Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface sieving carbon skins for propylene and propane separation

Abstract

The adsorptive separation of olefin/paraffin mixtures requires the development of robust adsorbents with high selectivity and adsorption capacity. Here we introduce surface sieving carbon adsorbents for propylene/propane separations. The surface sieving carbon skins, with a thickness of approximately 5.0 nm, selectively sieve propylene through narrow slits centered at 3.6 Å. Underneath the carbon skin lies a pore reservoir centered at 4.9 Å, resulting in a high propylene adsorption capacity of ~2.0 mmol g−1. Such carbon structures readily self-assemble into water-stable and robust monoliths with highly interconnected macropores for efficient mass transfer. These structural advantages collectively contribute to the high propylene/propane separation performance of the surface sieving carbon even after boiling in water for a week. Process simulations reveal that, using this adsorbent class, 99.5% and 99.9% purity of propylene with the according recovery of 82% and 79% can be obtained from an equimolar propylene/propane mixture through a two-bed six-step vacuum swing adsorption process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations of surface SCS.
Fig. 2: Adsorption thermodynamics and column breakthrough data.
Fig. 3: Adsorption kinetics and separation mechanisms.
Fig. 4: Breakthrough performance and two-bed VPSA and VSA simulation.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Source data are provided with this paper.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  PubMed  Google Scholar 

  2. Yang, L. et al. Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 49, 5359–5406 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Cui, W., Hu, T. & Bu, X. Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater. 32, 1806445 (2020).

    Article  CAS  Google Scholar 

  4. Wang, H., Liu, Y. & Li, J. Designer metal–organic frameworks for size‐exclusion‐based hydrocarbon separations: progress and challenges. Adv. Mater. 32, 2002603 (2020).

    Article  CAS  Google Scholar 

  5. Bereciartua, P. J. et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358, 1068–1071 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Xie, Y. et al. Optimal binding affinity for sieving separation of propylene from propane in an oxyfluoride anion-based metal–organic framework. J. Am. Chem. Soc. 145, 2386–2394 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Liang, B. et al. An ultramicroporous metal–organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 142, 17795–17801 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, M.-H. et al. Enhanced gas uptake in a microporous metal–organic framework via a sorbate induced-fit mechanism. J. Am. Chem. Soc. 141, 17703–17712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Y. et al. Selective aerobic oxidation of a metal–organic framework boosts thermodynamic and kinetic propylene/propane selectivity. Angew. Chem. Int. Ed. 58, 7692–7696 (2019).

    Article  CAS  Google Scholar 

  10. Wang, Y.-S. et al. “Mortar-and-cobblestone” type carbon pellets with interlinked C3H6-philic domains and mesoporous transport channels for propylene/propane separation. Sep. Purif. Technol. 305, 122436 (2023).

    Article  CAS  Google Scholar 

  11. Richter, H. et al. High-flux carbon molecular sieve membranes for gas separation. Angew. Chem. Int. Ed. 56, 7760–7763 (2017).

    Article  CAS  Google Scholar 

  12. Du, S. et al. Probing sub-5 ångström micropores in carbon for precise light olefin/paraffin separation. Nat. Commun. 14, 1197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y.-S. et al. Recent advances in carbon-based adsorbents for adsorptive separation of light hydrocarbons. Research 2022, 9780864 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kyotani, T. Control of pore structure in carbon. Carbon 38, 269–286 (2000).

    Article  CAS  Google Scholar 

  15. Grande, C. A. et al. Carbon molecular sieves for hydrocarbon separations by adsorption. Ind. Eng. Chem. Res. 44, 7218–7227 (2005).

    Article  CAS  Google Scholar 

  16. Liu, J. et al. Carbon molecular sieve fiber with 3.4–4.9 ångström effective micropores for propylene/propane and other gas separations. Micropor. Mesopor. Mater. 305, 110341 (2020).

    Article  CAS  Google Scholar 

  17. Ma, Y. et al. Creation of well-defined “mid-sized” micropores in carbon molecular sieve membranes. Angew. Chem. Int. Ed. 58, 13259–13265 (2019).

    Article  CAS  Google Scholar 

  18. Liu, R.-S. et al. The advances in post-combustion CO2 capture by physical adsorption: from materials innovation to separation practice. ChemSusChem 14, 1428–1471 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Andrade, M., Relvas, F. & Mendes, A. Highly propylene equilibrium selective carbon molecular sieve adsorbent. Sep. Purif. Technol. 245, 116853 (2020).

    Article  CAS  Google Scholar 

  20. Dong, Q., Song, Z., Zhou, F., Li, H. & Yu, M. Ultrathin, fine-tuned microporous coating modified 5A zeolite for propane/propylene adsorptive separation. Micropor. Mesopor. Mater. 281, 9–14 (2019).

    Article  CAS  Google Scholar 

  21. Cao, Y., Zhang, K., Sanyal, O. & Koros, W. Carbon molecular sieve membrane preparation by economical coating and pyrolysis of porous polymer hollow fibers. Angew. Chem. Int. Ed. 58, 12149–12153 (2019).

    Article  CAS  Google Scholar 

  22. Liu, Z., Qiu, W., Quan, W. & Koros, W. J. Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations. Nat. Mater. 22, 109–116 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Sanyal, O. et al. Cause and effects of hyperskin features on carbon molecular sieve (CMS) membranes. J. Membr. Sci. 551, 113–122 (2018).

    Article  CAS  Google Scholar 

  24. Zhang, L.-H. et al. Thermoregulated phase-transition synthesis of two-dimensional carbon nanoplates rich in sp2 carbon and unimodal ultramicropores for kinetic gas separation. Angew. Chem. Int. Ed. 57, 1632–1635 (2018).

    Article  CAS  Google Scholar 

  25. Wang, J. et al. Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Ed. 57, 2894–2898 (2018).

    Article  CAS  Google Scholar 

  26. Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, H. S. et al. Post-synthesis functionalization enables fine-tuning the molecular-sieving properties of zeolites for light olefin/paraffin separations. Adv. Mater. 33, 2105398 (2021).

    Article  CAS  Google Scholar 

  28. Wu, Y. et al. Enhanced propene/propane separation by directional decoration of the 12-membered rings of mordenite with ZIF fragments. Angew. Chem. Int. Ed. 59, 6765–6768 (2020).

    Article  CAS  Google Scholar 

  29. Noonikara-Poyil, A. et al. Remarkably selective propylene–propane separation using a copper scorpionate. Small 19, 2206984 (2023).

    Article  CAS  Google Scholar 

  30. Wang, Y., Peh, S. B. & Zhao, D. Alternatives to cryogenic distillation: advanced porous materials in adsorptive light olefin/paraffin separations. Small 15, 1900058 (2019).

    Article  Google Scholar 

  31. Dong, Q. et al. Confining water nanotubes in a Cu10O13-based metal–organic framework for propylene/propane separation with record-high selectivity. J. Am. Chem. Soc. 145, 8043–8051 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Li, J. et al. Purification of propylene and ethylene by a robust metal–organic framework mediated by host–guest interactions. Angew. Chem. Int. Ed. 60, 15541–15547 (2021).

    Article  CAS  Google Scholar 

  34. Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Bachman, J. E., Kapelewski, M. T., Reed, D. A., Gonzalez, M. I. & Long, J. R. M2(m-dobdc) (M = Mn, Fe, Co, Ni) metal–organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations. J. Am. Chem. Soc. 139, 15363–15370 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Gao, J. et al. A microporous hydrogen-bonded organic framework for the efficient capture and purification of propylene. Angew. Chem. Int. Ed. 60, 20400–20406 (2021).

    Article  CAS  Google Scholar 

  37. Liu, D. et al. Scalable green synthesis of robust ultra-microporous Hofmann clathrate material with record C3H6 storage density for efficient C3H6/C3H8 separation. Angew. Chem. Int. Ed. 62, e202218590 (2023).

    Article  CAS  Google Scholar 

  38. Wang, J. et al. Pure silica with ordered silanols for propylene/propane adsorptive separation unraveled by three-dimensional electron diffraction. J. Am. Chem. Soc. 145, 6853–6860 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J. et al. New carbon molecular sieves for propylene/propane separation with high working capacity and separation factor. Carbon 123, 273–282 (2017).

    Article  CAS  Google Scholar 

  40. Peng, Y.-L. et al. Efficient propyne/propadiene separation by microporous crystalline physiadsorbents. Nat. Commun. 12, 5768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, H. et al. Tailor‐made microporous metal–organic frameworks for the full separation of propane from propylene through selective size exclusion. Adv. Mater. 30, 1805088 (2018).

    Article  Google Scholar 

  42. Zhang, Z., Ding, Q., Cui, X., Jiang, X.-M. & Xing, H. Fine-tuning and selective-binding within an anion-functionalized ultramicroporous metal–organic framework for efficient olefin/paraffin separation. ACS Appl. Mater. Interfaces 12, 40229–40235 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Cui, J. et al. A molecular sieve with ultrafast adsorption kinetics for propylene separation. Science 383, 179–183 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Ahangari, M. G. Modeling of the interaction between polypropylene and monolayer sheets: a quantum mechanical study. RSC Adv. 5, 80779–80785 (2015).

    Article  Google Scholar 

  45. Charles, E. W., Russell, S. D. & Michael, C. Z. Molecular dimensions for adsorptives. J. Am. Chem. Soc. 120, 5509–5516 (1998).

    Article  Google Scholar 

  46. Kuah, W., Effendy, S. & Farooq, S. Industrial scale propylene/propane separation using pressure vacuum swing adsorption. Ind. Eng. Chem. Res. 57, 6451–6463 (2018).

    Article  CAS  Google Scholar 

  47. Berendsen, H. J. C. et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  48. Chen, G., Guo, Y., Karasawa, N. & Goddard, W. A. Electron–phonon interactions and superconductivity in K3C60. Phys. Rev. B 48, 13959–13970 (1993).

    Article  CAS  Google Scholar 

  49. Jorgensen, W. L. & T.-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl Acad. Sci., USA 102, 6665–6670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dodda, L. S., de Vaca, I. C., T.-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  52. Xu, S. et al. Beyond the selectivity-capacity trade-off: ultrathin carbon nanoplates with easily accessible ultramicropores for high-efficiency propylene/propane separation. Nano Lett. 22, 6615–6621 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Project (nos. 2021YFA1500300 (A.-H.L.) and 2021YFA1500304 (G.-P.H.)), National Natural Science Foundation of China (nos. 22275027 (G.-P.H.) and 12241203 (F.W.)), the Fundamental Research Funds for the Central Universities (nos. DUT22LAB607 (A.-H.L.) and DUT22QN206 (G.-P.H.)) and the Youth Innovation Promotion Association CAS (2020449 (F.W.)). The numerical calculations were performed on the supercomputing system in Hefei Advanced Computing Center and the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

A.-H.L. conceived the research. L.-P.G., R.-S.L., J.Q., G.-P.H. and H.W. conducted materials preparation, characterization and performance evaluation. J.G. collected the data of the aberration-corrected scanning TEM. G.-P.H. and F.W. analyzed the data and wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Guang-Ping Hao, Fengchao Wang or An-Hui Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Banglin Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–52 and Tables 1–14.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, LP., Liu, RS., Qian, J. et al. Surface sieving carbon skins for propylene and propane separation. Nat Chem Eng 1, 411–420 (2024). https://doi.org/10.1038/s44286-024-00075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00075-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing