Wei, X. et al. Recent advances in structure separation of single-wall carbon nanotubes and their application in optics, electronics, and optoelectronics. Adv. Sci. 9, 2200054 (2022).

    CAS  Google Scholar 

  54. Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat. Rev. Mater. 1, 15002 (2016).

    ADS  CAS  Google Scholar 

  55. Omachi, H., Segawa, Y. & Itami, K. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012).

    CAS  PubMed  Google Scholar 

  56. Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).

    CAS  PubMed  Google Scholar 

  57. Rim, K. T. et al. Forming aromatic hemispheres on transition-metal surfaces. Angew. Chem. Int. Ed. Engl. 46, 7891–7895 (2007).

    CAS  PubMed  Google Scholar 

  58. Wang, Y. et al. Continued growth of single-walled carbon nanotubes. Nano Lett. 5, 997–1002 (2005).

    ADS  CAS  PubMed  Google Scholar 

  59. Smalley, R. E. et al. Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006).

    CAS  PubMed  Google Scholar 

  60. Ren, Z. Cloning carbon. Nat. Nanotech. 2, 17–18 (2007).

    ADS  CAS  Google Scholar 

  61. Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11, 31–53 (2017).

    CAS  PubMed  Google Scholar 

  62. Gaviria Rojas, W. A. & Hersam, M. C. Chirality-enriched carbon nanotubes for next-generation computing. Adv. Mater. 32, 1905654 (2020).

    CAS  Google Scholar 

  63. Srimani, T. et al. Comprehensive study on high purity semiconducting carbon nanotube extraction. Adv. Electron. Mater. 8, 2101377 (2022).

    CAS  Google Scholar 

  64. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotech 2, 640–646 (2007).

    ADS  CAS  Google Scholar 

  65. Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    ADS  CAS  PubMed  Google Scholar 

  66. Lee, H. W. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2, 541 (2011).

    ADS  PubMed  Google Scholar 

  67. Lei, T., Pochorovski, I. & Bao, Z. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 50, 1096–1104 (2017).

    CAS  PubMed  Google Scholar 

  68. Graf, A. et al. Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016).

    CAS  Google Scholar 

  69. Brady, G. J. et al. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2, e1601240 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  70. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).

    ADS  CAS  PubMed  Google Scholar 

  71. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003). Discovery of the sequence-dependent wrapping CNTs by ssDNA for the chirality-sorted separation.

    ADS  CAS  PubMed  Google Scholar 

  72. Zhao, M. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 368, 878 (2020).

    ADS  CAS  PubMed  Google Scholar 

  73. Green, A. A. & Hersam, M. C. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 23, 2185–2190 (2011).

    CAS  PubMed  Google Scholar 

  74. Yang, D. et al. Preparing high-concentration individualized carbon nanotubes for industrial separation of multiple single-chirality species. Nat. Commun. 14, 2491 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tulevski, G. S., Franklin, A. D. & Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 7, 2971–2976 (2013).

    CAS  PubMed  Google Scholar 

  76. Cao, Q. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotech 8, 180–186 (2013).

    ADS  CAS  Google Scholar 

  77. Liu, B. et al. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes. Nano Lett. 13, 4416–4421 (2013).

    ADS  CAS  PubMed  Google Scholar 

  78. Doorn, S. K. et al. Raman spectral imaging of a carbon nanotube intramolecular junction. Phys. Rev. Lett. 94, 016802 (2005).

    ADS  PubMed  Google Scholar 

  79. Anderson, N., Hartschuh, A. & Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 7, 577–582 (2007).

    ADS  CAS  PubMed  Google Scholar 

  80. Yao, Y. et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater. 6, 283 (2007). Experimental demonstration for the growth of CNT molecular junctions by modulating the growth temperature.

    ADS  CAS  PubMed  Google Scholar 

  81. Zhao, Q., Xu, Z., Hu, Y., Ding, F. & Zhang, J. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Sci. Adv. 2, e1501729 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  82. Wang, J. et al. Observation of charge generation and transfer during CVD growth of carbon nanotubes. Nano Lett. 16, 4102–4109 (2016).

    ADS  CAS  PubMed  Google Scholar 

  83. Wang, J. et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 1, 326 (2018). Discovery of the effects of switching electrical fields leading to the metal-to-semiconductor transition during the growth of CNTs.

    CAS  Google Scholar 

  84. Yakobson, B. I. Mechanical relaxation and ‘intramolecular plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72, 918–920 (1998). Pioneering theoretical work on the mechanism of plastic deformation of CNTs, including the nucleation and sliding of dislocations.

    ADS  CAS  Google Scholar 

  85. Buongiorno Nardelli, M., Yakobson, B. I. & Bernholc, J. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277–R4280 (1998).

    ADS  CAS  Google Scholar 

  86. Nardelli, M. B., Yakobson, B. I. & Bernholc, J. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81, 4656–4659 (1998).

    ADS  CAS  Google Scholar 

  87. Samsonidze, G. G., Samsonidze, G. G. & Yakobson, B. I. Kinetic theory of symmetry-dependent strength in carbon nanotubes. Phys. Rev. Lett. 88, 065501 (2002).

    ADS  PubMed  Google Scholar 

  88. Dumitrica, T., Hua, M. & Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl Acad. Sci. USA 103, 6105–6109 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, J. Y. et al. Superplastic carbon nanotubes. Nature 439, 281–281 (2006). Pioneer in situ TEM observation on the superplastic deformation of CNTs under tensile stress and high temperature.

    ADS  CAS  PubMed  Google Scholar 

  90. Ding, F., Jiao, K., Lin, Y. & Yakobson, B. I. How evaporating carbon nanotubes retain their perfection? Nano Lett. 7, 681–684 (2007).

    ADS  CAS  PubMed  Google Scholar 

  91. Ding, F., Jiao, K., Wu, M. & Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett. 98, 075503 (2007). Important theoretical discussions on the dislocation dynamics during the plastic deformation of CNTs, including the dislocation climbing mechanism.

    ADS  PubMed  Google Scholar 

  92. Huang, J. Y., Ding, F. & Yakobson, B. I. Vacancy-hole and vacancy-tube migration in multiwall carbon nanotubes. Phys. Rev. B 78, 155436 (2008).

    ADS  Google Scholar 

  93. Cheng, Y., Li, P., Zhang, Q. & Wang, M.-S. Top-down fabrication of small carbon nanotubes. Nanoscale Horiz. https://doi.org/10.1039/C9NH00285E (2019).

  94. Tang, D.-M. et al. Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing. Ultramicroscopy 194, 108–116 (2018).

    CAS  PubMed  Google Scholar 

  95. Tang, D.-M. et al. Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science 374, 1616–1620 (2021). Experimental demonstration of feedback-controlled metal-to-semiconductor transition by chirality transformation. CNT transistors with the channel length as short as 2.8 nm were fabricated, showing quantum transport at room temperature.

    ADS  CAS  PubMed  Google Scholar 

  96. Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).

    ADS  CAS  PubMed  Google Scholar 

  97. Chen, K. et al. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 28, 4397–4414 (2016).

    CAS  PubMed  Google Scholar 

  98. Koo, J. H., Song, J.-K. & Kim, D.-H. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 30, 132001 (2019).

    ADS  CAS  PubMed  Google Scholar 

  99. Qiu, S. et al. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 31, 1800750 (2019).

    Google Scholar 

  100. Si, J., Xu, L., Zhu, M., Zhang, Z. & Peng, L.-M. Advances in high-performance carbon-nanotube thin-film electronics. Adv. Electron. Mater. 5, 1900122 (2019).

    Google Scholar 

  101. Hills, G. et al. Understanding energy efficiency benefits of carbon nanotube field-effect transistors for digital VLSI. IEEE Trans. Nanotechnol. 17, 1259–1269 (2018).

    ADS  CAS  Google Scholar 

  102. Zhang, Z. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7, 3603–3607 (2007).

    ADS  CAS  Google Scholar 

  103. Franklin, A. D., Farmer, D. B. & Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 8, 7333–7339 (2014).

    CAS  PubMed  Google Scholar 

  104. Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).

    ADS  CAS  PubMed  Google Scholar 

  105. Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nat. Nanotech 5, 858 (2010).

    ADS  CAS  Google Scholar 

  106. Cao, Q. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68 (2015).

    ADS  CAS  PubMed  Google Scholar 

  107. Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850 (2020).

    ADS  CAS  PubMed  Google Scholar 

  108. Burke, P. J. AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid State Electron. 48, 1981–1986 (2004).

    ADS  CAS  Google Scholar 

  109. Hasan, S., Salahuddin, S., Vaidyanathan, M. & Alam, M. A. High-frequency performance projections for ballistic carbon-nanotube transistors. IEEE Trans. Nanotechnol. 5, 14–22 (2006).

    ADS  Google Scholar 

  110. Jing, G., Hasan, S., Javey, A., Bosman, G. & Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4, 715–721 (2005).

    ADS  Google Scholar 

  111. Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotech 4, 811–819 (2009).

    ADS  CAS  Google Scholar 

  112. Chaste, J. et al. Single carbon nanotube transistor at GHz frequency. Nano Lett. 8, 525–528 (2008).

    ADS  CAS  PubMed  Google Scholar 

  113. Steiner, M. et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 101, 053123 (2012).

    ADS  Google Scholar 

  114. Jiang, S. et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4, eaap9264 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, Q. et al. Large-diameter carbon nanotube transparent conductor overcoming performance–yield tradeoff. Adv. Funct. Mater. 32, 2103397 (2022).

    CAS  Google Scholar 

  116. Hou, P.-X. et al. Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano 8, 7156–7162 (2014).

    CAS  PubMed  Google Scholar 

  117. Yu, B. et al. Synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 133, 5232–5235 (2011).

    CAS  PubMed  Google Scholar 

  118. Sun, D.-M. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotech. 6, 156–161 (2011).

    ADS  CAS  Google Scholar 

  119. Chen, Y.-Y. et al. High-throughput fabrication of flexible and transparent all-carbon nanotube electronics. Adv. Sci. 5, 1700965 (2018).

    Google Scholar 

  120. Ganzhorn, M. et al. Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano 5, 1670–1676 (2011).

    CAS  PubMed  Google Scholar 

  121. Savagatrup, S. et al. Bio-inspired carbon monoxide sensors with voltage-activated sensitivity. Angew. Chem. Int. Ed. Engl. 56, 14066–14070 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ishihara, S., Labuta, J., Nakanishi, T., Tanaka, T. & Kataura, H. Amperometric detection of sub-ppm formaldehyde using single-walled carbon nanotubes and hydroxylamines: a referenced chemiresistive system. ACS Sens. 2, 1405–1409 (2017).

    CAS  PubMed  Google Scholar 

  123. Ishihara, S. et al. Cascade reaction-based chemiresistive array for ethylene sensing. ACS Sens. 5, 1405–1410 (2020).

    CAS  PubMed  Google Scholar 

  124. Liu, S. F., Petty, A. R., Sazama, G. T. & Swager, T. M. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angew. Chem. Int. Ed. Engl. 54, 6554–6557 (2015).

    CAS  PubMed  Google Scholar 

  125. Star, A., Gabriel, J.-C. P., Bradley, K. & Grüner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003).

    ADS  CAS  Google Scholar 

  126. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Besteman, K., Lee, J.-O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).

    ADS  CAS  Google Scholar 

  128. Roberts, M. E., LeMieux, M. C. & Bao, Z. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3, 3287–3293 (2009).

    CAS  PubMed  Google Scholar 

  129. Ishihara, S., Azzarelli, J. M., Krikorian, M. & Swager, T. M. Ultratrace detection of toxic chemicals: triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 138, 8221–8227 (2016).

    CAS  PubMed  Google Scholar 

  130. Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    ADS  CAS  PubMed  Google Scholar 

  131. Ishihara, S. et al. Metallic versus semiconducting SWCNT chemiresistors: a case for separated SWCNTs wrapped by a metallosupramolecular polymer. ACS Appl. Mater. Interfaces 9, 38062–38067 (2017).

    CAS  PubMed  Google Scholar 

  132. Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008).

    ADS  CAS  PubMed  Google Scholar 

  133. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    ADS  CAS  PubMed  Google Scholar 

  134. Xiao, M. et al. Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens. 3, 749–756 (2018).

    CAS  PubMed  Google Scholar 

  135. Liang, Y. et al. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano 14, 8866–8874 (2020).

    CAS  PubMed  Google Scholar 

  136. Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74 (2017).

    ADS  CAS  PubMed  Google Scholar 

  137. Fan, C. et al. Monolithic three-dimensional integration of carbon nanotube circuits and sensors for smart sensing chips. ACS Nano 17, 10987–10995 (2023).

    CAS  PubMed  Google Scholar 

  138. Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-kkin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    CAS  PubMed  Google Scholar 

  139. Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).

    CAS  Google Scholar 

  140. Wang, X. et al. Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015).

    Google Scholar 

  141. Nela, L., Tang, J., Cao, Q., Tulevski, G. & Han, S.-J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 18, 2054–2059 (2018).

