Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective liquid-phase molecular sieving via thin metal–organic framework membranes with topological defects

Abstract

Separating fine and similarly sized targets in liquids is a crucial but challenging task. Although current membranes have the potential to be sustainable and energy-efficient options, their molecular selectivity and durability remain limited. Here we report robust and accurate molecular-sieving membranes created through the topological design of a Zr-based metal–organic framework, namely UiO-66, for use in durable liquid-phase separations. Our findings reveal that crystallizing UiO-66 using a bimetallic method yields distinctive reo-topology frameworks with periodic missing-cluster defects. We crystallize reo-UiO-66 into thin polycrystalline membranes that exhibit improved and robust performance, lasting for over 1,500 h. The modified Ferry transport model provides a quantitative description of solute rejection from the polycrystalline membrane. Multiple molecular-sieving experiments recognize excellent membrane selectivity to accurately discriminate fine complex mixtures with molecular weights below 350 g mol−1. In addition, our membrane demonstrates promise in purifying and recovering high-value pharmaceuticals and catalysts. This work paves the way for developing polycrystalline membrane technology for the sustainable separation of chemical mixtures in liquids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural determination of UiO-66.
Fig. 2: Structural characterization of UiO-66.
Fig. 3: Synthesis and characterization of UiO-66 membranes.
Fig. 4: Performance evaluation of UiO-66 membranes.
Fig. 5: Demonstration of the biUiO-66-200-0.2 membrane in practical applications.
Fig. 6: Demonstration of a tubular membrane module.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the main text and Supplementary Information. Source data are provided with this paper.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  PubMed  Google Scholar 

  2. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  4. Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    Article  PubMed  Google Scholar 

  5. Marchetti, P., Solomon, M. F. J., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Shen, L. et al. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Sci. Adv. 7, eabg6263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1-Å precision separation. Nat. Commun. 11, 2015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wen, Z., Pintossi, D., Nuno, M. & Noel, T. Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations. Nat. Commun. 13, 6147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sengupta, B. et al. Carbon-doped metal oxide interfacial nanofilms for ultrafast and precise separation of molecules. Science 381, 1098–1104 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Shi, X. et al. Design of three-dimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration. Angew. Chem. Int. Ed. 61, e202207559 (2022).

    Article  CAS  Google Scholar 

  15. Chisca, S. et al. Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science 376, 1105–1110 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Li, S. et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 377, 1555–1561 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. He, A. et al. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, T. F. et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat. Commun. 11, 5882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shinde, D. B. et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140, 14342–14349 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  CAS  Google Scholar 

  21. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, Z. et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 609, 58–64 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen, J. et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nat. Mater. 21, 1183–1190 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Knebel, A. & Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Yuan, S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, H. et al. Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun. 13, 7123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).

    Article  Google Scholar 

  29. Chen, S. et al. Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting. J. Am. Chem. Soc. 143, 9415–9422 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Cao, L. et al. Oriented two-dimensional covalent organic framework membranes with high ion flux and smart gating nanofluidic transport. Angew. Chem. Int. Ed. 61, e202113141 (2022).

    Article  CAS  Google Scholar 

  31. Fan, H. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burke, D. W., Jiang, Z., Livingston, A. G. & Dichtel, W. R. 2D covalent organic framework membranes for liquid-phase molecular separations: state of the field, common pitfalls and future opportunities. Adv. Mater. 36, 2300525 (2023).

    Article  Google Scholar 

  33. Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    Article  CAS  Google Scholar 

  34. Hou, Q., Zhou, S., Wei, Y., Caro, J. & Wang, H. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 142, 9582–9586 (2020).

    CAS  PubMed  Google Scholar 

  35. Zhou, S. et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706–712 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, X. L., Demir, N. K., Wu, Z. T. & Li, K. Highly water-stable zirconium metal organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Jeong, G.-Y. et al. Metal–organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nat. Commun. 9, 3968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shangkum, G. Y., Chammingkwan, P., Trinh, D. X. & Taniike, T. Design of a semi-continuous selective layer based on deposition of UiO-66 nanoparticles for nanofiltration. Membranes 8, 129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, X. Metal-organic framework UiO-66 membranes. Front. Chem. Sci. Eng. 14, 216–232 (2020).

    Article  CAS  Google Scholar 

  41. Li, W. et al. Ultrathin metal–organic framework membrane production by gel-vapour deposition. Nat. Commun. 8, 406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee, T. H. et al. Disclosing the role of defect-engineered metal-organic frameworks in mixed matrix membranes for efficient CO2 separation: a joint experimental-computational exploration. Adv. Funct. Mater. 31, 2103973 (2021).

    Article  CAS  Google Scholar 

  43. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  PubMed  Google Scholar 

  44. Tan, K. et al. Defect termination in the UiO-66 family of metal-organic frameworks: the role of water and modulator. J. Am. Chem. Soc. 143, 6328–6332 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Feng, L. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 140, 2363–2372 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Feng, X. et al. Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66. J. Am. Chem. Soc. 143, 21511–21518 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, T. H. et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem. Int. Ed. 60, 13081–13088 (2021).

    Article  CAS  Google Scholar 

  48. Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metal-organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).

    Article  CAS  Google Scholar 

  49. Liu, L. M. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, S. et al. Stable metal–organic frameworks: design, synthesis and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  51. Li, X. Y. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal–organic framework channels. Nat. Commun. 10, 2490 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal–organic frameworks. Adv. Mater. 30, 1704501 (2018).

    Article  Google Scholar 

  53. Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016).

    Article  CAS  Google Scholar 

  54. Mukhopadhyay, S. et al. Assembly of a metal–organic framework (MOF) membrane on a solid electrocatalyst: introducing molecular-level control over heterogeneous CO2 reduction. Angew. Chem. Int. Ed. 60, 13423–13429 (2021).

    Article  CAS  Google Scholar 

  55. Cai, Y. H. et al. Polycrystalline zirconium metal–organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. J. Membr. Sci. 615, 118551 (2020).

    Article  CAS  Google Scholar 

  56. Wang, X. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Teesdale, J. J., Lee, M. J., Lu, R. X. & Smith, Z. P. Uncertainty in composite membranes: from defect engineering to film processing. J. Am. Chem. Soc. 145, 830–840 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, D., Han, G., Gao, Z. F. & Chen, S. B. Continuous UiO-66-type metal-organic framework thin film on polymeric support for organic solvent nanofiltration. ACS Appl. Mater. Interfaces 11, 45290–45300 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Geens, J., Boussu, K., Vandecasteele, C. & Van der Bruggen, B. Modelling of solute transport in non-aqueous nanofiltration. J. Membr. Sci. 281, 139–148 (2006).

    Article  CAS  Google Scholar 

  60. Geens, J., Hillen, A., Bettens, B., Van der Bruggen, B. & Vandecasteele, C. Solute transport in non-aqueous nanofiltration: effect of membrane material. J. Chem. Technol. Biotechnol. 80, 1371–1377 (2005).

    Article  CAS  Google Scholar 

  61. Zhang, Y. Q. et al. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Mater. Today 36, 40–47 (2020).

    Article  Google Scholar 

  62. Wang, Z. et al. Polymer membranes for organic solvent nanofiltration: recent progress, challenges and perspectives. Adv. Membr. 3, 100063 (2023).

    Article  Google Scholar 

  63. Wang, C. H., Liu, X. L., Demir, N. K., Chen, J. P. & Li, K. Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Liang, B., He, X., Hou, J. J., Li, L. S. & Tang, Z. Y. Membrane separation in organic liquid: technologies, achievements and opportunities. Adv. Mater. 31, 1806090 (2019).

    Article  CAS  Google Scholar 

  65. Wang, H. J. et al. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50, 5468–5516 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Hou, J., Zhang, H. C., Simon, G. P. & Wang, H. T. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Adv. Mater. 32, 1902009 (2020).

    Article  CAS  Google Scholar 

  67. Chen, J. F. et al. An endogenous H2S-activated nanoplatform for triple synergistic therapy of colorectal cancer. Nano Lett. 22, 6156–6165 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Wu, M. B. et al. Lysozyme membranes promoted by hydrophobic substrates for ultrafast and precise organic solvent nanofiltration. Nano Lett. 20, 8760–8767 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Zeman, L. & Wales, M. Steric rejection of polymeric solutes by membranes with uniform pore size distribution. Sep. Sci. Technol. 16, 275–290 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Industrial Technology Research Institute and Nanjing Tech University Membrane Application Institute Co. (2020-2210, D.Z.), the Ministry of Education–Singapore (MOE2019-T2-1-093 and MOE-T2EP10122-0002, D.Z.), the Energy Market Authority of Singapore (EMA-EP009-SEGC-020, D.Z.), the Agency for Science, Technology and Research (U2102d2004 and U2102d2012, D.Z.) and the National Research Foundation Singapore (NRF-CRP26-2021RS-0002 and NRF-NRFI08-2022-0008, D.Z.).

Author information

Authors and Affiliations

Authors

Contributions

D.Z. formulated and supervised the project. X.S. synthesized and characterized the materials, measured the adsorption isotherms and the separation performance, and wrote the manuscript. H.L. performed the modeling studies. T.C., Y.D. and D.S. contributed to performance evaluation. C.K. and Z.Z. contributed to the structural analysis and discussion. All authors contributed to manuscript revision.

Corresponding author

Correspondence to Dan Zhao.

Ethics declarations

Competing interests

A patent has been filed by the National University of Singapore based on the present results (SG patent application no. 10202400312P).

Peer review

Peer review information

Nature Chemical Engineering thanks Kiwon Eum, Suzana Nunes and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental details, Discussion, Figs. 1–56 and Tables 1–7.

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 6

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Li, H., Chen, T. et al. Selective liquid-phase molecular sieving via thin metal–organic framework membranes with topological defects. Nat Chem Eng 1, 483–493 (2024). https://doi.org/10.1038/s44286-024-00096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00096-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing