Abstract
Separating fine and similarly sized targets in liquids is a crucial but challenging task. Although current membranes have the potential to be sustainable and energy-efficient options, their molecular selectivity and durability remain limited. Here we report robust and accurate molecular-sieving membranes created through the topological design of a Zr-based metal–organic framework, namely UiO-66, for use in durable liquid-phase separations. Our findings reveal that crystallizing UiO-66 using a bimetallic method yields distinctive reo-topology frameworks with periodic missing-cluster defects. We crystallize reo-UiO-66 into thin polycrystalline membranes that exhibit improved and robust performance, lasting for over 1,500 h. The modified Ferry transport model provides a quantitative description of solute rejection from the polycrystalline membrane. Multiple molecular-sieving experiments recognize excellent membrane selectivity to accurately discriminate fine complex mixtures with molecular weights below 350 g mol−1. In addition, our membrane demonstrates promise in purifying and recovering high-value pharmaceuticals and catalysts. This work paves the way for developing polycrystalline membrane technology for the sustainable separation of chemical mixtures in liquids.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the findings of this study are available in the main text and Supplementary Information. Source data are provided with this paper.
References
Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).
Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).
Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).
Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).
Marchetti, P., Solomon, M. F. J., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).
Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).
Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).
Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).
Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).
Shen, L. et al. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Sci. Adv. 7, eabg6263 (2021).
Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1-Å precision separation. Nat. Commun. 11, 2015 (2020).
Wen, Z., Pintossi, D., Nuno, M. & Noel, T. Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations. Nat. Commun. 13, 6147 (2022).
Sengupta, B. et al. Carbon-doped metal oxide interfacial nanofilms for ultrafast and precise separation of molecules. Science 381, 1098–1104 (2023).
Shi, X. et al. Design of three-dimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration. Angew. Chem. Int. Ed. 61, e202207559 (2022).
Chisca, S. et al. Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science 376, 1105–1110 (2022).
Li, S. et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 377, 1555–1561 (2022).
He, A. et al. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022).
Huang, T. F. et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat. Commun. 11, 5882 (2020).
Shinde, D. B. et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140, 14342–14349 (2018).
Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).
Jiang, Z. et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 609, 58–64 (2022).
Shen, J. et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nat. Mater. 21, 1183–1190 (2022).
Knebel, A. & Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022).
Yuan, S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).
Wang, H. et al. Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun. 13, 7123 (2022).
Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).
Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).
Chen, S. et al. Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting. J. Am. Chem. Soc. 143, 9415–9422 (2021).
Cao, L. et al. Oriented two-dimensional covalent organic framework membranes with high ion flux and smart gating nanofluidic transport. Angew. Chem. Int. Ed. 61, e202113141 (2022).
Fan, H. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).
Burke, D. W., Jiang, Z., Livingston, A. G. & Dichtel, W. R. 2D covalent organic framework membranes for liquid-phase molecular separations: state of the field, common pitfalls and future opportunities. Adv. Mater. 36, 2300525 (2023).
Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).
Hou, Q., Zhou, S., Wei, Y., Caro, J. & Wang, H. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 142, 9582–9586 (2020).
Zhou, S. et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706–712 (2022).
Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).
Liu, X. L., Demir, N. K., Wu, Z. T. & Li, K. Highly water-stable zirconium metal organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).
Jeong, G.-Y. et al. Metal–organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nat. Commun. 9, 3968 (2018).
Shangkum, G. Y., Chammingkwan, P., Trinh, D. X. & Taniike, T. Design of a semi-continuous selective layer based on deposition of UiO-66 nanoparticles for nanofiltration. Membranes 8, 129 (2018).
Liu, X. Metal-organic framework UiO-66 membranes. Front. Chem. Sci. Eng. 14, 216–232 (2020).
Li, W. et al. Ultrathin metal–organic framework membrane production by gel-vapour deposition. Nat. Commun. 8, 406 (2017).
Lee, T. H. et al. Disclosing the role of defect-engineered metal-organic frameworks in mixed matrix membranes for efficient CO2 separation: a joint experimental-computational exploration. Adv. Funct. Mater. 31, 2103973 (2021).
Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).
Tan, K. et al. Defect termination in the UiO-66 family of metal-organic frameworks: the role of water and modulator. J. Am. Chem. Soc. 143, 6328–6332 (2021).
Feng, L. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 140, 2363–2372 (2018).
Feng, X. et al. Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66. J. Am. Chem. Soc. 143, 21511–21518 (2021).
Lee, T. H. et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem. Int. Ed. 60, 13081–13088 (2021).
Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metal-organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).
Liu, L. M. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).
Yuan, S. et al. Stable metal–organic frameworks: design, synthesis and applications. Adv. Mater. 30, 1704303 (2018).
Li, X. Y. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal–organic framework channels. Nat. Commun. 10, 2490 (2019).
Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal–organic frameworks. Adv. Mater. 30, 1704501 (2018).
Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016).
Mukhopadhyay, S. et al. Assembly of a metal–organic framework (MOF) membrane on a solid electrocatalyst: introducing molecular-level control over heterogeneous CO2 reduction. Angew. Chem. Int. Ed. 60, 13423–13429 (2021).
Cai, Y. H. et al. Polycrystalline zirconium metal–organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. J. Membr. Sci. 615, 118551 (2020).
Wang, X. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).
Teesdale, J. J., Lee, M. J., Lu, R. X. & Smith, Z. P. Uncertainty in composite membranes: from defect engineering to film processing. J. Am. Chem. Soc. 145, 830–840 (2023).
Ma, D., Han, G., Gao, Z. F. & Chen, S. B. Continuous UiO-66-type metal-organic framework thin film on polymeric support for organic solvent nanofiltration. ACS Appl. Mater. Interfaces 11, 45290–45300 (2019).
Geens, J., Boussu, K., Vandecasteele, C. & Van der Bruggen, B. Modelling of solute transport in non-aqueous nanofiltration. J. Membr. Sci. 281, 139–148 (2006).
Geens, J., Hillen, A., Bettens, B., Van der Bruggen, B. & Vandecasteele, C. Solute transport in non-aqueous nanofiltration: effect of membrane material. J. Chem. Technol. Biotechnol. 80, 1371–1377 (2005).
Zhang, Y. Q. et al. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Mater. Today 36, 40–47 (2020).
Wang, Z. et al. Polymer membranes for organic solvent nanofiltration: recent progress, challenges and perspectives. Adv. Membr. 3, 100063 (2023).
Wang, C. H., Liu, X. L., Demir, N. K., Chen, J. P. & Li, K. Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016).
Liang, B., He, X., Hou, J. J., Li, L. S. & Tang, Z. Y. Membrane separation in organic liquid: technologies, achievements and opportunities. Adv. Mater. 31, 1806090 (2019).
Wang, H. J. et al. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50, 5468–5516 (2021).
Hou, J., Zhang, H. C., Simon, G. P. & Wang, H. T. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Adv. Mater. 32, 1902009 (2020).
Chen, J. F. et al. An endogenous H2S-activated nanoplatform for triple synergistic therapy of colorectal cancer. Nano Lett. 22, 6156–6165 (2022).
Wu, M. B. et al. Lysozyme membranes promoted by hydrophobic substrates for ultrafast and precise organic solvent nanofiltration. Nano Lett. 20, 8760–8767 (2020).
Zeman, L. & Wales, M. Steric rejection of polymeric solutes by membranes with uniform pore size distribution. Sep. Sci. Technol. 16, 275–290 (1981).
Acknowledgements
This work was supported by Jiangsu Industrial Technology Research Institute and Nanjing Tech University Membrane Application Institute Co. (2020-2210, D.Z.), the Ministry of Education–Singapore (MOE2019-T2-1-093 and MOE-T2EP10122-0002, D.Z.), the Energy Market Authority of Singapore (EMA-EP009-SEGC-020, D.Z.), the Agency for Science, Technology and Research (U2102d2004 and U2102d2012, D.Z.) and the National Research Foundation Singapore (NRF-CRP26-2021RS-0002 and NRF-NRFI08-2022-0008, D.Z.).
Author information
Authors and Affiliations
Contributions
D.Z. formulated and supervised the project. X.S. synthesized and characterized the materials, measured the adsorption isotherms and the separation performance, and wrote the manuscript. H.L. performed the modeling studies. T.C., Y.D. and D.S. contributed to performance evaluation. C.K. and Z.Z. contributed to the structural analysis and discussion. All authors contributed to manuscript revision.
Corresponding author
Ethics declarations
Competing interests
A patent has been filed by the National University of Singapore based on the present results (SG patent application no. 10202400312P).
Peer review
Peer review information
Nature Chemical Engineering thanks Kiwon Eum, Suzana Nunes and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary experimental details, Discussion, Figs. 1–56 and Tables 1–7.
Source data
Source Data Fig. 1
Statistical source data
Source Data Fig. 2
Statistical source data
Source Data Fig. 3
Statistical source data
Source Data Fig. 4
Statistical source data
Source Data Fig. 5
Statistical source data
Source Data Fig. 6
Statistical source data
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shi, X., Li, H., Chen, T. et al. Selective liquid-phase molecular sieving via thin metal–organic framework membranes with topological defects. Nat Chem Eng 1, 483–493 (2024). https://doi.org/10.1038/s44286-024-00096-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44286-024-00096-4