    ADS  CAS  PubMed  Google Scholar 

  142. Wan, H. et al. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 14, 10402–10412 (2020).

    CAS  PubMed  Google Scholar 

  143. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    ADS  CAS  PubMed  Google Scholar 

  144. Xu, L. et al. Can carbon nanotube transistors be scaled down to the sub-5 nm gate length? ACS Appl. Mater. Interfaces 13, 31957–31967 (2021).

    CAS  PubMed  Google Scholar 

  145. Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537 (2020).

    ADS  CAS  PubMed  Google Scholar 

  146. Zheng, Y. et al. One-dimensional van der Waals heterostructures: growth mechanism and handedness correlation revealed by nondestructive TEM. Proc. Natl Acad. Sci. USA 118, e2107295118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    ADS  CAS  Google Scholar 

  148. Zhang, C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).

    ADS  CAS  PubMed  Google Scholar 

  149. Iwai, H. End of the scaling theory and Moore’s law. in 16th International Workshop on Junction Technology (IWJT) (2016).

  150. Laird, E. A. et al. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 87, 703–764 (2015).

    ADS  MathSciNet  CAS  Google Scholar 

  151. Kane, C., Balents, L. & Fisher, M. P. A. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086–5089 (1997).

    ADS  CAS  Google Scholar 

  152. Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).

    ADS  CAS  PubMed  Google Scholar 

  153. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    ADS  CAS  PubMed  Google Scholar 

  154. Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P. & van der Zant, H. S. J. Electron–hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).

    ADS  CAS  PubMed  Google Scholar 

  155. Schroeder, V., Savagatrup, S., He, M., Lin, S. & Swager, T. M. Carbon nanotube chemical sensors. Chem. Rev. 119, 599–663 (2019).

    CAS  PubMed  Google Scholar 

  156. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    ADS  MathSciNet  Google Scholar 

  157. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    ADS  CAS  PubMed  Google Scholar 

  158. Nellist, P. D., McCallum, B. C. & Rodenburg, J. M. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995).

    ADS  CAS  Google Scholar 

  159. Yang, H. et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sagawa, R. et al. Low dose imaging by STEM ptychography using pixelated STEM detector. Microsc. Microanal. 24, 198–199 (2018).

    ADS  Google Scholar 

  161. Vivanco-Benavides, L. E., Martínez-González, C. L., Mercado-Zúñiga, C. & Torres-Torres, C. Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: a review. Comp. Mater. Sci. 201, 110939 (2022).

    CAS  Google Scholar 

  162. Förster, G. D. et al. A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images. Carbon 169, 465–474 (2020). Application of deep learning method to determine the CNT chirality from TEM images.

    Google Scholar 

Download references

Acknowledgements

We thank D. N. Futaba and G. Chen (National Institute of Advanced Industrial Science and Technology, Japan) for discussions. D.M.T. discloses support from JSPS Kakenhi (grants JP25820336, JP20K05281, JP23H01796), JST-FOREST Program (grant JPMJFR223T, Japan), WPI-MANA ‘Challenging Research Program (CRP)’ and NIMS ‘Support system for curiosity-driven research’. R.X. discloses support from the Ministry of Science and Technology of China (grant 2023YFE0101300) and Zhejiang province (grant 2022R01001). S.M. discloses support from JSPS KAKENHI (grants JP23H00174, JP23H05443, JP21KK0087) and from JST CREST (grant JPMJCR20B5). H.-M.C. discloses support from National Natural Science Foundation of China (grant 52188101). C.L. acknowledges support from the Ministry of Science and Technology of China (grant 2022YFA1203302), the National Natural Science Foundation of China (grants 52130209, 52188101) and Liaoning Revitalization Talents Program (XLYC2002037). D.G. discloses support from an Australian Research Council Laureate Fellowship (grant FL160100089).

Author information

Authors and Affiliations

Authors

Contributions

D.M.T. led the collaborative work. All authors contributed to the discussions, and drafted and revised the manuscript.

Corresponding authors

Correspondence to Dai-Ming Tang, Rong Xiang, Chang Liu or Dmitri Golberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, DM., Cretu, O., Ishihara, S. et al. Chirality engineering for carbon nanotube electronics. Nat Rev Electr Eng 1, 149–162 (2024). https://doi.org/10.1038/s44287-023-00011-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44287-023-00011-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing