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Abstract

Applications of artificial intelligence (AI) necessitate AI hardware 
accelerators able to efficiently process data-intensive and computation- 
intensive AI workloads. AI accelerators require two types of memory: 
the weight memory that stores the parameters of the AI models 
and the buffer memory that stores the intermediate input or output 
data when computing a portion of the AI models. In this Review, we 
present the recent progress in the emerging high-speed memory for 
AI hardware accelerators and survey the technologies enabling the 
global buffer memory in digital systolic-array architectures. Beyond 
conventional static random-access memory (SRAM), we highlight the 
following device candidates: capacitorless gain cell-based embedded 
dynamic random-access memories (eDRAMs), ferroelectric memories, 
spin-transfer torque magnetic random-access memory (STT-MRAM) 
and spin-orbit torque magnetic random-access memory (SOT-MRAM). 
We then summarize the research advances in the industrial development 
and the technological challenges in buffer memory applications. 
Finally, we present a systematic benchmarking analysis on a tensor 
processing unit (TPU)-like AI accelerator in the edge and in the cloud 
and evaluate the use of these emerging memories.

Sections

Introduction

High-speed memory 
candidates

TPU buffer memory case study 
and NeuroSim benchmarking

Array-level prototyping 
landscape

Outlook

1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA. 2Logic 
Pathfinding Laboratory, Samsung Semiconductor, Inc., San Jose, CA, USA. 3These authors contributed equally: 
Anni Lu, Junmo Lee, Tae-Hyeon Kim.  e-mail: shimeng.yu@ece.gatech.edu

http://www.nature.com/natrevelectreng
https://doi.org/10.1038/s44287-023-00002-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s44287-023-00002-9&domain=pdf
http://orcid.org/0000-0002-4415-0866
http://orcid.org/0000-0001-6092-6436
http://orcid.org/0000-0002-0068-3652
mailto:shimeng.yu@ece.gatech.edu


Nature Reviews Electrical Engineering | Volume 1 | January 2024 | 24–34 25

Review article

mixed-signal or analogue CIM engines5,6; by contrast, the buffer memo-
ries (Supplementary Information section 1) that hold the intermediate 
input or output activation data are rarely discussed.

Figure 1 shows the generic architecture of the digital MAC engines 
used in the TPU-like architecture. At each level of the hierarchy, the 
intermediate data (that is, the input or output feature maps of a DNN) 
are temporarily stored in the buffer memories. At the top level of the 
hierarchy, there is a global buffer that has a capacity in the range of 
1–100 MB, which is implemented by static random-access memory 
(SRAM) cache in conventional designs (Supplementary Information 
section 1). It is known that SRAM is widely used as the mainstream on-
chip buffer memory for CPU or GPU thanks to its fast access (less than 
a few nanoseconds), unlimited endurance (>1016 cycles) and supe-
rior scalability with the leading edge node logic process (to today’s 
3 nm node and beyond)7,8. However, SRAM is an expensive technology 
(in terms of the silicon footprint with a relatively low integration den-
sity of dozens of megabits per millimetre squared), and also suffers 
from high stand-by leakage power (tens to hundreds of picowatts 
per bit)7,8. Hence, it is intriguing to explore alternative high-speed 
memory candidates for the global buffer. Although it is challenging 
for competing technologies to replace the SRAM technology in the 
lower-level buffer such as the register file (RF), which may require sub-
nanosecond access, opportunities are wide open for the global buffer 
that is generally slower.

We focus on the following emerging high-speed memory techno-
logies: capacitorless two-transistor (2T) gain cell-based embed-
ded dynamic random-access memory (eDRAM); ferroelectric field 
effect transistor (FeFET) and ferroelectric random-access memory 
(FeRAM); and spin-transfer torque (STT) and spin-orbit torque (SOT) 
magnetic random-access memory (STT-MRAM and SOT-MRAM, 
respectively). The operation principles, prospects and challenges 
of each technology will be introduced and discussed in the next 
section. Benchmarks of these memory candidates and traditional 
SRAM are then applied for a TPU buffer memory case study. Finally, 
the state-of-the-art prototype chip demonstrations for some of 
these memory technologies are surveyed to show the industrial 
cutting-edge advances and outlooks.

High-speed memory candidates
The criteria to select the memory candidates are writing and reading 
access speeds (<10 ns) and cycling endurance (>1012 cycles)9 (Sup-
plementary Information section 2). The read access speed is the time  
to read the stored memory state and the write access speed is the time to 
 write the memory into the desired state. The access speed criteria are 
assumed according to the last-level cache SRAM speed (~10 ns). The 
cycling endurance is defined as the number of writings allowed for 
each memory cell before it becomes unreliable. Assuming 150 train-
ing epochs, the total number of write operations for each memory cell 
is 3.75 × 107 with 50,000 CIFAR-10 training images and 7.5 × 108 with 
one million ImageNet training images10. CIFAR-10 and ImageNet data 
sets are collections of images commonly used to train machine learn-
ing models for image recognition. One TPU chip is able to train a few 
thousand times on ImageNet in 10 years without any rest, given that 
16 TPUv2 chips could finish one training in around 2 h (so one TPUv2 
chip needs slightly less than 32 h for one training, which means 2,737.5 
trainings in 10 years)11. Therefore, we suggest the device endurance 
criteria (>1012 cycles) to support at least thousands of training times 
during the device lifetime. The training from scratch for challenging 
tasks (for example, ImageNet) are not on a daily basis even in cloud 

Key points

 • The global buffer in artificial intelligence (AI) hardware (for example, 
the tensor processing unit (TPU)) is traditionally based on static 
random-access memory (SRAM), which is expensive in the silicon 
footprint and suffers from high stand-by leakage power. Emerging 
memories with high speed and high endurance could replace SRAM 
as global buffers.

 • A capacitorless two-transistor (2T) gain cell, an implementation of 
embedded dynamic random-access memory (DRAM), uses amorphous 
oxide semiconductors as the channel material allowing a high data 
retention time.

 • Ferroelectric memories such as the ferroelectric field effect 
transistor (FeFET) and magnetic memories such as spin-transfer 
torque magnetic random-access memory (STT-MRAM) or spin- 
orbit torque magnetic random-access memory (SOT-MRAM) could be 
tailored to improve their cycling endurance, making them viable as 
global buffer candidates.

 • Three-dimensional integration that stacks emerging memories and 
their access transistors all together at the back end of line (BEOL) 
paves the way for high-density global buffer solutions that are even 
denser than the leading edge node SRAMs.

 • Leading edge node SRAM is still a competitive high-performance 
technology for AI hardware in the cloud, whereas emerging memories 
exhibit more advantages in AI hardware at the edge where minimizing 
the stand-by leakage power is critical.

Introduction
Artificial intelligence (AI) enables a wide range of applications from 
computer vision to natural language processing. AI hardware accel-
erators are high-performance parallel computation machines spe-
cifically designed for the efficient processing of AI workloads beyond 
conventional central processing unit (CPU) or graphic processing unit 
(GPU) platforms (Supplementary Information section 1). Deep neural 
network (DNN) processing involves heavy multiply and accumulate 
(MAC) computations and intensive memory access due to the large size 
of the AI models. Specialized AI hardware can be used to accelerate the 
DNN training as well as the inference. In systolic array-based accelera-
tors (Fig. 1), for example, each processing element (PE) independently 
computes a MAC operation of the data received from its upstream 
neighbours and passes this downstream to minimize the expensive 
memory access (Fig. 1, right). Digital systolic-array architectures 
(Supplementary Information section 1) have been gaining commercial 
success. For instance, Google has deployed the tensor processing unit 
(TPU) (Supplementary Information section 1), one of the most widely 
used commercial AI hardware products, in both data centres1 and edge 
devices2. Since the early 2010s, another spotlighted research topic is the 
in-memory computing paradigm because of its high energy efficiency 
that benefits from reduced data transfer between memory and comput-
ing units. In compute-in-memory (CIM) engines, the DNN parameters 
are stored and directly computed inside the memory arrays. Previ-
ous reviews in the field focused on either the digital MAC engines3,4 or  
the weight memories (Supplementary Information section 1) used in the 
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TPUs, so this endurance criterion is sufficient to sustain the training 
intensity in most scenarios.

In such a context, some emerging memories such as phase change 
memory and resistive random-access memory, available on the indus-
trial platforms, do not satisfy these criteria, because of their slow speed 
(~100 ns), low cycling endurance (106–109 cycles) and large energy con-
sumption (>1 pJ bit–1 for write) (Supplementary Information section 2).  
Therefore, they are ruled out of this Review. It should be noted that 
due to variations, reliability and yield issues of emerging memories, 
an error-correction code scheme must be employed to reliably oper-
ate the buffer in the digital domain. Typically, error-correction code 
encodes original data by adding some redundant parity bits, and then a 
decoder examines the encoded message to identify and correct errors 
when reconstructing the original data12.

Capacitorless 2T gain cell
A capacitorless 2T gain cell is essentially eDRAM (Supplementary Infor-
mation section 1) that could temporarily hold the data. Figure 2a shows 
the cell architecture in which the drain terminal of the write transistor 
is connected to the gate terminal of the read transistor. The common 
node shared by the two transistors acts as a charge storage node (SN) 
and defines the memory state. The memory state is differentiated by 
measuring the variation in the drain current of the read transistor 
when the read bit line (RBL) is enabled. The memory state is written 
by enabling the write word line (WWL) through the application of the 
desired voltage (memory state, ‘1’ or ‘0’) to the write bit line (WBL). 
The operation principle of the 2T gain cell is different from the widely 
adopted 1T1C (one transistor–one capacitor) stand-alone DRAM or 
eDRAM (Supplementary Information section 1). Here, the necessity 
for a large on-chip capacitor is eliminated as the parasitic capacitance 

formed at the SN replaces the role of the trench or stacked capacitor 
in the 1T1C DRAM.

For a 2T gain cell to serve as a practical memory candidate, how-
ever, several engineering challenges need to be addressed. First, the 
parasitic capacitance at the SN should be sufficiently high (101–103 fF 
depending on the given operating temperature and transistor leakage 
current) to provide enough retention (Supplementary Information 
section 1) time (in the order of a few seconds) for buffer memory13,14. 
The goal is to have a retention time which is longer than the lifetime 
of the activation data in typical AI workloads; in this way, the explicit 
refresh operation could be eliminated as the data need to be rewritten 
before the memory state is lost. Second, considering the high leak-
age current densities (10–4–10–2 µA µm–1) typical of logic transistors15, 
achieving a long retention time (in the order of a few seconds) is 
prohibitive for 2T gain cells. The targeted leakage level should be 
around 1 fA µm–1 to achieve practical ranges of retention time. Third, 
the charge-injection issue needs to be mitigated during the repeated 
accesses. The charge-injection problem in 2T gain cells is caused by 
the capacitive coupling between the WWL and the SN or between the 
read word line (RWL) and the SN13. The voltage transitions happening 
in the WWL or RWL during read/write processes affect the voltage of 
the SN, degrading the storage stability.

Different approaches have been proposed to overcome these 
challenges. For instance, hybrid p-type and n-type transistors 
designed for 2T gain cell configuration can be employed to mitigate 
the charge-injection problem13. The cryogenic temperature operation, 
proposed in ref. 13, also reduced the leakage level of the write transistor 
to below 10 fA µm–1 and increased the retention time up to 6.5 s (at 4 K), 
as measured in the 28 nm prototype chip implemented in a pure logic 
process. However, for room temperature operation, logic transistors 
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Fig. 1 | Generic diagram of the digital MAC engines used in tensor processing 
unit (TPU)-like systolic-array architectures. Each processing element 
(PE) independently computes a multiply and accumulate (MAC) operation 
of the data received from its upstream neighbour and passes it downstream 
to minimize the memory access to the global buffer or even to the dynamic 
random-access memory (DRAM). Weight stationary data flow broadcasts 
activations and accumulates partial sums spatially across the PEs to maximize 
the weight data reuse (right-hand side). The data at the beginning or at the 

end of the stream are fetched from or written back to the global buffer that 
is typically in the range of 1–100 MB capacity. The global buffer is where 
the emerging high-speed memories (capacitorless two-transistor (2T) 
gain cell, ferroelectric field effect transistor (FeFET), ferroelectric random-
access memory (FeRAM), spin-transfer torque magnetic random-access 
memory (STT-MRAM), spin-orbit torque magnetic random-access memory 
(SOT-MRAM)) discussed in this Review could potentially replace expensive 
static random-access memory (SRAM).
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are not the right choice for implementing 2T gain cells because of 
the high leakage. Alternatively, the use of a 2T gain cell with a differ-
ent channel material was proposed for the back end of line (BEOL) 
three-dimensional integration14 (Supplementary Information section 1).  
Amorphous oxide semiconductor channel materials, such as the 
indium oxide (In2O3) family, are intensively studied due to their BEOL 
process compatibility and reasonable field effect mobility16. Thanks to 
its intrinsically wide bandgap (~3 eV), a tungsten-doped In2O3 (indium 
tungsten oxide (IWO))-based BEOL transistor with a short gate length of 
20 nm demonstrated a leakage level of approximately 1 fA µm−1; the cor-
responding 2T gain cell achieved an access time as low as 3 ns (in the fast 
mode with a write voltage of 2 V) and retention time >1 s at 85 °C14. More-
over, BEOL compatibility allows the entire core of the memory array to  
be placed at the top interconnect level and the peripheral circuits  
to be hidden underneath. Despite the promises of amorphous oxide 
semiconductor-based transistors, research is still ongoing to overcome 
the challenge of threshold voltage instability under voltage stress and 
elevated temperature and elucidate its origin17,18. Through repeated 
writing and reading in buffer memory, the read and write transistors will  
experience voltage stress on their gate terminals. Moreover, the power 
dissipation from the transistors causes the elevation of the operating 
temperature. These conditions are known to cause a gradual shift of the 
threshold voltage of the read and write transistors from their original 
value. This means the key transistor parameters such as gate capacitance, 
on-current and off-current (Supplementary Information section 1)  
are also affected by the voltage stress and the elevated temperature. 
As the SN parasitic capacitance and peripheral circuits (for sensing of 
the memory state) design parameters are set according to the initial 
transistor parameters, unwanted threshold voltage shift during buffer 
operation can have a detrimental effect on the long-term circuit reli-
ability. Thus, it is essential to adopt device and circuit-level techniques 
to stabilize the threshold voltage of read and write transistors for the 
implementation of large-scale memory arrays.

FeFET and FeRAM
Advances in ferroelectric memories (Supplementary Information sec-
tion 1) benefit from the discovery of ferroelectricity in doped hafnium 
oxide (HfO2) thin films (<10 nm thickness)19 in 2011, which is compatible 
with the current technology for semiconductor manufacturing using 
atomic-layer deposition. Ferroelectric memories leverage the polariz-
ability of ferroelectric materials to implement memory states. In the 
FeFET, a ferroelectric layer substitutes the gate dielectric of a conven-
tional transistor20 (Fig. 2b). The write step is performed by changing the 
polarization state of the ferroelectric layer through the application of 
programme or erase pulses through the gate, source or drain terminals, 
leading to a change in threshold voltage of the channel. The read step 
is performed by measuring the drain current variation induced by the 
threshold voltage shift (defined as the memory window). In FeRAM,  
a metal–ferroelectric–metal (MFM) capacitor is connected to the drain 
terminal of an access transistor21 (Fig. 2c). During the read step, the acti-
vated word line (WL) turns on the access transistor, and the bit line (BL) 

current produced after the WL activation depends on the memory state 
stored in the MFM. State ‘1’ induces a polarization switching current in 
addition to the discharge current of the state ‘0’. The BL voltage decays 
at a different speed depending on the BL current. Thus, by comparing 
the BL voltage with the reference voltage using a sense amplifier after 
a certain time after WL activation, two different memory states can be 
distinguished from each other. Reading of state ‘1’ is a destructive pro-
cess, as the polarization switching during the reading results in the loss 
of the original memory state. To compensate for the loss, write-back is 
typically performed subsequently after the read step.

The main limitation of using FeRAM for buffer memory is caused 
by the write-back that must be performed after each read step. Due to 
the write-back, cycling endurance is consumed by both writing and 
reading operations in FeRAM. State-of-the-art FeRAM has benefited 
from advanced material and device engineering techniques to achieve 
high cycling endurance of ~1012 cycles21. Alternatively, dual-mode 
operation of FeRAM has been proposed to reduce the frequency of 
destructive read-out during buffer memory operation10. During the 
dual-mode operation, the frequently updated data are stored in a 
volatile eDRAM-like mode, whereas the data with longer lifetime are 
stored in a non-volatile FeRAM mode10. As the write-back to recover the 
original polarization state is not needed during the eDRAM-like mode, 
the overall cycling endurance consumed by the FeRAM buffer memory 
could be reduced utilizing dual-mode operation.

The FeFET does not suffer from destructive reading processes, 
but faces other challenges such as endurance degradation. Typical 
FeFET endurance is around 105–106 cycles because of the charge traps 
generated during cycling with high electric fields across the interfa-
cial layer (IL) between the silicon channel and the ferroelectric film22. 
Several solutions have been proposed in the literature. One promis-
ing approach is to use a back-gated BEOL FeFET configuration with a 
channel-last process in which the channel deposition is performed after 
the bottom gate and ferroelectric layer deposition23. The low thermal 
budget for the channel material and engineering the interface between 
the gate oxide and the channel enabled a reduction of the IL thickness 
and, consequently, of the charge trapping effect. In this way, a writing 
time of 10 ns and cycling endurance of 1012 cycles were obtained. In 
a similar work, IWO films were explored as the channel material for 
BEOL-compatible FeFETs24. Using IWO, the IL between the channel and 
the gate oxide was completely removed, resulting in a write voltage 
of 1.6 V and a cycling endurance exceeding 1011 cycles. A ferroelectric 
metal field effect transistor (FeMFET) structure was also proposed  
to alleviate the IL-related issues25,26. By inserting a floating electrode to 
separate the ferroelectric layer and the metal–oxide–semiconductor 
(MOS) layer, the ratio between the two areas (AFE/AMOS, where AFE is 
the MFM capacitor area and AMOS is the MOSFET gate oxide area) 
could be flexibly adjusted25. The smaller area ratio reduces the elec-
tric field applied across the IL, decreasing the charge trapping in the 
ferroelectric layer. The scalability of the FeMFET to advanced nodes 
(for example, 3 nm) was projected26, indicating the possibility of further 
lowering the write voltage with technology scaling.

Fig. 2 | Schematics and circuit diagrams of high-speed memory candidates. 
a, Capacitorless two-transistor (2T) gain cell. b, Ferroelectric field effect transistor 
(FeFET). c, Ferroelectric random-access memory (FeRAM). d, Spin-transfer 
torque magnetic random-access memory (STT-MRAM). e, Spin-orbit torque 
magnetic random-access memory (SOT-MRAM). Highlighted are the back end 
of line (BEOL) integration potential of a 2T gain cell and a FeFET with amorphous 

oxide semiconductor channel materials. BL, bit line; D, drain; FEOL, front end 
of line; IL, interfacial layer; MFM, metal–ferroelectric–metal; MTJ, magnetic 
tunnel junction; PL, plate line; RBL, read bit line; RWL, read word line; S, source; 
SL, source line; SN, storage node; SOT, spin-orbit torque; WBL, write bit line; 
WL, word line; WWL, write word line. Vx denotes the xth via.
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STT-MRAM and SOT-MRAM
MRAM utilizes the tunnelling magnetoresistance effect in a magnetic 
tunnel junction (MTJ) to store binary data27 (Supplementary Informa-
tion section 1). The MTJ, the fundamental component of magnetic 
random-access memory (MRAM), consists of a dielectric tunnel bar-
rier sandwiched between two ferromagnetic layers. The resistance of 
the MTJ depends on the magnetization direction of these two layers: 
when the magnetization directions are parallel, the MTJ exhibits a low 
resistance; antiparallel magnetization results in high resistances. In a 
read operation, the read voltage is applied to both ends of the MTJ cell 
and a current is measured regardless of the type of MRAM employed 
(STT-MRAM (Fig. 2d) or SOT-MRAM (Fig. 2e)). The reading current of 
the MRAM depends on the two resistance states of the MTJ cell. The 
write operation depends on the physical mechanism behind the STT 
switching (Fig. 2d) and SOT switching (Fig. 2e). STT-MRAM utilizes the 
current flow directly through the MTJ stack to reverse the magnetiza-
tion of the free layer28. When electrons flow from the pinned layer to 
the free layer, those with the same magnetic moment as the pinned 
layer apply a STT to the free layer, resulting in parallel magnetization 
and low resistance in the MTJ. Conversely, when electrons flow from 
the free layer to the pinned layer, those with a parallel spin moment  
to the pinned layer pass through, whereas others are reflected back to 
the free layer. These electrons change the magnetization of the free 
layer to the antiparallel direction, leading to the high resistance 
in the MTJ. Sharing the read and the write paths in STT-MRAM may 
degrade the reliability of the MTJ.

SOT-MRAM was introduced to alleviate this issue. In SOT-MRAM, 
the MTJ cell is positioned above the in-plane electrodes for write 
operations29. The write current flow along the in-plane electrode 
induces a spin torque through the spin-Hall effect, a phenomenon 
in which spin currents are generated in the direction perpendicular 
to the charge current by spin-orbit coupling, and Rashba spin-orbit 
coupling, interaction between the electron spin of an electron and its 
orbital motion on a solid surface, altering the magnetization of the free 
layer. Unlike STT-MRAM, SOT-MRAM isolates the reading from the writ-
ing paths, thus improving the endurance and reading reliability, and 
offering other advantages, such as sub-nanosecond operation speeds. 
However, the additional metal line and another access transistor 
required for the writing operation in SOT-MRAM introduce more area  
penalty.

The industry’s initial application target for MRAM is to replace 
embedded Flash (eFlash) in the microcontroller30–33 (Supplemen-
tary Information section 1). Therefore, the MTJ stack is engineered 
towards 10-year data retention with sacrificed cycling endurance 
(~106 cycles) and moderate write (around 200 ns) and read (around 
50 ns) speeds33–35. Furthermore, it is possible to tailor the MTJ stack 
for the high-speed buffer memory (that is, the last-level cache) on the 
same MTJ platform as used in the eFlash replacement36. However, 
the major roadblock for the employment of MRAM for buffer memory 
is the relatively high-power consumption in the write operation. The 
typical write current density for STT-MRAM is between 4 MA cm–2 
and 20 MA cm−2 (normalized to the MTJ area), and for SOT-MRAMs is 
between 70 MA cm–2 and 150 MA cm–2 (normalized to the metal line 
cross-sectional area)28,37,38. Such large current densities require the 
use of over-sized access transistor, which diminishes the area advan-
tages given by the MRAM architecture, leading to a factor of merely 
two times or three times improvements over 6T high-density SRAM 
at the same node. A prior study suggested that the writing current 
density needs to be reduced three or five times for MRAM to become 

competitive for buffer memory in terms of the energy efficiency and 
computing density37.

TPU buffer memory case study and NeuroSim 
benchmarking
In this section, we present a quantitative evaluation of the pros and 
cons of the different high-speed memory candidates to be used as 
the global buffer memory for TPU-like architectures.  Supplementary 
Information Fig. S1 shows the integrated framework for the benchmark 
used in this case study. To facilitate the benchmarking, we utilized the 
open-source NeuroSim simulator39,40 that captures the recent techno-
logical advancements in the emerging non-volatile memories (eNVMs) 
such as phase change memory, resistive random-access memory, 
MRAM and FeFET (for a detailed description of the benchmarking 
process, see Supplementary Information section 2).

A few observations could be made from the benchmarking analy-
sis shown in Fig. 3. The energy and area of different memory tech-
nologies are normalized using SRAM as the global buffer baseline. As 
shown in Fig. 3a, for the 3 nm high-performance cloud server where the 
compute activity is high — that is, with 100% of the inference queries 
constantly fed in — SRAM global buffer is still a competitive candidate 
for high energy efficiency. Thanks to the continued scaling of the 
SRAM bit cell area (Supplementary Information section 1) down to 
0.021 µm2 at 3 nm node8, a large capacity of SRAM (up to 32 MB8) is an 
available product from the foundries. The 2T gain cell is also a good 
candidate with energy efficiency comparable with SRAM. As SRAM 
and the 2T gain cell are charge-based memories, the energy to move 
the charge is lower than that in the eNVM counterpart where the fer-
roelectric or magnetic switching is associated. In Fig. 3a, the global 
buffer refresh, read, leakage and functional module consume no more 
than 2% energy in total.

If the expensive silicon area caused by SRAM is a concern, emerg-
ing technologies such as the BEOL stacked 2T gain cell, BEOL stacked 
FeFET, STT-MRAM and SOT-MRAM could lower the global buffer area by 
59%, 58%, 54% and 20%, respectively, as shown in Fig. 3b. As a trade-off, 
the energy efficiency improves and degrades by +0.3%, –13%, –28% and 
–27%, respectively. Similar trends are found in the 22 nm edge TPU case 
for energies and chip areas, as shown in Fig. 3c,d. The impact of global 
buffer technology choice is more significant in the edge TPU because 
of the reduced compute resources in a smaller number of PEs. Over-
all, the BEOL stacked 2T gain cell appears to be a promising candidate. 
The functional module shown in Fig. 3b occupies less than 1% area for 
all conditions. As shown in Fig. 3c, global buffer refresh and leakage 
consume no more than 1% energy.

As shown in Fig. 3e, for the low-power edge device, the advantages 
of emerging technologies-based solutions manifest when the compute 
activity is low (<1%). When the inference chip is in the stand-by fre-
quent scenario, SRAM global buffer contributes to substantial leakage, 
whereas the non-volatile memories could power-gate off to save the 
stand-by leakage. For edge devices, most of the alternative candidates 
could outperform SRAM-based designs. For a cloud device, the system is  
expected to be rarely in stand-by and the portion of computing time 
is close to 100%, so its SRAM-based design is still competitive.

Array-level prototyping landscape
In the past decade, industry has invested heavily in emerging memories, 
and many of these efforts could have a profound impact when being 
tailored towards high-speed buffer memory engineering. Here, we have 
surveyed the state-of-the-art prototype chip demonstrations for some 
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of the technologies even though their initial application target might 
be different. Because the amorphous semiconductor oxide-based 
2T gain cells are still in their early research stage, there are rarely any 
array-level demonstrations. Therefore, in the following we focus on 
the ferroelectric and magnetic memories where prototype chips have 
been reported.

FeFET and FeRAM prototype chips
Table 1 presents a comprehensive overview of recently reported pro-
totype chips featuring FeFET and FeRAM architectures. The first FeFET 
macro (a functional memory block) in 28 nm node was launched in 
2016 by GlobalFoundries41 in collaboration with German research 
organizations (NaMLab, Fraunhofer and so on), which were the first 

to report doped HfO2-based ferroelectric films in 2011 (ref. 19). Since 
then, although various FeFET devices continue to be actively optimized, 
GlobalFoundries has emerged as a forerunner towards risk manufac-
turing with the design house partner FMC42. It should be noted that 
GlobalFoundries’ effort has focused on the development of a front 
end of line (FEOL) FeFET (Supplementary Information section 1). The 
overall research trend for FeFET macros centres around enhancing 
reliability, including addressing limited endurance and device varia-
tions, while achieving large capacity to ensure commercial viability. 
Unfortunately, most of the efforts here are towards eNVM applications 
rather than to buffer memory. As discussed earlier, the BEOL FeFET 
holds more potential towards high-speed memory applications with 
density advantages.
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Fig. 3 | Benchmarking analysis for high-speed memory candidates on cloud 
and edge TPUs. a–d, Benchmarking analysis results for energy breakdown 
(a) and area breakdown (b) of a cloud tensor processing unit (TPU), and for 
energy breakdown (c) and area breakdown (d) of an edge TPU. Energy levels 
and areas are normalized using static random-access memory (SRAM) as 
the global buffer baseline. e, Energy efficiency of the edge TPU with respect 
to a portion of activated computing time. Emerging memories outperform 

SRAM when the compute activity is low (<1%). Note that the functional module 
includes activation, batch normalization and pooling units. BEOL, back end 
of line; DRAM, dynamic random-access memory; FeFET, ferroelectric field 
effect transistor; MAC, multiply and accumulate; PE, processing element; 
RF, register file; SOT-MRAM, spin-orbit torque magnetic random-access memory; 
STT-MRAM, spin-transfer torque magnetic random-access memory; 2T gain cell, 
two-transistor gain cell.
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On the FeRAM front, Sony reported the development of a 64 kbit 
FeRAM macro at 130 nm node comprising sub-500 °C TiN/HfZrOx 
(HZO)/TiN stack MFM capacitors43. At the array level, this FeRAM macro 
exhibited 100% bit functionality, an operating voltage as low as 2.5 V, a 
write latency of 14 ns and an endurance exceeding 1011 cycles. CEA-Leti 
reported similar FeRAM macros based on HZO44 and silicon-doped HfO2 
(ref. 45) stacks in 130 nm node. ITRI’s recent work focused on enhancing 
the reliability of FeRAMs46 and proposed the use of TiON as a barrier 
metal in the electrodes of ferroelectric capacitors to mitigate capacitor 
fatigue. Additionally, post-metal annealing was found to further sup-
press fatigue. The reported 4 kb 1T1C FeRAM macro exhibited a high 
yield (>98%) and demonstrated wake-up free characteristics, achiev-
ing an endurance surpassing 1012 cycles. CAS researchers presented 
a 9 Mb HZO-based non-volatile FeRAM macro and introduced circuit 
designs aimed at improving chip performance for mass production47. 
The design incorporated a temperature-aware write-voltage driver 
with error-correction code-assisted refresh to enhance endurance and 
reduce bit error rates. Furthermore, an offset-cancelled sense amplifier 
was introduced to improve the sensing margin. As discussed earlier, 
the read-destructive nature of FeRAM is the major roadblock for its 
application towards the buffer memories.

STT-MRAM and SOT-MRAM prototype chips
Table 2 presents an overview of recently reported STT-MRAM and 
SOT-MRAM macros. STT-MRAM macros have been under develop-
ment at advanced technology nodes (28 nm or below) in major found-
ries (TSMC, GlobalFoundries, Samsung and Intel) since 2019, whereas 
SOT-MRAM macros have mainly been reported by IMEC, with a recent 
report from TSMC/ITRI. The general research trend involves engineer-
ing STT-MRAM and SOT-MRAM macros with various specifications, such 
as long retention (>10 years), high temperature reflow compatibility 
(230–260 °C)48–50, magnetic shielding capability (0.5–4,000 Oe)34,48,50 
and high speed (<50 ns), to cater to industrial applications as well as 
automotive and aerospace applications.

Sony presented the first report of STT-MRAM macros as buffer 
memories for the CMOS image sensor51. The study demonstrated 

that smaller MTJ cells could be employed as buffer memory, whereas 
larger MTJ cells could be utilized for eNVM applications due to their 
increased data retention capabilities. Furthermore, the integration 
of both buffer memory and eNVM-type MTJ cells on a single chip was 
achieved through MTJ size modulation. However, most efforts for 
STT-MRAM development are targeting eNVM applications such as 
eFlash replacement for microcontrollers. Renesas reported STT-MRAM 
macros operated at high temperatures (up to 150 °C) for automotive 
applications52. Unlike consumer semiconductors characterized up to 
85 °C, automotive semiconductors require guaranteed performance 
at high temperatures of 125–150 °C53,54. This work achieved random 
read access times of 5.1 ns and 5.9 ns at 125 °C and 150 °C, respectively. 
Additionally, proposed write algorithms reduced the number of write 
pulses (Supplementary Information section 1) through optimized bit 
line voltage, resulting in improved write throughput.

Samsung reported STT-MRAM macros designed for energy- 
efficient stand-alone memories55. Fabricated on 28 nm and 14 nm 
techno logy nodes, the macros demonstrated almost unlimited endur-
ance (>1014 cycles) with a write power of 27 mW and a read power of 
14 mW. To overcome the cell size limitations of conventional 1T1M 
(one transistor–one MTJ) structures, SK Hynix and Kioxia presented 
a 1S1M (one selector–one MTJ) cell design for high-density memory 
applications56. By utilizing optimized arsenic-doped SiO2 as the selec-
tor material, the 1S1R cell achieved a footprint of 4F (ref. 2), a cell pitch 
of 45 nm and an MTJ size of 20 nm.

Everspin proposed an STT-MRAM macro focused on industrial 
applications57. The macro exhibited a high 400 MB s–1 writing through-
put across the industrial temperature range of –40 °C to +80 °C, while 
maintaining compliant data retention and endurance characteristics. 
TSMC presented an STT-MRAM macro in the 16 nm FinFET platform 
tailored for automotive applications58. The work introduced several 
chip-level algorithms and schemes, including sensing schemes to 
enhance small read margins and mitigate external magnetic field 
interference.

SOT-MRAM macros have predominantly been reported for 
cache59,60 and CIM weight cell applications61,62. In IMEC’s work, 

Table 1 | Overview of recently reported FeFET and FeRAM prototype chips

Technical node FMC/GF FeFET 
VLSI 2021 (ref. 42)

Sony FeRAM VLSI 
2020 (ref. 43)

Leti FeRAM IEDM 
2019 (ref. 44)

Leti FeRAM IEDM 
2021 (ref. 45)

ITRI FeRAM IEDM 
2022 (ref. 46)

CAS FeRAM ISSCC 
2023 (ref. 47)

Target application eNVM eNVM eNVM eNVM eNVM eNVM

Technology node (nm) 28 130 130 130 NA 130

Capacity 32 MB 64 kB 16 kB 16 kB 4 kB 9 MB

Macro size (mm2) 4.77 NA NA NA NA NA

Cell size (μm2) 0.076 0.4–1.0 (cap area) 0.28–1.13 (cap area) 0.16 (cap area) 0.36 (cap area) NA

2Pr (μC cm–²) NA NA >40 NA NA NA

Memory window (V) 1.53 NA NA NA NA NA

Operating voltage (V) 4 2.5 <4 2.5 2.6 <3

Programme/erase time (ns) 104/105 1.4 <100 4 at 4.8 V 40 7 at 3.3 V/20 at 2.5 V

Read pulse width (ns) 25 8 NA NA 60 5 at 3.3 V/30 at 2.5 V

Write endurance (cycles) >105 >1011 >1011 >107 >1012 >1012

Retention NA 100 min at 85 °C 1,000 min at 125 °C 104 s at 125 °C 5 × 104 s at 120 °C 10 years at 85 °C

eNVM, emerging non-volatile memory; FeFET, ferroelectric field effect transistor; FeRAM, ferroelectric random-access memory; NA, not available; Pr, remnant polarization.
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solutions for high-density and high-performance SOT-MRAM mac-
ros were provided through design technology co-optimization59. 
PPA analysis at the 5 nm node identified SOT efficiency and BL resist-
ance as the two main parameters limiting SOT-MRAM macro per-
formance. TSMC/ITRI reported an 8 kb SOT-MRAM macro with the 
fast-switching speed (around 1 ns)60. The study addressed challenges 
hindering mass production of SOT-MRAM, such as identifying a high 
spin-Hall conductivity SOT channel material capable of withstanding 
400 °C post-annealing, etch stop in the SOT channel and ensuring 
non-contaminated MTJ sidewalls. The issues were resolved through the 
application of a unique tungsten-based SOT channel material and opti-
mized etching processes. IMEC presented SOT-MRAM macros for CIM 
applications61,62. As parallel operations are performed in mixed-signal 
and analogue MAC computations, weight memory cells (Supplemen-
tary Information section 1) require high cell resistance (greater than 
megaohms) and low resistance variability. In IMEC’s initial design61, 

ternary weights for DNN inference are experimentally validated using 
SOT-MRAM macros. Differential pairs of MRAM cells are employed 
to implement ternary weights, and cell variations depending on MTJ 
cell dimensions are characterized through a fast write speed of 0.5 ns. 
DNNs for MNIST and CIFAR-100 data sets were tested with design 
technology co-optimization, and target values of weight variation were 
proposed to achieve acceptable error rates. Based on the initial design, 
IMEC introduced perpendicular-SOT devices with a new free layer 
design62. The new free layer design exhibited improved data reten-
tion and endurance characteristics at 125 °C, even after undergoing 
400 °C post-metal annealing. It should be noted that the engineering 
directions for cache and CIM weight memory cell are quite diverged, 
and the buffer memory requires similar techniques as for the cache 
applications. Reduction of the switching current density is necessary 
before the SOT-MRAM becomes competitive against the SRAM-based 
baselines.

Table 2 | Overview of recently reported STT-MRAM and SOT-MRAM prototype chips

Technical node Sony STT 
VLSI 2021 
(ref. 51)

Renesas 
STT VLSI 
2022 
(ref. 52)

Samsung 
STT IEDM 
2022 (ref. 55)

SK Hynix/
Kioxia STT 
IEDM 2022 
(ref. 56)

Everspin 
STT 
IEDM 
2022 
(ref. 57)

TSMC 
STT 
ISSCC 
2023 
(ref. 58)

IMEC SOT 
IEDM 2020 
(ref. 59)

TSMC/
ITRI SOT 
VLSI 2022 
(ref. 60)

IMEC SOT VLSI 
2020 (ref. 61)

IMEC SOT VLSI 
2021 (ref. 62)

Target 
application

Buffer, 
eNVM

eNVM Stand-alone Stand-alone eNVM eNVM Cache Cache CIM weight cell CIM weight cell

Technology 
node (nm)

40 22 28/14 45 28 16 5 (simulation) NA 22 NA

RON/ROFF (Ω) NA NA NA NA NA NA 4,970/NA 900/2,100 6 million/ 
15 million

55,000/114,000

On–off ratio NA NA NA NA NA NA NA 2.3 2.5 2.1

MTJ size (nm2) NA NA NA 20 × 20 NA NA D = 32 (circle) 75 × 230 D = 80 (circle) D = 80 (circle)

Resistance–area 
product (Ω μm2)

NA NA NA NA NA NA 4 10 5,000–50,000 2,000

Capacity 30 MB 32 MB 16 MB 4 GB 64 MB 32 MB NA 8 kB NA NA

Macro size 
(mm2)

NA NA 30 NA NA 2.5 NA NA NA NA

Cell size (F2) NA NA NA 4 (1S1M) NA NA 540 (high 
density)

NA 78 NA

Cell size (μm2) 0.061 0.0456 0.0242 0.002025 NA 0.033 0.0135 NA 0.038 1.18

Write voltage (V) 0.89–1.16 NA 1.8, 3.3 NA 1.65–2 0.72–0.88 0.9 0.8 <1 NA

Write current 
density (MA cm2)

NA NA NA NA NA NA NA 68 23 NA

Write pulse 
width (ns)

26 at 30 °C NA 100/50 30–200 NA NA 1.4 1 0.5 1

Read pulse 
width (ns)

NA 5.0–5.9 40/15 >30 NA <6 0.9 NA NA NA

Write endurance 
(cycles)

>1010 at 
105 °C

NA >1014 at 25 °C >106 NA >106 NA 7 × 1012 NA NA

Retention >1 s at 85 °C, 
45.1 years  
at 85 °C

NA 10 years  
at 89 °C

10 years  
at 90 °C

10 years 
at 105 °C

20 years 
at 150 °C

NA 24 h at 
160 °C

NA NA

CIM, compute-in-memory; eNVM, emerging non-volatile memory; MTJ, magnetic tunnel junction; NA, not available; 1S1M, one selector–one MTJ; SOT, spin-orbit torque; SOT-MRAM, spin-orbit 
torque magnetic random-access memory; STT, spin-transfer torque; STT-MRAM, spin-transfer torque magnetic random-access memory.
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Outlook
In this Review, a guide for future research efforts dedicated to the 
development of novel buffer memories for AI hardware accelerators, 
which may have ground-breaking impact on many cloud and edge AI 
applications, is reported and discussed. In particular, we survey those 
emerging devices that could replace the global buffer in AI hardware, 
traditionally based on SRAM. The memories are required to have fast 
access speed (<10 ns) and high endurance (>1012 cycles), and should be 
fabricated on BEOL or scaled down with logic technology.

Among the reported candidates, the continued industrial invest-
ment in ferroelectric (FeFETs and FeRAMs) and magnetic (STT-MRAMs 
and SOT-MRAMs) memories creates opportunities to tailor their 
specifications in terms of cycling endurance. Meanwhile, with the 
technological advancements in BEOL-compatible amorphous oxide 
semiconductor channel materials, the 2T gain cell is another promising 
candidate that would allow high data retention time.

These memory devices are suitable for AI hardware at the edge 
where stand-by scenarios benefit from low leakage. However, their 
high write energy should be improved to be more competitive for AI 
hardware in the cloud. Beyond the benchmarking and analysis pre-
sented here, the community is encouraged to perform the silicon 
implementation and prototyping of the proposed AI hardware designs 
with the emerging technologies.

Published online: 11 January 2024
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