Abstract
Carbon nanotubes (CNTs), tubular nanostructures consisting of rolled-up graphene, are promising materials for electronic devices at the nanometre and molecular regimes. Fundamentally, the electronic properties of CNTs and their junctions depend on global and local chiralities, as defined by quantum boundary conditions along the circumferential and longitudinal directions. As such, CNTs can behave as a metal, a semiconductor or a quantum dot in an electronic device. Much of the progress in CNT electronics, going from single resistors and transistors to complex functional logic and communication devices, thin films and flexible electronics, sensors and intelligent systems, has been achieved through control over the ‘global chirality’ of CNTs — the distribution of chiralities at the macroscale. In this Review, we summarize approaches to control global and local CNT chiralities by growth, separation and transformation strategies. We then discuss opportunities and challenges for chirality engineering towards surpassing the performance of conventional electronic devices, and development of unconventional CNT quantum electronics including coherent quantum transistors and quantum sensors.
Key points
-
The electrical properties of CNTs are determined by the chirality along the circumferential direction to be metallic or semiconducting, and by the confinement imposed along the longitudinal direction to be a quantum dot.
-
For large-scale applications of CNT electronics, approaches have been developed to control the global chirality distribution, including direct growth for defect-free nanotubes and post-growth separation for industrial applications.
-
For fabricating CNT molecular-junction-based electronic devices, modulated growth and chirality transformation techniques have been explored, but this development is still in its early stages.
-
Progress in controlling the global chirality distribution has led to advancements in CNT electronics ranging from transistors, amplifiers and microprocessors to transparent electrodes, flexible transistors and electronic skins.
-
Complete control of chirality would enable conventional CNT electronics to approach the performance limit and would create new opportunities for emerging quantum devices.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bohr, M. T. & Young, I. A. CMOS scaling trends and beyond. IEEE Micro 37, 20–29 (2017).
Cavin, R. K., Lugli, P. & Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 100, 1720–1749 (2012).
Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992). Theoretical work on the chirality-dependent electronic structure of CNTs that predicted one-third of the CNTs to be metallic and two-thirds to be semiconducting.
Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).
Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).
Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).
Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).
Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369 (2017).
Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).
Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019). Demonstration of modern microprocessors fabricated from CNT transistors, showing the possibility of using CNTs for large-scale applications.
Shi, H. et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat. Electron. 4, 405–415 (2021). Report on radiofrequency CNT transistors with maximum and cut-off frequencies in the THz range (540 and 306 GHz, respectively), showing the potential of CNT electronics for next-generation wireless communications.
Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003). Pioneering work on chirality-enriched CNTs from stable catalysts at high temperatures.
Harutyunyan, A. R. et al. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116–120 (2009).
Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).
Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).
Zhang, S. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234 (2017).
Zhang, S., Tong, L. & Zhang, J. The road to chirality — specific growth of single-walled carbon nanotubes. Natl Sci. Rev. 5, 310–312 (2018).
Yang, F. et al. Chirality pure carbon nanotubes: growth, sorting, and characterization. Chem. Rev. 120, 2693–2758 (2020).
Liu, C. et al. Complementary transistors based on aligned semiconducting carbon nanotube arrays. ACS Nano 16, 21482–21490 (2022).
White, C. T. & Mintmire, J. W. Density of states reflects diameter in nanotubes. Nature 394, 29–30 (1998).
Charlier, J.-C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).
White, C. T. & Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).
Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001). Observation of quantum coherent transport of electron waves through the CNT waveguide to form an interference oscillation of the transmittance and conductance.
Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003).
Heinze, S., Radosavljević, M., Tersoff, J. & Avouris, P. Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors. Phys. Rev. B 68, 235418 (2003).
Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M. & Avouris, P. The role of metal–nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).
Rochefort, A., Salahub, D. R. & Avouris, P. Effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B 103, 641–646 (1999).
Chico, L., López Sancho, M. P. & Muñoz, M. C. Carbon-nanotube-based quantum dot. Phys. Rev. Lett. 81, 1278–1281 (1998). Theoretical investigations on the structure and electronic properties of CNT-based quantum dots by introducing pentagon–heptagon defects to form short CNT junctions.
Hyldgaard, P. & Lundqvist, B. I. Robust nanosized transistor effect in fullerene-tube heterostructure. Solid. State Commun. 116, 569–573 (2000).
Jorio, A. et al. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001). Experimental demonstration that even for isolated CNTs, it is possible to determine the diameter and chirality by measuring the radial breathing mode frequency, using resonant confocal micro-Raman spectroscopy.
Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).
Liu, K. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotech. 7, 325–329 (2012).
Wilder, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998). The atomic structure, chirality and electronic structure of carbon nanotubes were characterized by scanning tunnelling microscopy.
Ouyang, M., Huang, J.-L., Cheung, C. L. & Lieber, C. M. Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291, 97–100 (2001).
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).
Meyer, R. R. et al. A composite method for the determination of the chirality of single walled carbon nanotubes. J. Microscopy 212, 152–157 (2003).
Krivanek, O. L. et al. Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945 (2010).
Sasaki, T. et al. Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J. Electron. Microsc. 59, S7–S13 (2010).
Qin, L.-C. Electron diffraction from carbon nanotubes. Rep. Prog. Phys. 69, 2761 (2006).
Sato, Y., Terauchi, M., Mukai, M., Kaneyama, T. & Adachi, K. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 111, 1381–1387 (2011).
Franklin, A. D. The road to carbon nanotube transistors. Nature 498, 443 (2013).
Peng, L.-M., Zhang, Z. & Qiu, C. Carbon nanotube digital electronics. Nat. Electron. 2, 499–505 (2019).
Ilatovskii, D. A., Gilshtein, E. P., Glukhova, O. E. & Nasibulin, A. G. Transparent conducting films based on carbon nanotubes: rational design toward the theoretical limit. Adv. Sci. 9, 2201673 (2022).
Segawa, Y., Yagi, A., Matsui, K. & Itami, K. Design and synthesis of carbon nanotube segments. Angew. Chem. Int. Ed. Engl. 55, 5136–5158 (2016).
Yao, Y., Feng, C., Zhang, J. & Liu, Z. ‘Cloning’ of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett. 9, 1673–1677 (2009).
Liu, J. et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 3, 1199 (2012).
Reich, S., Li, L. & Robertson, J. Control the chirality of carbon nanotubes by epitaxial growth. Chem. Phys. Lett. 421, 469–472 (2006).
Zhang, F., Hou, P.-X., Liu, C. & Cheng, H.-M. Epitaxial growth of single-wall carbon nanotubes. Carbon 102, 181–197 (2016).
Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotech. 1, 60–65 (2006). Successfully sorted CNTs by diameter, bandgap and electronic type through subtle differences in their buoyant densities, by the density gradient ultracentrifugation method.
Zheng, M. & Semke, E. D. Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 129, 6084–6085 (2007).
Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011). Up to 13 different chiral species of CNTs were separated through a single surfactant multicolumn gel chromatography method, showing the potential for industrial-scale application of chirality-separated CNTs.
Wei, X. et al. Recent advances in structure separation of single-wall carbon nanotubes and their application in optics, electronics, and optoelectronics. Adv. Sci. 9, 2200054 (2022).
Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat. Rev. Mater. 1, 15002 (2016).
Omachi, H., Segawa, Y. & Itami, K. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012).
Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).
Rim, K. T. et al. Forming aromatic hemispheres on transition-metal surfaces. Angew. Chem. Int. Ed. Engl. 46, 7891–7895 (2007).
Wang, Y. et al. Continued growth of single-walled carbon nanotubes. Nano Lett. 5, 997–1002 (2005).
Smalley, R. E. et al. Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006).
Ren, Z. Cloning carbon. Nat. Nanotech. 2, 17–18 (2007).
Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11, 31–53 (2017).
Gaviria Rojas, W. A. & Hersam, M. C. Chirality-enriched carbon nanotubes for next-generation computing. Adv. Mater. 32, 1905654 (2020).
Srimani, T. et al. Comprehensive study on high purity semiconducting carbon nanotube extraction. Adv. Electron. Mater. 8, 2101377 (2022).
Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotech 2, 640–646 (2007).
Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).
Lee, H. W. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2, 541 (2011).
Lei, T., Pochorovski, I. & Bao, Z. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 50, 1096–1104 (2017).
Graf, A. et al. Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016).
Brady, G. J. et al. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2, e1601240 (2016).
Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).
Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003). Discovery of the sequence-dependent wrapping CNTs by ssDNA for the chirality-sorted separation.
Zhao, M. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 368, 878 (2020).
Green, A. A. & Hersam, M. C. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 23, 2185–2190 (2011).
Yang, D. et al. Preparing high-concentration individualized carbon nanotubes for industrial separation of multiple single-chirality species. Nat. Commun. 14, 2491 (2023).
Tulevski, G. S., Franklin, A. D. & Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 7, 2971–2976 (2013).
Cao, Q. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotech 8, 180–186 (2013).
Liu, B. et al. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes. Nano Lett. 13, 4416–4421 (2013).
Doorn, S. K. et al. Raman spectral imaging of a carbon nanotube intramolecular junction. Phys. Rev. Lett. 94, 016802 (2005).
Anderson, N., Hartschuh, A. & Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 7, 577–582 (2007).
Yao, Y. et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater. 6, 283 (2007). Experimental demonstration for the growth of CNT molecular junctions by modulating the growth temperature.
Zhao, Q., Xu, Z., Hu, Y., Ding, F. & Zhang, J. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Sci. Adv. 2, e1501729 (2016).
Wang, J. et al. Observation of charge generation and transfer during CVD growth of carbon nanotubes. Nano Lett. 16, 4102–4109 (2016).
Wang, J. et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 1, 326 (2018). Discovery of the effects of switching electrical fields leading to the metal-to-semiconductor transition during the growth of CNTs.
Yakobson, B. I. Mechanical relaxation and ‘intramolecular plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72, 918–920 (1998). Pioneering theoretical work on the mechanism of plastic deformation of CNTs, including the nucleation and sliding of dislocations.
Buongiorno Nardelli, M., Yakobson, B. I. & Bernholc, J. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277–R4280 (1998).
Nardelli, M. B., Yakobson, B. I. & Bernholc, J. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81, 4656–4659 (1998).
Samsonidze, G. G., Samsonidze, G. G. & Yakobson, B. I. Kinetic theory of symmetry-dependent strength in carbon nanotubes. Phys. Rev. Lett. 88, 065501 (2002).
Dumitrica, T., Hua, M. & Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl Acad. Sci. USA 103, 6105–6109 (2006).
Huang, J. Y. et al. Superplastic carbon nanotubes. Nature 439, 281–281 (2006). Pioneer in situ TEM observation on the superplastic deformation of CNTs under tensile stress and high temperature.
Ding, F., Jiao, K., Lin, Y. & Yakobson, B. I. How evaporating carbon nanotubes retain their perfection? Nano Lett. 7, 681–684 (2007).
Ding, F., Jiao, K., Wu, M. & Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett. 98, 075503 (2007). Important theoretical discussions on the dislocation dynamics during the plastic deformation of CNTs, including the dislocation climbing mechanism.
Huang, J. Y., Ding, F. & Yakobson, B. I. Vacancy-hole and vacancy-tube migration in multiwall carbon nanotubes. Phys. Rev. B 78, 155436 (2008).
Cheng, Y., Li, P., Zhang, Q. & Wang, M.-S. Top-down fabrication of small carbon nanotubes. Nanoscale Horiz. https://doi.org/10.1039/C9NH00285E (2019).
Tang, D.-M. et al. Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing. Ultramicroscopy 194, 108–116 (2018).
Tang, D.-M. et al. Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science 374, 1616–1620 (2021). Experimental demonstration of feedback-controlled metal-to-semiconductor transition by chirality transformation. CNT transistors with the channel length as short as 2.8 nm were fabricated, showing quantum transport at room temperature.
Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).
Chen, K. et al. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 28, 4397–4414 (2016).
Koo, J. H., Song, J.-K. & Kim, D.-H. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 30, 132001 (2019).
Qiu, S. et al. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 31, 1800750 (2019).
Si, J., Xu, L., Zhu, M., Zhang, Z. & Peng, L.-M. Advances in high-performance carbon-nanotube thin-film electronics. Adv. Electron. Mater. 5, 1900122 (2019).
Hills, G. et al. Understanding energy efficiency benefits of carbon nanotube field-effect transistors for digital VLSI. IEEE Trans. Nanotechnol. 17, 1259–1269 (2018).
Zhang, Z. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7, 3603–3607 (2007).
Franklin, A. D., Farmer, D. B. & Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 8, 7333–7339 (2014).
Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).
Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nat. Nanotech 5, 858 (2010).
Cao, Q. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68 (2015).
Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850 (2020).
Burke, P. J. AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid State Electron. 48, 1981–1986 (2004).
Hasan, S., Salahuddin, S., Vaidyanathan, M. & Alam, M. A. High-frequency performance projections for ballistic carbon-nanotube transistors. IEEE Trans. Nanotechnol. 5, 14–22 (2006).
Jing, G., Hasan, S., Javey, A., Bosman, G. & Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4, 715–721 (2005).
Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotech 4, 811–819 (2009).
Chaste, J. et al. Single carbon nanotube transistor at GHz frequency. Nano Lett. 8, 525–528 (2008).
Steiner, M. et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 101, 053123 (2012).
Jiang, S. et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4, eaap9264 (2018).
Zhang, Q. et al. Large-diameter carbon nanotube transparent conductor overcoming performance–yield tradeoff. Adv. Funct. Mater. 32, 2103397 (2022).
Hou, P.-X. et al. Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano 8, 7156–7162 (2014).
Yu, B. et al. Synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 133, 5232–5235 (2011).
Sun, D.-M. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotech. 6, 156–161 (2011).
Chen, Y.-Y. et al. High-throughput fabrication of flexible and transparent all-carbon nanotube electronics. Adv. Sci. 5, 1700965 (2018).
Ganzhorn, M. et al. Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano 5, 1670–1676 (2011).
Savagatrup, S. et al. Bio-inspired carbon monoxide sensors with voltage-activated sensitivity. Angew. Chem. Int. Ed. Engl. 56, 14066–14070 (2017).
Ishihara, S., Labuta, J., Nakanishi, T., Tanaka, T. & Kataura, H. Amperometric detection of sub-ppm formaldehyde using single-walled carbon nanotubes and hydroxylamines: a referenced chemiresistive system. ACS Sens. 2, 1405–1409 (2017).
Ishihara, S. et al. Cascade reaction-based chemiresistive array for ethylene sensing. ACS Sens. 5, 1405–1410 (2020).
Liu, S. F., Petty, A. R., Sazama, G. T. & Swager, T. M. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angew. Chem. Int. Ed. Engl. 54, 6554–6557 (2015).
Star, A., Gabriel, J.-C. P., Bradley, K. & Grüner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003).
Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).
Besteman, K., Lee, J.-O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).
Roberts, M. E., LeMieux, M. C. & Bao, Z. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3, 3287–3293 (2009).
Ishihara, S., Azzarelli, J. M., Krikorian, M. & Swager, T. M. Ultratrace detection of toxic chemicals: triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 138, 8221–8227 (2016).
Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).
Ishihara, S. et al. Metallic versus semiconducting SWCNT chemiresistors: a case for separated SWCNTs wrapped by a metallosupramolecular polymer. ACS Appl. Mater. Interfaces 9, 38062–38067 (2017).
Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008).
Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).
Xiao, M. et al. Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens. 3, 749–756 (2018).
Liang, Y. et al. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano 14, 8866–8874 (2020).
Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74 (2017).
Fan, C. et al. Monolithic three-dimensional integration of carbon nanotube circuits and sensors for smart sensing chips. ACS Nano 17, 10987–10995 (2023).
Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-kkin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).
Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).
Wang, X. et al. Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015).
Nela, L., Tang, J., Cao, Q., Tulevski, G. & Han, S.-J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 18, 2054–2059 (2018).
Wan, H. et al. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 14, 10402–10412 (2020).
Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).
Xu, L. et al. Can carbon nanotube transistors be scaled down to the sub-5 nm gate length? ACS Appl. Mater. Interfaces 13, 31957–31967 (2021).
Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537 (2020).
Zheng, Y. et al. One-dimensional van der Waals heterostructures: growth mechanism and handedness correlation revealed by nondestructive TEM. Proc. Natl Acad. Sci. USA 118, e2107295118 (2021).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).
Zhang, C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).
Iwai, H. End of the scaling theory and Moore’s law. in 16th International Workshop on Junction Technology (IWJT) (2016).
Laird, E. A. et al. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 87, 703–764 (2015).
Kane, C., Balents, L. & Fisher, M. P. A. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086–5089 (1997).
Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).
Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).
Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P. & van der Zant, H. S. J. Electron–hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).
Schroeder, V., Savagatrup, S., He, M., Lin, S. & Swager, T. M. Carbon nanotube chemical sensors. Chem. Rev. 119, 599–663 (2019).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).
Nellist, P. D., McCallum, B. C. & Rodenburg, J. M. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995).
Yang, H. et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016).
Sagawa, R. et al. Low dose imaging by STEM ptychography using pixelated STEM detector. Microsc. Microanal. 24, 198–199 (2018).
Vivanco-Benavides, L. E., Martínez-González, C. L., Mercado-Zúñiga, C. & Torres-Torres, C. Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: a review. Comp. Mater. Sci. 201, 110939 (2022).
Förster, G. D. et al. A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images. Carbon 169, 465–474 (2020). Application of deep learning method to determine the CNT chirality from TEM images.
Acknowledgements
We thank D. N. Futaba and G. Chen (National Institute of Advanced Industrial Science and Technology, Japan) for discussions. D.M.T. discloses support from JSPS Kakenhi (grants JP25820336, JP20K05281, JP23H01796), JST-FOREST Program (grant JPMJFR223T, Japan), WPI-MANA ‘Challenging Research Program (CRP)’ and NIMS ‘Support system for curiosity-driven research’. R.X. discloses support from the Ministry of Science and Technology of China (grant 2023YFE0101300) and Zhejiang province (grant 2022R01001). S.M. discloses support from JSPS KAKENHI (grants JP23H00174, JP23H05443, JP21KK0087) and from JST CREST (grant JPMJCR20B5). H.-M.C. discloses support from National Natural Science Foundation of China (grant 52188101). C.L. acknowledges support from the Ministry of Science and Technology of China (grant 2022YFA1203302), the National Natural Science Foundation of China (grants 52130209, 52188101) and Liaoning Revitalization Talents Program (XLYC2002037). D.G. discloses support from an Australian Research Council Laureate Fellowship (grant FL160100089).
Author information
Authors and Affiliations
Contributions
D.M.T. led the collaborative work. All authors contributed to the discussions, and drafted and revised the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tang, DM., Cretu, O., Ishihara, S. et al. Chirality engineering for carbon nanotube electronics. Nat Rev Electr Eng 1, 149–162 (2024). https://doi.org/10.1038/s44287-023-00011-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44287-023-00011-8