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Autonomous reaction Pareto-front mapping 
with a self-driving catalysis laboratory

J. A. Bennett1, N. Orouji    1, M. Khan1, S. Sadeghi    1, J. Rodgers2 & 
M. Abolhasani    1 

Ligands play a crucial role in enabling challenging chemical transformations 
with transition metal-mediated homogeneous catalysts. Despite their 
undisputed role in homogeneous catalysis, discovery and development of 
ligands have proven to be a challenging and resource-intensive undertaking. 
Here, in response, we present a self-driving catalysis laboratory, Fast-Cat, for 
autonomous and resource-efficient parameter space navigation and Pareto-
front mapping of high-temperature, high-pressure, gas–liquid reactions. 
Fast-Cat enables autonomous ligand benchmarking and multi-objective 
catalyst performance evaluation with minimal human intervention. 
Specifically, we utilize Fast-Cat to perform rapid Pareto-front identification 
of the hydroformylation reaction between syngas (CO and H2) and olefin 
(1-octene) in the presence of rhodium and various classes of phosphorus-
based ligands. By reactor benchmarking, we demonstrate Fast-Cat’s 
knowledge scalability, essential to fine/specialty chemical industries. We 
report the details of the modular flow chemistry platform of Fast-Cat and its 
autonomous experiment-selection strategy for the rapid generation  
of optimized experimental conditions and in-house data required  
for supplying machine-learning approaches to reaction and  
ligand investigations.

Transition metal-based homogeneous catalysts and their associated 
complexing ligands play a major role in many widespread chemical 
processes such as hydrogenations, carbonylations, oxidations and vari-
ous coupling reactions1. These reactions are present in bulk chemical 
syntheses up to millions of tons per year as well as more specialized fine 
chemical and pharmaceutical syntheses with diverse and challenging 
transformations2–4. Finding new catalysts to perform organic synthe-
sis steps more efficiently can lead to dramatic savings in energy and 
chemical requirements for both the reaction as well as downstream 
purification steps.

Ligand discovery in homogeneous catalysis remains a multi-
faceted problem that requires both molecular structure and reac-
tion condition optimization. The most optimal ligand may result in 
poor or no catalytic activity at all if used in a homogeneous transition 
metal-catalyzed reaction with incorrect process conditions, and no 

two ligands will have identical optimum conditions. This variability in 
ligand performance (ligand and reaction condition-dependent yield 
and regioselectivity) discourages classical fixed-condition or design of 
experiment reaction-screening strategies that may not truly capture a 
candidate ligand’s true potential. To address this complex problem, a 
different catalyst/ligand system benchmarking strategy is required to 
efficiently explore a given ligand’s available reaction space and ensure 
the true extent of the ligand’s capabilities is used when comparing 
performance (Extended Data Fig. 1). Manual one-parameter-at-a-time 
experimentation is generally limited by labor, precursor availability and 
time, which can make finding optima with multiple competing output 
metrics challenging. Automation can help by speeding up sampling 
for high-throughput experimentation and incorporating design of 
experiments methods for evenly covering the reaction space, but a 
large amount of experimental data are still required to obtain a holistic 
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accelerated catalyst discovery and development. One of the key 
advantages of flow chemistry is the ability to achieve continuous con-
trol of reaction conditions41,42,48–52. Unlike traditional batch reactors, 
flow reactors allow for rapid switching between experimental condi-
tions without requiring lengthy downtime or the need for manual 
cleaning or excessive waste generation. Furthermore, flow reactors 
provide enhanced heat and mass transport rates compared with 
conventional batch reactors48–50,53–56. This transport rate intensifica-
tion leads to increased reaction rates and faster thermal equilibra-
tion, enabling rapid exploration of reaction conditions and catalyst 
performance. It should be noted that flow reactors are not without 
some of their own unique drawbacks, such as difficulty in handling 
solid species and more complex initial experimental setup. In a flow 
chemistry platform, in-line reaction characterization or sampling 
techniques can be readily integrated into the analysis sequence of a 
given experimental condition. The in-line characterization means that 
as reactions progress, real-time experimental data can be collected 
and analyzed. By leveraging closed-loop automated processing of 
the in-line generated experimental data, the SDL equipped with a 
flow chemistry platform can continuously update its belief model of 
the reaction being studied and refine its hypothesis regarding spe-
cific catalyst reactivity and the key process parameters that control  
catalyst performance.

The combination of continuous experimentation, improved trans-
port properties and in-line analysis, as well as reduced chemical con-
sumption and waste generation, enabled by flow reactors, empowers 
SDLs to rapidly generate and process large volumes of experimental 
homogeneous catalysis data. These in-house generated experimental 
data can be efficiently utilized by ML algorithms of SDLs to identify 
hidden and complex correlations, patterns and trends, ultimately 
accelerating the catalyst discovery and process development. The 
ability to rapidly iterate, explore and optimize catalyst performance 
based on real-time experimental data insights is a major advantage 
offered by SDLs equipped with flow reactors.

In this Article, we present a fully autonomous self-driving fluidic 
technology for catalysis acceleration and testing (Fast-Cat). Fast-Cat 
employs a closed-loop homogeneous catalysis system using a flow 
chemistry platform to autonomously investigate and expedite the 
exploration of catalyst/ligand systems. Fast-Cat incorporates modular 
gas–liquid flow reactors, in-line reaction characterization, advanced 
process automation and ML techniques to accelerate ligand discovery, 
catalyst benchmarking and process development for specialty and 
fine chemicals.

After developing, characterizing and benchmarking the hardware 
of Fast-Cat versus large-scale conventional batch reactors, we employ 
it to rapidly map the ligand–regioselectivity–yield relationship for the 
hydroformylation of olefins. Within a span of only 5 days of continuous 
autonomous experimentation with no human intervention (45 reac-
tions), Fast-Cat showcases its prowess by swiftly identifying the Pareto 
front for any desired ligand in the hydroformylation of 1-octene. We 
report the reaction data and metadata for six full Pareto-front optimiza-
tion campaigns of selected hydroformylation ligands (Fig. 1), including 
all tested reactions. Additionally, we highlight an aspect of Fast-Cat, 
which is the generation of high-quality experimental data used to 
construct a digital twin of the homogeneous catalytic reaction under 
investigation. The trained digital twins using the in-house generated 
experimental data by Fast-Cat serve as virtual representations that aid 
in understanding the underlying reaction mechanism. Leveraging the 
information gleaned from the digital twins, we then explore the key pro-
cess parameters governing product aldehyde yield and regioselectivity.

The research acceleration framework of Fast-Cat enables rapid 
and comprehensive studies of high-temperature/pressure, metal- 
and ligand-mediated gas–liquid reactions, ubiquitous in specialty/
fine chemical industries. Specifically, we demonstrate that self-driv-
ing catalysis laboatories can dramatically enhance the speed and 

view of the reaction system. Autonomous systems seek to use closed-
loop feedback with dynamically evolving understanding of the reaction 
system to select new experimental conditions more efficiently, with 
the goal of minimizing the experimental cost of exploring the limits 
of a new reaction system.

Rhodium (Rh)-catalyzed hydroformylation (Fig. 1) of olefins to 
produce linear and branched aldehydes is a prominent homogeneous 
reaction in contemporary industrial processes, with broad reaching 
applications ranging from commodity chemicals to specialty pharma-
ceuticals and fragrances1–4. A substantial amount of work has been per-
formed in academia and industry with the aim of developing specialty 
ligands to help direct the Rh center into producing the desired aldehyde 
product with high selectivity5–14. For the most part, ligands have a trade-
off between activity and regioselectivity, that is, highly active ligands15,16 
are generally less selective and highly selective ligands17,18 are generally 
less active. Common bidentate electron-rich phosphines, such as 
Xantphos and BISBI, are highly selective towards linear aldehydes with 
turnover frequencies (TOFs) on the order of 1,000 mol of aldehyde per 
mol of Rh per hour14,19,20, while the more active bulky monophosphites 
approach 10,000 mol of aldehyde per mol of rhodium per hour15,16 but 
only have linear-to-branched (l/b) product aldehyde ratios of ~2:1. 
Various ligands promoting the hydroformylation of internal olefins 
have been reported6–8,10,18,21,22, but double bond migration remains a 
challenge, as well as direct branched selectivity23 from terminal olefins 
such as isobutyraldehyde from propylene.

Closed-loop autonomous reaction exploration using self-driving 
laboratories (SDLs) is a rapidly emerging technology used in acceler-
ated materials and molecular discovery and development24–44,68–70. 
This autonomous experimentation strategy can accelerate multi-
objective process optimization to meet specific process requirements 
by 10–100× compared with conventional manual experimentation 
strategies32–34,41,42,45,46. The core of SDLs lies in automatic generation of 
experimental data (automation) orchestrated by machine learning 
(ML) algorithms. In each experimental campaign, the brain of the SDL, 
that is, the ML algorithm, predicts system response and iteratively 
acquires an improved set of reaction conditions until the desired objec-
tive is attained. Existing SDL software packages, including ChemOS39 
and ARES OS47, are an open-access, user-friendly starting point for 
researchers in chemical and material sciences to begin implementing 
autonomous experimentation. Developing an in-house ML algorithm 
for a new SDL can allow for fine tuning of model hyper-parameters 
and architecture for complex reaction spaces, such as ligand-assisted 
transition metal catalysis. In addition to closed-loop autonomous 
experimentation using the physical setup of the SDL, the in-house 
generated experimental data can be utilized to build a digital twin 
of the SDL hardware using various modeling techniques (for exam-
ple, Gaussian process regression or deep neural networks, DNNs). 
Such digital twins can then be employed to query the reaction for a 
specific condition, visualize the reaction space and investigate the 
role of each process parameter on the catalytic performance of each  
catalyst/ligand.

The lack of access to comprehensive experimental data (success 
and failure conditions) and metadata (detailed reaction and reactor 
parameters) for transition metal-catalyzed homogeneous catalysis, 
including hydroformylation reactions, necessitates development of 
a robust experimental platform to generate big data of high-quality 
(reproducible with minimum experimental noise) and scalable experi-
mental data to be leveraged with data science tools of SDLs.

Although automated high-throughput experimentation platforms 
can assist with catalyst screening through parallel batch operation 
to expand the scope of discreet parameters37, they can be limited by 
start-up and shut-down times, slower heat and mass transfer rates and 
larger amounts of experimental waste. Flow reactors offer a number 
of benefits in generating large quantities of high-quality experimental 
data that can be fed into the data science tools of SDLs, facilitating 
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Fig. 1 | Schematic of the developed self-driving catalysis lab technology. 
Homogeneous catalyst/ligand development is accelerated using autonomous 
flow reactors with a general reaction scheme for the hydroformylation of 
1-octene to all aldehyde products. Product characterization is performed using 
gas chromatography equipped with a flame ionization detector (GC-FID). 
Autonomously mapped ligands by Fast-Cat. L1, 12-(tert-butyl)-6-fluoro-2,4,8, 

10-tetrakis(2-phenylpropan-2-yl)-12H-dibenzo[d,g][1,3,2] dioxaphosphocine; L2, 
2,4,8,10,12-penta-tert-butyl-6-fluoro-12H-dibenzo[d,g][1,3,2]dioxaphosphocine; 
L3, 6-fluoro-12-methyl-2,4,8,10-tetrakis(2-phenylpropan-2-yl)-12H-dibenzo[d,g]
[1,3,2]dioxaphosphocine; L4, triphenylphosphine; L5, Xantphos, L6, tris(2,4-di-
tert-butylphenyl) phosphite.
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experimental efficiency of reaction space exploration for similar 
reaction systems by allowing for robust and comprehensive evalua-
tion of the performance capabilities of catalyst species. Furthermore, 
Fast-Cat unveils the role of ligand structure on the important reaction 
parameter controlling the product regioselectivity and yield. Fast-Cat 
closes the knowledge scalability gap of SDLs by demonstrating the scal-
ability of the machine-discovered knowledge from miniaturized flow to 
batch reactors. The insights gained from Fast-Cat’s investigations offer 
avenues for exploring new ligands, optimizing catalyst performance 
and advancing the realm of homogeneous hydroformylation.

Results
Fast-Cat’s hardware
The automated flow chemistry platform of Fast-Cat (Fig. 1, see ‘Experi-
mental setup’ section in Supplementary Information) comprises five 
modules, including precursor loading/formulation, precursor refilling, 
flow reactor, reaction sampling and in-line characterization using gas 
chromatography (GC).

The hydroformylation of 1-octene requires a liquid phase contain-
ing the olefin, Rh catalyst, ligand and solvent as well as a gas phase to 
supply the syngas. The phosphorus-based ligands used in this work are 
detailed in Fig. 1. These ligands were selected to represent a diverse set 
of phosphine and phosphite ligands for hydroformylation of olefins. 
Ligand selection was driven by structural diversity and prior literature 
knowledge. L157 was selected as a ligand candidate with a relatively 
large flexibility range of regioselectivity (that is, being able to produce 
primarily linear and primarily branched products at unique reaction 
conditions). L2 and L3 were selected as closely related fluorophosphite 
candidates with steric structure modifications. L4, L5 and L6 were 
selected to expand the scope of Fast-Cat classified ligands into common 
mono- and bis-phosphines as well as phosphite candidates.

In an industrial setting, gas–liquid reactions are commonly per-
formed in a gas-fed continuous-stirred tank reactor (CSTR)58,59. How-
ever for small-scale research applications, segmented gas–liquid flow 
format (Fig. 1) is a great alternative with benefits to process safety 
through reduced liquid and gas holdup as well as improved heat and 
gas–liquid mass transfer rates compared with a batch (autoclave) 
reactor48–50,53. The primary reason for utilizing a gas–liquid segmented 
flow format versus other reactor configurations (for example, CSTR 
or batch) for Fast-Cat’s hardware was minimization of the chemical 
consumption and waste generation. While the utilized segmented flow 
format by Fast-Cat is miniaturized in comparison with CSTRs or batch 
reactors, it should be noted that it is possible to map conditions from 
a miniaturized segmented flow reactor and achieve equivalent results 
in a batch reactor as well as extracting fundamental knowledge and 
trends from the in-flow obtained experimental data. In the gas–liquid 
segmented flow configuration, the liquid and gas streams are mixed to 
the desired composition independently and then brought together at a 
fluidic T-junction, causing the liquid phase to be broken up into a train 
of uniform slugs by the reactive gas phase (Fig. 1). The no-slip bound-
ary conditions between the liquid slugs and the inside of the reactor 
tube walls sets up an axisymmetric recirculation pattern within each 
liquid slug60,61, lowering the diffusive length scale and improving the 
transport of the syngas from the gas–liquid interface at either end of 
the liquid slug.

Fast-Cat’s ML brain
The digital component of Fast-Cat includes automated data processing 
of the in-flow hydroformylation reactions and automated experiment 
selection. The ML sequence of Fast-Cat begins by reading the in-house 
database of previously evaluated experimental conditions. The reaction 
data consist of seven input parameters (Xi, i = 1:7) corresponding to 
reaction conditions (CO flowrate, H2 flowrate, total reaction pressure, 
reactor temperature, dilution, ligand-to-Rh ratio and olefin-to-Rh ratio) 
and two objective values (total aldehyde yield and fraction of linear 

aldehyde versus all aldehydes, SN). The belief model (DNN) of the cur-
rent reaction system is then automatically created with the supplied 
experimental data generated by Fast-Cat. The DNN model used by 
Fast-Cat is an ensemble of randomized cascade-feed forward networks. 
Each sub model of the ensemble supplies an individual output (model 
uncertainty) and contributes to an aggregated ensemble output (aver-
age model prediction value). The output of the surrogate ensemble 
model (average model value and uncertainty) becomes the starting 
point for a Bayesian optimization framework of Fast-Cat.

The primary acquisition function used in this work is batched 
noisy expected hypervolume improvement (qNEHVI62, Fig. 2), which is 
a multi-objective policy relative to the classical Bayesian single-objec-
tive expected improvement. Classical expected improvement ranks 
predicted belief model outputs by the expectation of the predicted 
objective value being better than the best observed objective value. 
Applying a fixed weighting to the target objectives before sampling can 
bias the reaction space search. Exploring the Pareto boundary of the 
objective space and then selecting a satisfactory objective tradeoff is 
more expensive in terms of sampling but much more likely to result in 
the global optimum in the explored reaction space. qNEHVI achieves 
these criteria by ranking future experimental conditions based on their 
potential in improving on the best-seen data in any objective (that is, 
pushing the Pareto boundary outwards, increasing the contained 
hypervolume). The cycle starts with building a model of the system 
on a small amount of initial data. The observed experimental condi-
tions are then partitioned into the Pareto and dominated set, and the 
current hypervolume is calculated. Samples are then taken from the 
model and added to the partitioning. The difference in the Pareto front 
containing the predicted value and the Pareto front of the previously 
observed experimental data is the difference in the total hypervolumes 
enclosed by each Pareto front compared with a fixed reference point 
(Fig. 2). This Pareto mapping strategy explores reaction conditions that 
improve on the reaction yield or regioselectivity or a combination of 
the two for a hydroformylation of terminal olefins without bias. Dur-
ing the optimization, the observed Pareto front should converge on 
the ground truth (that is, true objective limits of the reaction system 
within the available experimental space). Once an autonomous Pareto-
front campaign is completed, the aggregated data consisting of pairs 
of reaction conditions and outcomes are compiled in a file for further 
meta-analysis and building of the digital twin of the reaction system.

Fast-Cat hardware validation and benchmarking
An important feature of any SDL is the scalability of the produced knowl-
edge. If the SDL-discovered knowledge (that is, optimized process 
conditions) is dependent on the physical geometry and characteris-
tics of the SDL hardware, it will pose substantial challenges for scaling 
up and industrial adoption. Thus, before autonomous Pareto-front 
mapping of different ligands, the Fast-Cat system was evaluated for 
stability/reproducibility and knowledge scalability by benchmark-
ing it against standard autoclave batch reactors using a bulky, cyclic 
fluorophosphite ligand, L1 (ref. 57) (see ‘In-flow mixing’, ‘Batch versus 
flow benchmarking’ and ‘Auto-injection replication’ sections in Sup-
plementary Information).

An important information for reliable reaction sampling from 
Fast-Cat’s physical platform is its response time needed to reach steady 
state for each independent input parameter. Fast-Cat’s response to 
changes in total reaction pressure and temperature setpoints was 
investigated (‘Temperature and pressure system response’ section in 
Supplementary Information). The system responses were determined 
to be approximately a single residence time of the Fast-Cat operation, 
and the transient flow regime was determined to be approximately 
three residence times (Extended Data Fig. 2a).

The reproducibility uncertainty of a single reaction condition 
across repeated automated syringe refills and multiple days of reac-
tion operation was found to be less than 5% (Extended Data Fig. 2b). 
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The stability of a single reaction condition over seven consecutive GC 
injections was investigated (Extended Data Fig. 2c) with a standard 
deviation of 4% for total aldehyde yield and 2% for the l/b ratio. Next, 
a reproducibility test was performed automatically to quantify the 
experimental noise of Fast-Cat by selecting an experimental condition 
followed by running five randomized experimental conditions and 
then returning to the initial reaction condition (Extended Data Fig. 2d), 
while obtaining the same total aldehyde yield and regioselectivity as 
the initial reaction condition. With Fast-Cat’s hardware validated for 
stability and repeatability, it can be utilized to perform accelerated 
optimization and complex reaction space exploration with long-term 
continuous autonomous operation. Full reaction conditions are given 
in ‘Benchmarking and validation conditions’ section in Supplementary 
Information.

Autonomous Pareto-front mapping
Fast-Cat’s surrogate model is initialized by four initial experimental 
conditions. The initial conditions include presumed high and low SN 
conditions, according to the hydroformylation literature57, an inter-
mediate input value and a low residence time condition. Fast-Cat can 
ab initio rapidly identify the set of Pareto-optimal reaction conditions 
for both high (predominantly linear aldehyde) and low (predominantly 
branch aldehyde) l/b aldehyde regioselectivity. New experimental 
conditions are selected by qNEHVI, a multi-objective optimization 
algorithm intended to rapidly push the boundaries of the Pareto-front 
towards high yield and targeted regioselectivity (either high linear or 
branched aldehyde).

The autonomous Pareto-front mapping campaigns started with 
L1. Fast-Cat was able to autonomously identify a flexibility range of 
SN = 0.37–0.85 (0.8–5.5 l/b) after 60 experimental Pareto-mapping 
experiments (30 for maximizing SN: Normal Aldehyde Campaign, 
and 30 for minimizing SN: Iso Aldehyde Campaign) within 1 week of 

continuous experimentations using less than 500 ml reaction solvent 
and 2 mmol total ligand (Fig. 3). As can be seen by the composite (com-
bined linear and branched optimizations) Pareto front in Fig. 3a, the 
boundary of the Pareto surface pushes outwards to enclose as much 
of the reaction outcome space as the given ligand allows, with regions 
outside the boundary being inaccessible, given the constraints of 
Fast-Cat’s hardware, as the samples converge on the true Pareto front. 
Once the Pareto front has been created, the data and the model can be 
investigated to give insights into the reaction system. For L1, the condi-
tions with the highest SN (that is, high l/b ratio) tend to cluster around 
a low reaction temperature, low CO:H2 ratio and high ligand:Rh ratio, 
while low SN (that is, low l/b ratio) tends towards the opposite (high 
reaction temperature, high CO:H2 ratio and low ligand:Rh ratio). Some 
process parameters such as total reaction pressure and dilution are less 
correlated with SN but highly correlated with the total aldehyde yield.

The proposed mechanism for tunable aldehyde regioselectiv-
ity is twofold. The first being the relative abundance of CO versus 
ligand L1 to impact the Rh complex from a mono-ligated HRhL(CO)3 
to a bis-ligated HRhL2(CO)2, with the increased steric bulk helping to 
drive linear regioselectivity63. The second being the increased reac-
tion temperature also increases the rate of olefin isomerization and 
that the hydroformylation of the internal olefins produced will only 
result in branched aldehydes, thus lowering the SN (refs. 5,8,21,57,63).

It should be noted that Fast-Cat allowed for determination of a 
broad range of SN in only 60 autonomously selected experimental 
conditions while prior high-throughput screenings requiring over 
400 experiments and more exotic reaction conditions to identify the 
same tunable regioselectivity trends for Rh-catalyzed hydroformyla-
tion of 1-octene57. This result demonstrates that SDL-guided catalysis 
exploration can dramatically reduce the experimental budget as com-
pared with manual brute-force search or high-throughput screening 
methods.
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Following autonomous mapping of L1 by Fast-Cat, the system 
was washed, and the next ligand solution was loaded for a new set of 
autonomous normal and iso aldehyde Pareto-front mapping cam-
paign. Subsequent ligands after L1 (L2–L6) were given an autonomous 
experimentation budget of 20 experimental conditions per campaign 
(total 40 experiments) to form their Pareto fronts (Fig. 4a). The bulky 
fluorophosphite ligand L1 was found to be the ligand with the widest 
range of regioselectivities, with the closely related L2 and L3 ligands 
encompassing a slightly more normal-selective region of hydrofor-
mylation reaction space. Ligand L4 was a departure from the fluoro-
phosphites in that while the activity and yields were high, the range of 
regioselectivities available was relatively narrow (~SN 0.6–0.8, l/b 1.5-4). 
Similarly for ligand L5, Xantphos, as a bidentate phosphine ligand, the 
normal regioselectivity was found to be excellent (SN > 0.98, l/b > 49) 
while the activity was low. Ligand L6, as a sterically hindered phosphite, 
showed high yields across most of the autonomously selected reaction 
conditions, while the regioselectivity remained roughly equal normal 
and iso product (~SN 0.4–0.6, l/b 0.66–1.5).

The phosphite ligands tested were the most branched selective of 
the ligands tested, with L1 being the most branched-selective fluoro-
phosphite followed by L2 and then L3. L1 is the most sterically hindered 
fluorophosphite with 2-phenylpropan-2-yl substituents and t-butyl on 
the bridging carbon in the phosphite heterocycle. L2 maintained the 
t-butyl bridge but reduced the steric bulk of the outer substituents to 
t-butyl as well, whereas L3 maintained the 2-phenylpropan-2-yl but 
reduced the bridge to methyl. This trend indicates that bulk at the 
bridging position may be more important towards branched selec-
tive conditions over bulk that is farther from the Rh center. While 
triphenylphosphine was relatively active towards hydroformylation, 
the simple structure and lack of steric bulk does not appear to allow 
much regioselectivity flexibility beyond changing 1-octene isomeriza-
tion. Xantphos, on the other hand, as a bis-phosphine is driven to only 
the bis-ligated form of the Rh complex19,63–65 by virtue of intra- versus 
inter-molecular complexing of the second phosphorus verusu mono-
phosphine species. This weighting of the bis-ligated Rh center drives 
Xantphos to the highest SN of the tested ligands by Fast-Cat, and the 
low regioselectivity flexibility indicates the difficulty of displacing one 
of the phosphines once Xantphos is complexed at all. The full table of 
autonomously tested reaction conditions by Fast-Cat for ligands L1–L6 
and reaction outcomes are listed in sections ‘Model Parameters and 
Normalization’ and ‘qNEHVI Ligand Screening Data’ in Supplementary 
Information.

Next, to demonstrate the knowledge scalability of Fast-Cat, the 
ligands and hydroformylation reaction conditions with high and low 

regioselectivity values and yields above 50% were selected to be tested 
in a batch reactor (10-ml autoclave). The knowledge scalability results 
shown in Fig. 4b illustrate that the knowledge generated can be directly 
transferred from a flow to a batch reactor and retain consistent reaction 
results. This result closes the gap of knowledge transfer and scalability 
between lab-scale SDL-driven discovery and scaled-up production 
relevant to the industry. Details on the reaction conditions of the knowl-
edge scalability experiments can be found in ‘Knowledge scalability’ 
section in Supplementary Information.

The wealth of reaction data captured across the various ligand 
Pareto-front mapping experiments performed by Fast-Cat allows for 
digitized reaction models to be created for each tested ligand. In the 
next section, we discuss the digital hydroformylation reaction models 
built from in-house generated experimental data to determine the 
magnitude and direction of the response of the system (aldehyde yield 
and regioselectivity) to the various model input features. Additional 
visualization of the L1 Pareto front for important input parameters is 
in ‘Visualization’ section in Supplementary Information.

Digital twin
The design of the hydroformylation reaction digital twin involves 
fine tuning the hyper-parameters of the DNN to optimize its perfor-
mance. The prediction accuracy of the digital twin is quantified by 
comparing the trained ML model prediction on the input reaction 
conditions which have not been previously used for ML model train-
ing and validation (that is, test set), versus the actual values obtained 
from Fast-Cat. Using the test set that was not utilized for ML model 
training ensures that the prediction accuracy is not influenced by 
overfitting. To remove bias from the ML model and create uncertainty 
for the predicted data, we adapted an ensemble ML modeling strat-
egy for the digital twin66. Full model tuning information is supplied 
in ‘Digital twin architecture’ section in Supplementary Information. 
Next, the fine-tuned digital twins built from the in-house generated 
experimental data were employed to autonomously study the impact 
of each reaction parameter on the aldehyde yield and regioselectivity 
as well as visualizing the reaction space.

Shapley values provide valuable insights into the impact of  
different input variables on the outcomes of a predictive model. Shap-
ley analysis is a method used to understand the contribution or impor-
tance of model features (that is, hydroformylation reaction variables) 
on the model’s outputs (that is, aldehyde yield and regioselectivity). 
Shapley additive explanations67 values provide a metric for discern-
ing the features that Fast-Cat considers to have the most substantial 
influence on the outputs of the ML model (digital twin). Utilizing the 
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trained digital twin model for each ligand in this study, we performed 
Shapley analysis to investigate the importance of process parameters 
on the yield and regioselectivity of the hydroformylation reaction. 
Figures 5a,b shows Shapley analysis of L1’s digital twin. Shapley addi-
tive explanations values of L1 suggest that the total reaction pressure 
had the largest effect on the hydroformylation yield, with an increase 
in pressure leading to an increase in the reaction yield. Increasing the 
reaction pressure enhances the concentration of syngas in the liquid 
phase and the reaction time, thereby increasing the overall reaction 
yield. However, reaction temperature demonstrated the greatest influ-
ence on the aldehyde regioselectivity tuning (inverse relationship) 
in the presence of L1. The inverse relationship between the reaction 
temperature and normal aldehyde regioselectivity in the presence of 
L1 can be attributed to the dominant effect of olefin isomerization, 
the sensitivity of catalyst pre-activation to temperature and the pref-
erential formation of branched aldehydes at higher temperatures due 
to the destabilization and conversion of specific ligand-catalyst spe-
cies57. Interestingly, as the olefin-to-Rh ratio increases, it slows down 
the full conversion of olefin at a constant catalyst TOF, but it favors the 
formation of linear product. Increased formation of the linear versus 
branched aldehyde can be attributed to the enhanced hydroformyla-
tion over isomerization of the terminal olefin as the syngas-to-Rh ratio 
increases, while any isomerization leads to primarily branch product. 
Moreover, a higher ligand-to-Rh ratio increases both aldehyde regiose-
lectivity and yield. According to a mono versus bis-ligation switching 
mechanism of L1 (refs. 23,63), higher L1 concentration will promote 
bis-ligated L-Rh-L species formation with higher steric hindrance and, 
thus, favor the formation of linear aldehyde. Additionally, L1 is an 
activating ligand, that is, the TOF of the catalyst increases at higher 
ligand-to-Rh ratios, therefore, increasing its concentration will lead 
to higher aldehyde yield.

To better understand the effect of key reaction parameters  
controlling the total yield and regioselectivity of the hydroformylation 
reaction in the presence of L1, we utilized the digital twin to visualize 
the confounding effects as well as Pareto-front heatmaps (‘Visualiza-
tion’ section in Supplementary Information) of the top three features 

of interest (that is, process parameters) identified by Shapley analysis. 
For the hydroformylation reaction visualization plots based on the 
digital twin models (Extended Data Fig. 3), three levels of all other pro-
cess parameters (normalized values 0.25, 0.5 and 0.75) were explored 
to effectively map the reaction space. The surface plots shown in 
Extended Data Fig. 3 further confirm the results of Shapley analyses, 
where temperature was found to inversely correlate with the aldehyde 
regioselectivity; however, higher aldehyde yields were obtained at 
higher temperatures (Extended Data Fig. 3a(i),b(i)). Extended Data  
Fig. 3a(ii,iii) illustrates that an increased olefin-to-Rh ratio corresponds 
to higher aldehyde yields, as the presence of more reactants facilitates 
the progression of the hydroformylation reaction. However, despite 
the results of Shapley analysis (Fig. 5a,b), surface plots of Extended 
Data Fig. 3a(ii,iii) exhibit low impact for reaction temperature and 
pressure. This result can be attributed to the fact that altering tem-
perature and pressure can substantially affect the reaction yield only 
when the remaining parameters are adjusted to values near the opti-
mal conditions. Furthermore, Extended Data Fig. 3a(i) illustrates that 
increasing the total syngas pressure, which corresponds to increasing 
the residence time in the flow reactor module of the Fast-Cat platform, 
enhances the aldehyde yield. Extended Data Fig. 3b(ii,iii) presents the 
complexity of the effect of hydroformylation reaction parameters 
on the aldehyde regioselectivity. The overlap of different hydrofor-
mylation reaction surface responses indicates that multiple input 
reaction conditions can lead to the same aldehyde regioselectivity. 
Although Extended Data Fig. 3b(ii), in contrast to Shapley analysis, 
suggests that the temperature does not have a large effect on aldehyde 
regioselectivity tuning in the presence of L1, it has to be noted the 
presented surface plots correspond to a constant value for process 
parameters other than the ones shown on each axis. Thus, Extended 
Data Fig. 3b(ii) implies that if features X2–X5 are maintained constant, 
varying temperature cannot dramatically influence the aldehyde regi-
oselectivity. This result suggests that while temperature serves as a 
pivotal parameter influencing the hydroformylation reaction, it is 
imperative to simultaneously tune other process parameters to achieve 
satisfactory aldehyde regioselectivity. Extended Data Fig. 3b(iii) shows 
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that increasing the L1-to-Rh ratio can tune aldehyde regioselectivity  
from 0.2 to 0.6.

Similar Shapley analysis on the aldehyde yield and regioselectivi-
ties of ligands L2–L6 (Fig. 5c) shows that ligand structure can have a 
dramatic impact on which process parameters are the most important 
for being able to control the reaction outcome. The observed variations 
in the importance of each model feature on the aldehyde yield and 
regioselectivity across different ligands can be attributed to inherent 
structural differences, which may give rise to nuanced differences in 
the Rh coordination environment, affecting the underlying catalytic 
pathways. For example, the primary contributors to SN for the fluoro-
phosphites are reaction temperature, ligand:Rh ratio and CO flowrate 
for L1, L2 and L3, respectively. The relative importance of reaction tem-
perature for L1 can indicate that it has a higher rate of hydroformylation 
of internal olefins with a temperature increase, both promoting that 
rate as well as increasing the rate of isomerization, leading to a more 
pronounced reduction in SN. L2 and L3, on the other hand, with lower 
steric bulk, may be more favorable to form bis- complexes with the Rh, 
therefore resulting in the relative ratios of ligand:Rh and CO flowrate to 
have greater importance on the overall direction of the aldehyde regi-
oselectivity. Triphenylphosphine has a similar trend with the ligand:Rh 
ratio being highly impactful as a low steric bulk ligand with lower activ-
ity for hydroformylation of internal olefins. Xantphos, on the other 
hand, is more effected by H2 flowrate, as the bis-phosphine binding 
results in bis- complexes with lower influence of the ligand:Rh ratio63, 

whereas increased H2 partial pressure generally promotes the rate of 
the hydroformylation reaction. Digital twin reaction visualizations and 
Shapley analysis plots for ligands L2–L6 can be found in ‘Digital twin 
feature analysis’ section in Supplementary Information.

Discussion
In summary, this work unveiled Fast-Cat, which is able to rapidly identify 
the scalable performance Pareto front of a given ligand for transition 
metal-catalyzed homogeneous reactions using only ~2 mmol of the 
ligand and a budget of 1 week for continuous autonomous experimen-
tation. Fast-Cat’s autonomous capabilities for high-temperature/pres-
sure, metal- and ligand-mediated gas–liquid reactions and data-driven 
approach improve catalyst discovery and development by enhancing 
efficiency and speed. Fundamental insights about the role of each 
ligand on the catalytic reaction can be extracted from the autono-
mously sampled experimental conditions via digital twin modeling and 
input Shapley feature analysis. Given the prohibitively large chemical 
structure space of possible catalysts, it is imperative to have a method 
of rapidly and comprehensively evaluating the potential capabilities of 
a given ligand candidate for a targeted catalytic reaction. The Fast-Cat 
algorithm and workflow proves robust and able to rapidly generate the 
large amounts of ligand-reaction data required to begin modeling and 
performing optimization in ligand structure space in search of novel 
ligand candidates. In addition, the scalability of Fast-Cat-discovered 
knowledge closes the gap between laboratory-scale discovery and 
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process development to an industrially relevant reactor. The knowl-
edge scalability of Fast-Cat will facilitate adoption of SDLs for acceler-
ated reaction exploration and process development by fine/specialty 
chemical industries. As Fast-Cat is modular, future integration with a 
robotic chemical workstation and other automation tools will serve to 
expand the library of materials available for reaction space exploration 
allowing for discrete variable screening and optimization campaigns

Methods
Start-up
The flow reactor is supplied with four separate stock solutions to adjust 
concentrations of the individual reagent species independently and 
match the next predicted hydroformylation condition selected by 
the ML module of Fast-Cat. The stock solutions are prepared such 
that an equal volumetric flowrate results in 0.5 M 1-octene, 0.25 mM 
Rh(CO)2(acac), 2.5 mM ligand and 20 mM tridecane internal standard 
in toluene as the solvent (list of chemicals can be found in ‘Chemicals’ 
section in Supplementary Information). After the reagents are pre-
pared, they are loaded in the automated precursor refill reservoirs 
(‘Automated precursor refilling module’ section in Supplementary 
Information) and syringe pumps using stainless-steel syringes. Next, 
the flow reactor line is brought up to the target pressure with a 1:1 mix-
ture of carbon monoxide (CO) and hydrogen (H2). The process control 
module of Fast-Cat then takes over the operational workflow and the 
closed-loop catalysis cycles begin.

Operation
The hardware of Fast-Cat automatically adjusts the liquid feed com-
position by varying the volumetric flowrate of the individual liquid 
input streams, subject to ratios that maintain stable flow through the 
mixing junctions. The syngas composition is automatically tuned by 
varying individual CO and H2 mass flow controllers to set the flowrate 
and control for any supply pressure fluctuations. The total volumet-
ric flowrate of the liquid and the gas phases defines the residence 
time (that is, hydroformylation reaction time) of the reactive liquid 
slugs within the heated flow reactor section before in-line sampling 
by GC. The reaction is allowed to equilibrate for four residence times 
to achieve steady-state operation at the set reaction condition before 
sampling. The unsampled reactor effluent can be either sent to a waste 
collection or a sample collection vessel for offline characterization. The 
automated sampling system switches a sample-loop valve to send the 
captured sample to the analysis line and trigger the GC method and 
data acquisition. The sample-loop and GC injection needle are washed 
between experimental conditions by sending droplets of acetone 
through the injector line and conducting a wash and GC column bake 
method. The GC output was recalibrated for the in-line injector system 
versus off-line sampling (‘GC auto-injection calibration’ and ‘In-flow 
mixing’ sections in Supplementary Information).

Before performing a new reaction condition, Fast-Cat evaluates 
the current available precursor volume of the syringe pumps and refills 
them from the precursor refilling module if the new reaction conditions 
would completely consume the precursors available in the stainless-
steel syringes before completing the next hydroformylation reaction.

Pareto screening cycle
Four pre-defined initial experimental conditions are performed to 
gather the data needed to initialize the surrogate model of the ML brain 
of Fast-Cat. Once Fast-Cat has enough data to begin training the NN 
model, the ML algorithm will begin feeding new reaction conditions 
to be tested to the reaction control module. Upon receiving the results 
of an experimental condition from automated processing of the GC 
data file, Fast-Cat updates its ML model and experimental database 
and predicts a new experiment to be automatically conducted by its 
hardware. The Pareto-front mapping algorithm initially supplies two 
conditions, one to perform immediately and one to keep in the queue 

to begin performing the second reaction immediately after sending 
the sample of the first reaction into the in-line characterization module 
(GC). This operation model allows Fast-Cat to begin work on equili-
brating the second reaction condition while the product of the first 
reaction is being analyzed through the GC unit and processed by the 
ML algorithm. The new predicted experimental condition from the ML 
brain of Fast-Cat is then placed into the queue to await the next cycle.

Additional details on Fast-Cat’s physical operation, benchmarking, 
validation, computational operation and collected data are presented 
in Supplementary Information.

Data availability
The authors declare that all data supporting the findings of this study 
are available within the main text and Supplementary Information.

Code availability
The source code for the Pareto-front mapping and digital twin models 
have been deposited in the repository ‘Fast-Cat’ (https://github.com/
AbolhasaniLab).
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Extended Data Fig. 1 | Different experimental strategies for fundamental and 
applied studies of homogeneous catalysis. (a) Manual vs. (b) automated, vs. 
(c) autonomous experimental catalysis. Autonomous experimentation utilizes 

intelligent experiment-selection to fast-track unveiling the full performance map 
(red pins) of each catalyst/ligand system with minimum human intervention and 
experimental cost. The red flask represents a reactor for homogeneous catalysis.
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Extended Data Fig. 2 | Fast-Cat’s hardware validation and benchmarking to 
quantify the inherent experimental noise. a) Reaction stabilization time for 
a given experimental condition in multiples of the reactor residence time. b) 
Reaction stability across multiple automatic refills of the syringe pumps from the 
reagent reservoirs (mean of 3 replicates +/− standard deviation). c) Consecutive 
in-line GC sampling of a single hydroformylation reaction condition. d) Fast-Cat’s 

experimental noise via random sampling; starting in-flow hydroformylation 
reaction with condition 1 followed by 5 randomly selected reaction conditions 
before returning to condition 1 (labelled as condition 7) (mean of 3 samples at 
each reaction condition +/− standard deviation). Detailed reaction conditions 
available in the Supplementary Information section Benchmarking and 
Validation Conditions.
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Extended Data Fig. 3 | The hydroformylation reaction space exploration 
of 1-octene with ligand L1 using the digital twin built by the in-house 
experimental data of Fast-Cat. a) Surface plots of predicted aldehyde yield 
with L1 as a function of (i) pressure and temperature, (ii) pressure and olefin 
to Rh fraction, and (iii) temperature and olefin to Rh fraction. b) Surface plots 

of predicted aldehyde regioselectivity with L1 as a function of (i) temperature 
and H2 flowrate, (ii) temperature and ligand to Rh fraction, and (iii) ligand to 
Rh fraction and H2 flowrate. For all surface plots shown in panels A) and B), the 
process parameters other than the two variable parameters used for each surface 
plot were maintained at a constant value (Xi = 0.25, 0.5 and 0.75) for each surface.
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