Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering and direct imaging of nanocube self-assembly pathways

Abstract

Nanoparticle self-assembly offers a scalable and versatile means to fabricate next-generation materials. The prevalence of metastable and nonequilibrium states during the assembly process makes the final structure and function directly dependent upon formation pathways. However, it remains challenging to steer the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ. Here we use liquid-cell transmission electron microscopy to image complete self-assembly processes of gold nanocubes, a model shape-anisotropic nanocolloidal system, into distinct superlattices. Theoretical analysis and molecular dynamics simulations indicate that the electrostatic screening of the medium dictates self-assembly pathways by its effects on the interactions between nanocubes. We leverage this understanding to demonstrate on-the-fly control of assembly behavior through rapid solvent exchange. Our joint experiment–simulation–theory investigation paves the way for elucidating the relationships among building block attributes, assembly pathways and superstructures in nanoscale assembly and opens new avenues for the bottom-up design of reconfigurable and adaptive metamaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Charge screening controls the self-assembly phase behavior of gold nanocubes.
Fig. 2: Self-assembly pathway of gold nanocubes into the RB lattice.
Fig. 3: Self-assembly pathway of gold nanocubes into the HR lattice.
Fig. 4: Self-assembly pathway of gold nanocubes into the SQ lattice.
Fig. 5: Solvent-mediated, reversible structural transitions between the SQ and the RB phases.

Similar content being viewed by others

Data availability

The source data for the figures in the main text are available in Supplementary Information.

References

  1. Libbrecht, K. G. The physics of snow crystals. Rep. Prog. Phys. 68, 855–895 (2005).

    Article  Google Scholar 

  2. Sauter, A. et al. Real-time observation of nonclassical protein crystallization kinetics. J. Am. Chem. Soc. 137, 1485–1491 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Pogatscher, S. et al. Solid–solid phase transitions via melting in metals. Nat. Commun. 7, 11113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  PubMed  Google Scholar 

  5. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).

    Article  CAS  Google Scholar 

  7. Ye, X. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nat. Chem. 5, 466–473 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Choi, J.-H. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352, 205–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, H. et al. Clathrate colloidal crystals. Science 355, 931–935 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Alberstein, R., Suzuki, Y., Paesani, F. & Tezcan, F. A. Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly. Nat. Chem. 10, 732–739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bian, T. et al. Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures. Nat. Chem. 13, 940–949 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santos, P. J. et al. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Z., Fan, Q. & Yin, Y. Colloidal self-assembly approaches to smart nanostructured materials. Chem. Rev. 122, 4976–5067 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Coropceanu, I. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 375, 1422–1426 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y. et al. Structural diversity in dimension-controlled assemblies of tetrahedral gold nanocrystals. J. Am. Chem. Soc. 144, 13538–13546 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Han, H. et al. Multiscale hierarchical structures from a nanocluster mesophase. Nat. Mater. 21, 518–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Kumar, P. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. Controlled self-assembly of gold nanotetrahedra into quasicrystals and complex periodic supracrystals. J. Am. Chem. Soc. 145, 17902–17911 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, Q. N. et al. Colloidal synthesis of metal nanocrystals: from asymmetrical growth to symmetry breaking. Chem. Rev. 123, 3693–3760 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Silvera Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    Article  Google Scholar 

  23. Král, P. et al. Simulation methods for self-assembling nanoparticles. Prog. Mater. Sci. 142, 101225 (2024).

    Article  Google Scholar 

  24. Waltmann, T., Waltmann, C., Horst, N. & Travesset, A. Many body effects and icosahedral order in superlattice self-assembly. J. Am. Chem. Soc. 140, 8236–8245 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S., Teich, E. G., Engel, M. & Glotzer, S. C. Entropic colloidal crystallization pathways via fluid–fluid transitions and multidimensional prenucleation motifs. Proc. Natl. Acad. Sci. USA 116, 14843–14851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, T. H. & Liu, X. Y. How does a transient amorphous precursor template crystallization. J. Am. Chem. Soc. 129, 13520–13526 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Peng, Y. et al. Two-step nucleation mechanism in solid–solid phase transitions. Nat. Mater. 14, 101–108 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Ou, Z. et al. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zhong, Y. et al. Multistep crystallization of dynamic nanoparticle superlattices in nonaqueous solutions. J. Am. Chem. Soc. 144, 14915–14922 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, K., Bruinsma, R. & Mason, T. G. Entropic crystal–crystal transitions of Brownian squares. Proc. Natl Acad. Sci. USA 108, 2684–2687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shah, A. A. et al. Actuation of shape-memory colloidal fibres of Janus ellipsoids. Nat. Mater. 14, 117–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Rossi, L. et al. Shape-sensitive crystallization in colloidal superball fluids. Proc. Natl Acad. Sci. USA 112, 5286–5290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao, H.-G. et al. Facet development during platinum nanocube growth. Science 345, 916–919 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).

    Article  PubMed  Google Scholar 

  38. Ye, X. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 354, 874–877 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Sutter, E. et al. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 7, 11213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, G. et al. Linker-mediated self-assembly dynamics of charged nanoparticles. ACS Nano 10, 7443–7450 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Loh, N. D. et al. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 9, 77–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Tan, S. F. et al. Nanoparticle interactions guided by shape-dependent hydrophobic forces. Adv. Mater. 30, 1707077 (2018).

    Article  Google Scholar 

  43. Ianiro, A. et al. Liquid–liquid phase separation during amphiphilic self-assembly. Nat. Chem. 11, 320–328 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Song, M. et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 367, 40–45 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, B. H. et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 368, 60–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Woehl, T. J. & Prozorov, T. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C 119, 21261–21269 (2015).

    Article  CAS  Google Scholar 

  48. Zheng, H., Mirsaidov, U. M., Wang, L.-W. & Matsudaira, P. Electron beam manipulation of nanoparticles. Nano Lett. 12, 5644–5648 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. & Regan, B. C. Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 3695–3698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Woehl, T. J. et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 53–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, Y., Lin, X. M., Sun, Y. & Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 135, 3764–3767 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Chee, S. W. et al. Desorption-mediated motion of nanoparticles at the liquid–solid interface. J. Phys. Chem. C 120, 20462–20470 (2016).

    Article  CAS  Google Scholar 

  53. Avendaño, C. & Escobedo, F. A. Phase behavior of rounded hard-squares. Soft Matter 8, 4675–4681 (2012).

    Article  Google Scholar 

  54. Meijer, J.-M. et al. Convectively assembled monolayers of colloidal cubes: evidence of optimal packings. Langmuir 35, 4946–4955 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. van der Meer, B. et al. Revealing a vacancy analog of the crowdion interstitial in simple cubic crystals. Phys. Rev. Lett. 121, 258001 (2018).

    Article  PubMed  Google Scholar 

  56. Anderson, J. A., Glaser, J. & Glotzer, S. C. Hoomd-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).

    Article  CAS  Google Scholar 

  57. O’Brien, M. N., Jones, M. R., Brown, K. A. & Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 136, 7603–7606 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

X.Y. acknowledge support from the US National Science Foundation under grant numbers DMR-2102526 (nanocrystal synthesis) and CBET-2223453 (LCTEM imaging and data analysis). The theory, modeling and simulation work was supported by a CDS&E grant from the National Science Foundation (NSF), Division of Materials Research award no. DMR 2302470 (S.C.G.). Simulation work used NCSA Delta through allocation DMR 140129 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grant nos. 2138259, 2138286, 2138307, 2137603 and 2138296. Computational resources and services also provided by Advanced Research Computing (ARC), a division of Information and Technology Services (ITS) at the University of Michigan, Ann Arbor. T.D. acknowledges support from the National Science Foundation Graduate Research Fellowship through grant DGE-1256260.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and X.Y. designed the experiments. Y.Z., Y.W. and F.C. performed the experiments. Y.Z., T.C.M., T.D., A.B.-G., V.R.A., J.C. and X.Y. analyzed the experimental data. T.C.M., T.D. and S.C.G. designed the theoretical model and performed the simulations. Y.Z., T.C.M, T.D., J.C., S.C.G. and X.Y. wrote the manuscript. S.C.G. and X.Y. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Sharon C. Glotzer or Xingchen Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Taylor Woehl, Petra Kral and Ethayaraja Mani for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Table 1, Figs. 1–23, references and captions for Supplementary Movies 1–14.

Supplementary Video 1

Computational self-assembly of gold nanocubes into a SQ lattice. Particles are colored by their orientations. The animation spans a simulation timescale of 8.7 × 105\(\tau\).

Supplementary Video 2

Computational self-assembly of gold nanocubes into a RB lattice. Particles are colored by their orientations. The animation spans a simulation timescale of 1.38 × 106\(\tau\).

Supplementary Video 3

Computational self-assembly of gold nanocubes into a HR phase. Particles are colored by their orientations. The animation spans a simulation timescale of 9.8 × 105\(\tau\).

Supplementary Video 4

Self-assembly of gold nanocubes into the RB lattice. a, Raw LCTEM movie. bd, LCTEM movie frames with nanocubes colored according to their orientations (b), nanocube centroids colored according to |\({\psi }_{6j}\)| and all nearest-neighbors connected (c) and nanocube centroids colored according to \(|{\phi }_{4j}\)| (d). e,f, Radial distribution function g(r) plots (e) and FFT patterns of LCTEM movie frames (f). g, 2D scatter plots of the order parameters \(|{\psi }_{6j}|\) and \(|{\phi }_{4j}|\). h, Plots of ensemble-averaged local translational and orientational order parameters \(\left({\rm{\langle }}|{\psi }_{6j}|{\rm{\rangle }},\,{\rm{\langle }}|{\phi }_{4j}|{\rm{\rangle }}\right)\) versus time. Dose rate: 14.0 e Å−2 s−1. The frame rates are 15 fps (15 times faster than real time).

Supplementary Video 5

Movement of a twin boundary in the RB lattice through collective rotation of nanocubes. LCTEM movie frames with nanocubes colored according to their orientations (top) and nanocube centroids colored according to \(|{\psi }_{6j}|\) (bottom). Dose rate: 14.0 e Å−2 s−1. The frame rates are 5 fps (five times faster than real time).

Supplementary Video 6

Self-assembly of gold nanocubes into the HR lattice. a, Raw LCTEM movie. bd, LCTEM movie frames with nanocubes colored according to their orientations (b), nanocube centroids colored according to \(\left|{\psi }_{6j}\right|\) and all nearest-neighbors connected (c) and nanocube centroids colored according to \(\left|{\phi }_{4j}\right|\) (d). e,f, Radial distribution function g(r) plots (e) and FFT patterns of LCTEM movie frames (f). g, 2D scatter plots of the order parameters \(\left|{\psi }_{6j}\right|\) and \(\left|{\phi }_{4j}\right|\). h, Plots of ensemble-averaged local translational and orientational order parameters \(\left(\left\langle \left|{\psi }_{6j}\right|\right\rangle ,\,\left\langle \left|{\phi }_{4j}\right|\right\rangle \right)\) versus time. Dose rate: 14.0 e Å−2 s−1. The frame rates are 15 fps (15 times faster than real time).

Supplementary Video 7

Self-assembly of gold nanocubes into the SQ lattice. a, Raw LCTEM movie. bd, LCTEM movie frames with nanocubes colored according to their orientations (b), nanocube centroids colored according to \(\left|{\psi }_{4j}\right|\) and all nearest-neighbors connected (c) and nanocube centroids colored according to \(\left|{\phi }_{4j}\right|\) (d). e,f, Radial distribution function g(r) plots (e) and FFT patterns of LCTEM movie frames (f). g, 2D scatter plots of the order parameters \(\left|{\psi }_{4j}\right|\) and \(\left|{\phi }_{4j}\right|\). h, Plots of ensemble-averaged local translational and orientational order parameters \(\left(\left\langle \left|{\psi }_{4j}\right|\right\rangle ,\,\left\langle \left|{\phi }_{4j}\right|\right\rangle \right)\) versus time. Dose rate: 14.0 e Å−2 s−1. The frame rates are 15 fps (15 times faster than real time).

Supplementary Video 8

Detachment of the SQ superlattice from the Si3N4 window. Dose rate: 14.0 e Å−2 s−1. The frame rates are 15 fps (15 times faster than real time).

Supplementary Video 9

Vacancy formation and vacancy removal pathways for the HR, RB and SQ superlattices. Dose rate: 14.0 e Å−2 s−1 for all three movies. The frame rates are 5 fps (real time).

Supplementary Video 10

Solvent-mediated reversible structural transitions between the SQ and the RB phases. a, Raw LCTEM movie. bd, LCTEM movie frames with nanocubes colored according to their orientations (b), nanocube centroids colored according to \(\left|{\psi }_{6j}\right|\) and all nearest-neighbors connected (c) and nanocube centroids colored according to \(\left|{\phi }_{4j}\right|\) (d). e,f, Radial distribution function g(r) plots (e) and FFT patterns of LCTEM movie frames (f). g, 2D scatter plots of the order parameters \(\left|{\psi }_{6j}\right|\) and \(\left|{\phi }_{4j}\right|\). h, Plots of ensemble-averaged local translational and orientational order parameters \(\left(\left\langle \left|{\psi }_{6j}\right|\right\rangle ,\,\left\langle \left|{\phi }_{4j}\right|\right\rangle \right)\) versus time. Dose rate: 14.0 e Å−2 s−1. The frame rates are 15 fps (15 times faster than real time).

Supplementary Video 11

Simulated structural transition from the SQ lattice to the RB lattice induced by a change in the screening length. Particles are colored by their orientations. The animation spans a simulation timescale of 2.0 × 105\(\tau\).

Supplementary Video 12

Simulated structural transition from the RB lattice to the SQ lattice induced by a change in the screening length. Particles are colored by their orientations. The animation spans a simulation timescale of 2.0 × 105\(\tau\). Note that the time period between snapshots is not constant throughout the movie; the period between snapshots is \(\tau /\updelta t=10\) when \(\tau /\updelta t >\) 1,000, 10,000 when \(\text{1,000}\le \tau /\updelta t < 1\times {10}^{6}\), and 50,000 when \(\tau /\updelta t\ge 1\times {10}^{6}\).

Supplementary Video 13

Melting of the RB lattice induced by changing the solvent from medium-polarity (1:1 v/v octane:butanol) to low-polarity one (4:1 v/v octane:butanol). a, Raw LCTEM movie. bd, LCTEM movie frames with nanocubes colored according to their orientations (b), nanocube centroids colored according to \(\left|{\psi }_{6j}\right|\) and all nearest-neighbors connected (c) and nanocube centroids colored according to \(\left|{\phi }_{4j}\right|\) (d). e,f, Radial distribution function g(r) plots (e) and FFT patterns of LCTEM movie frames (f). g, 2D scatter plots of the order parameters \(\left|{\psi }_{6j}\right|\) and \(\left|{\phi }_{4j}\right|\). h, Plots of ensemble-averaged local translational and orientational order parameters \(\left(\left\langle \left|{\psi }_{6j}\right|\right\rangle ,\,\left\langle \left|{\phi }_{4j}\right|\right\rangle \right)\) versus time. Dose rate: 14.0 e Å−2 s−1. The frame rates are 15 fps (15 times faster than real time).

Supplementary Video 14

Structural transition from the SQ to the RB lattice induced by changing the solvent from high-polarity (butanol) to medium-polarity one (1:1 v/v octane:butanol). A different pathway from the one shown in Fig. 5 was observed that involved continuous lattice distortion through collective rotation of AuNCs without losing orientational order. Dose rate: 14.0 e Å−2 s−1. The frame rates are 15 fps (15 times faster than real time).

Supplementary Data 1

Source images for Figs. 1–5.

Source data

Source Data Fig. 1

Numerical data points for Fig. 1f (makers).

Source Data Fig. 2

Numerical data points for Fig. 2d–h.

Source Data Fig. 3

Numerical data points for Fig. 3c–g.

Source Data Fig. 4

Numerical data points for Fig. 4c,d,e,g,h.

Source Data Fig. 5

Numerical data points for Fig. 5c–g,i,k.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Moore, T.C., Dwyer, T. et al. Engineering and direct imaging of nanocube self-assembly pathways. Nat Chem Eng 1, 532–541 (2024). https://doi.org/10.1038/s44286-024-00102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00102-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing