Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determining photon flux and effective optical path length in intensified flow photoreactors

Abstract

Photocatalysis for small-molecule activation has advanced considerably over the past decade, yet its scale-up remains challenging in part due to photon attenuation effects. One promising solution lies in combining high photonic intensities with continuous-flow reactor technology, requiring careful understanding of photon transport for successful implementation. Here, to address this, we introduce a characterization approach, starting with radiometric light source analysis, followed by three-dimensional reactor and light source simulation. This strategy, when followed up with chemical actinometry experiments, decouples photon flux quantification and path length determination, substantially curtailing the experimental process. The workflow proves versatile across various reactor systems, simplifying intricate light interactions into a single one-dimensional parameter—the effective optical path length. This parameter effectively characterizes photoreactor setups, irrespective of scale, geometry, light intensity or concentration. Additionally, the proposed workflow provides insight into light source positioning and reactor design, and facilitates experiments at lower concentrations, ensuring representative reactor operation. In essence, our approach provides a thorough, efficient and consistent framework for reactor irradiation characterization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the proposed workflow.
Fig. 2: Overview of the validation of the workflow results using a batch setup.
Fig. 3: Overview of the results for the microcapillary reactor.
Fig. 4: Overview of the results for the pRS-SDR.

Similar content being viewed by others

Data availability

The authors declare that all data obtained and used in this work are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible‐light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    Article  CAS  Google Scholar 

  2. Ravelli, D., Dondi, D., Fagnoni, M. & Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 38, 1999–2011 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, J., Lu, L., Wood, D. & Lin, S. New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent. Sci. 6, 1317–1340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crisenza, G. E. M. & Melchiorre, P. Chemistry glows green with photoredox catalysis. Nat. Commun. 11, 803 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Candish, L. et al. Photocatalysis in the life science industry. Chem. Rev. 122, 2907–2980 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Donnelly, K. & Baumann, M. Scalability of photochemical reactions in continuous flow mode. J. Flow Chem. 11, 223–241 (2021).

    Article  CAS  Google Scholar 

  7. Buglioni, L., Raymenants, F., Slattery, A., Zondag, S. D. A. & Noël, T. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 122, 2752–2906 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Zondag, S. D. A., Mazzarella, D. & Noël, T. Scale-up of photochemical reactions: transitioning from lab scale to industrial production. Annu. Rev. Chem. Biomol. Eng. 14, 283–300 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Corcoran, E. B., McMullen, J. P., Lévesque, F., Wismer, M. K. & Naber, J. R. Photon equivalents as a parameter for scaling photoredox reactions in flow: translation of photocatalytic C–N cross-coupling from lab scale to multikilogram scale. Angew. Chem. Int. Ed. 59, 11964–11968 (2020).

    Article  CAS  Google Scholar 

  10. Su, Y., Straathof, N. J. W., Hessel, V. & Noël, T. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications. Chemistry 20, 10562–10589 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Wong, K.-L., Bünzli, J.-C. G. & Tanner, P. A. Quantum yield and brightness. J. Lumin. 224, 117256 (2020).

    Article  CAS  Google Scholar 

  12. Hatchard, C. G. & Parker, C. A. A new sensitive chemical actinometer—II. Potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. Lond. Ser. A 235, 518–536 (1956).

    Article  CAS  Google Scholar 

  13. Wriedt, B. & Ziegenbalg, D. Common pitfalls in chemical actinometry. J. Flow Chem. 10, 295–306 (2020).

    Article  Google Scholar 

  14. Radjagobalou, R. et al. A revised 1D equivalent model for the determination of incident photon flux density in a continuous-flow LED-driven spiral-shaped microreactor using the actinometry method with Reinecke’s salt. J. Flow Chem. 11, 357–367 (2021).

    Article  CAS  Google Scholar 

  15. Noël, T. Photochemical Processes in Continuous-Flow Reactors (World Scientific, 2017).

  16. Roibu, A. et al. An accessible visible-light actinometer for the determination of photon flux and optical pathlength in flow photo microreactors. Sci. Rep. 8, 5421 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Megerle, U., Lechner, R., König, B. & Riedle, E. Laboratory apparatus for the accurate, facile and rapid determination of visible light photoreaction quantum yields. Photochem. Photobiol. Sci. 9, 1400–1406 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Cismesia, M. A. & Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 6, 5426–5434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scaiano, J. C. A beginners guide to understanding the mechanisms of photochemical reactions: things you should know if light is one of your reagents. Chem. Soc. Rev. 52, 6330–6343 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Swierk, J. R. The cost of quantum yield. Org. Process Res. Dev. 27, 1411–1419 (2023).

    Article  CAS  Google Scholar 

  21. Braslavsky, S. E. et al. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC recommendations 2011). Pure Appl. Chem. 83, 931–1014 (2011).

    Article  CAS  Google Scholar 

  22. Noël, T. & Zysman-Colman, E. The promise and pitfalls of photocatalysis for organic synthesis. Chem Catal. 2, 468–476 (2022).

    Article  Google Scholar 

  23. Maafi, M. & Brown, R. G. The kinetic model for AB(1ϕ) systems. J. Photochem. Photobiol. A 187, 319–324 (2007).

    Article  CAS  Google Scholar 

  24. Wriedt, B. & Ziegenbalg, D. Application limits of the ferrioxalate actinometer. ChemPhotoChem 5, 947–956 (2021).

    Article  CAS  Google Scholar 

  25. Sambiagio, C. & Noël, T. Flow photochemistry: shine some light on those tubes! Trends Chem. 2, 92–106 (2020).

    Article  CAS  Google Scholar 

  26. Williams, J. D. & Kappe, C. O. Recent advances toward sustainable flow photochemistry. Curr. Opin. Green Sustain. Chem. 25, 100351 (2020).

    Article  Google Scholar 

  27. Loubière, K., Oelgemöller, M., Aillet, T., Dechy-Cabaret, O. & Prat, L. Continuous-flow photochemistry: a need for chemical engineering. Chem. Eng. Process. Process Intensif. 104, 120–132 (2016).

    Article  Google Scholar 

  28. De Risi, C. et al. Recent advances in continuous-flow organocatalysis for process intensification. React. Chem. Eng. 5, 1017–1052 (2020).

    Article  Google Scholar 

  29. Russo, D. et al. Direct photolysis of benzoylecgonine under UV irradiation at 254nm in a continuous flow microcapillary array photoreactor. Chem. Eng. J. 283, 243–250 (2016).

    Article  CAS  Google Scholar 

  30. Lee, D. S. et al. Scalable continuous vortex reactor for gram to kilo scale for UV and visible photochemistry. Org. Process Res. Dev. 24, 201–206 (2020).

    Article  CAS  Google Scholar 

  31. Chaudhuri, A. et al. Process intensification of a photochemical oxidation reaction using a rotor–stator spinning disk reactor: a strategy for scale up. Chem. Eng. J. 400, 125875 (2020).

    Article  CAS  Google Scholar 

  32. Wen, Z. et al. Optimization of a decatungstate-catalyzed C(sp3)–H alkylation using a continuous oscillatory millistructured photoreactor. Org. Process Res. Dev. 24, 2356–2361 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wan, T. et al. Accelerated and scalable C(sp3)–H amination via decatungstate photocatalysis using a flow photoreactor equipped with high-intensity LEDs. ACS Cent. Sci. 8, 51–56 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Wriedt, B., Kowalczyk, D. & Ziegenbalg, D. Experimental determination of photon fluxes in multilayer capillary photoreactors. ChemPhotoChem 2, 913–921 (2018).

    Article  CAS  Google Scholar 

  35. Vandekerckhove, B., Piens, N., Metten, B., Stevens, C. V. & Heugebaert, T. S. A. Practical ferrioxalate actinometry for the determination of photon fluxes in production-oriented photoflow reactors. Org. Process Res. Dev. 26, 2392–2402 (2022).

    Article  CAS  Google Scholar 

  36. Sender, M., Wriedt, B. & Ziegenbalg, D. Radiometric measurement techniques for in-depth characterization of photoreactors—part 1: 2 dimensional radiometry. React. Chem. Eng. 6, 1601–1613 (2021).

    Article  CAS  Google Scholar 

  37. Roibu, A., Mc Carogher, K., Morthala, R. B., Eyckens, R. & Kuhn, S. Modelling approaches to predict light absorption in gas-liquid flow photosensitized oxidations. Chem. Eng. J. 452, 139272 (2023).

    Article  CAS  Google Scholar 

  38. Cornet, J.-F. et al. A simple and reliable method to determine mean incident light flux densities on cylindrical photoreactors and photobioreactors from a unique fluence rate measurement. Ind. Eng. Chem. Res. 62, 4875–4884 (2023).

    Article  CAS  Google Scholar 

  39. Yaghmaei, M. & Scaiano, J. C. A simple Norrish type II actinometer for flow photoreactions. Photochem. Photobiol. Sci. 1, 1865–1874 (2023).

    Article  Google Scholar 

  40. Aillet, T., Loubiere, K., Dechy-Cabaret, O. & Prat, L. Accurate measurement of the photon flux received inside two continuous flow microphotoreactors by actinometry. Int. J. Chem. React. Eng. 12, 257–269 (2014).

    Article  Google Scholar 

  41. Cambié, D., Zhao, F., Hessel, V., Debije, M. G. & Noël, T. Every photon counts: understanding and optimizing photon paths in luminescent solar concentrator-based photomicroreactors (LSC-PMs). React. Chem. Eng. 2, 561–566 (2017).

    Article  Google Scholar 

  42. Kant, P. et al. Isophotonic reactor for the precise determination of quantum yields in gas, liquid, and multi-phase photoreactions. Chem. Eng. J. 452, 139204 (2023).

    Article  CAS  Google Scholar 

  43. de Oliveira, G. X., Kuhn, S., Riella, H. G., Soares, C. & Padoin, N. Combining computational fluid dynamics, photon fate simulation and machine learning to optimize continuous-flow photocatalytic systems. React. Chem. Eng. 8, 2119–2133 (2023).

    Article  Google Scholar 

  44. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science. 366, 364–369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Rabani, J., Mamane, H., Pousty, D. & Bolton, J. R. Practical chemical actinometry—a review. Photochem. Photobiol. 97, 873–902 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Plutschack, M. B., Pieber, B., Gilmore, K. & Seeberger, P. H. The Hitchhiker’s guide to flow chemistry. Chem. Rev. 117, 11796–11893 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Neyt, N. C. & Riley, D. L. Application of reactor engineering concepts in continuous flow chemistry: a review. React. Chem. Eng. 6, 1295–1326 (2021).

    Article  CAS  Google Scholar 

  49. Chaudhuri, A. et al. Kinetics and intensification of tertiary amine N-oxidation: towards a solventless, continuous and sustainable process. Chem. Eng. J. 416, 128962 (2021).

    Article  CAS  Google Scholar 

  50. Chaudhuri, A., Zondag, S. D. A., Schuurmans, J. H. A., van der Schaaf, J. & Noël, T. Scale-up of a heterogeneous photocatalytic degradation using a photochemical rotor–stator spinning disk reactor. Org. Process Res. Dev. 26, 1279–1288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Beer, M. M. M., Keurentjes, J. T. F. T. F., Schouten, J. C. C. & van der Schaaf, J. Engineering model for single-phase flow in a multi-stage rotor–stator spinning disc reactor. Chem. Eng. J. 242, 53–61 (2014).

    Article  Google Scholar 

  52. de Beer, M. M., Pezzi Martins Loane, L., Keurentjes, J. T. F., Schouten, J. C. & van der Schaaf, J. Single phase fluid-stator heat transfer in a rotor–stator spinning disc reactor. Chem. Eng. Sci. 119, 88–98 (2014).

    Article  Google Scholar 

  53. Rochatte, V. et al. Radiative transfer approach using Monte Carlo method for actinometry in complex geometry and its application to Reinecke salt photodissociation within innovative pilot-scale photo(bio)reactors. Chem. Eng. J. 308, 940–953 (2017).

    Article  CAS  Google Scholar 

  54. Kowalczyk, D., Knorr, G., Peneva, K. & Ziegenbalg, D. Making photocatalysts screenable—a milliscale multi-batch screening photoreactor as extension for the modular photoreactor. React. Chem. Eng. 8, 2967–2983 (2023).

    Article  CAS  Google Scholar 

  55. Kuhn, H. J., Braslavsky, S. E. & Schmidt, R. Chemical actinometry (IUPAC Technical Report). Pure Appl. Chem. 76, 2105–2146 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the molecular photonics group (Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam) for using the darkroom and to M. G. Debije (Eindhoven University of Technology) for his assistance with the radiometric measurements. S.D.A.Z., J.H.A.S. and T.N. thank the European Union’s Horizon research and innovation program FlowPhotoChem (S.D.A.Z. and T.N.), grant number 862453 and CATART (J.H.A.S. and T.N.), grant agreement number 101046836. A.C. thanks Janssen Pharmaceutica NV for research funding. C.S. and N.P. thank the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil, grant number 88887.310560/2018-00) and the National Council for Scientific and Technological Development (CNPq, Brazil, grant numbers 313202/2021-4 and 312247/2022-2) for funding. The materials presented and views expressed here are the responsibility of the author(s) only. The EU Commission takes no responsibility for any use made of the information set out.

Author information

Authors and Affiliations

Authors

Contributions

S.D.A.Z., J.H.A.S. and A.C. designed the project. S.D.A.Z., J.H.A.S., A.C. and R.P.L.V. performed and analyzed the experiments. S.D.A.Z. performed the ray-tracing simulations, with supervision and input from C.S. and N.P. Additionally, C.S., N.P., K.P.L.K. and M.D. provided input and participated in discussions throughout the course of the project. J.v.d.S. and T.N. directed the project. S.D.A.Z., J.H.A.S. and T.N. wrote the paper with input and feedback from all authors.

Corresponding authors

Correspondence to John van der Schaaf or Timothy Noël.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Visualization of the light intensity according to the Bouguer-Lambert-Beer law.

a) Visualization of a photon-efficient system with negligible transmittance. b) Visualization of a non-photon-efficient system with substantial transmittance.

Extended Data Fig. 2 Detailed visualization of the workflow for the batch configuration.

An overview of how the workflow is used to validate the simulated photon flux for the photon-efficient batch configuration. Details on the light source properties and light source model can be found in Section 2 of the Supplementary Information.

Extended Data Fig. 3 Detailed visualization of the workflow for the microcapillary configuration.

An overview of how the workflow is used to determine the effective optical path length through photon flux simulation and chemical actinometry for the microcapillary configuration. Details on the light source properties and light source model can be found in Section 2 of the Supplementary Information.

Extended Data Fig. 4 Detailed visualization of the workflow for the pRS-SDR configuration.

An overview of how the workflow is used to determine the effective optical path length through photon flux simulation and chemical actinometry for the pRS-SDR configuration. Details on the light source properties and light source model can be found in Section 2 of the Supplementary Information.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Table 1 and Sections 1–13.

Supplementary Data 1

Statistical source data for Supplementary Figs. 4, 5 and 7–10.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zondag, S.D.A., Schuurmans, J.H.A., Chaudhuri, A. et al. Determining photon flux and effective optical path length in intensified flow photoreactors. Nat Chem Eng 1, 462–471 (2024). https://doi.org/10.1038/s44286-024-00089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00089-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing