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Data-driven molecular design and simulation 
in modern chemical engineering

Thomas E. Gartner III, Andrew L. Ferguson & Pablo G. Debenedetti

Opportunities and challenges in data-driven 
chemical engineering thermodynamics, 
statistical mechanics and molecular simulation 
are discussed, and new possibilities offered 
by machine learning in these areas are 
assessed. Examples suggest how integration 
of data science and molecular simulation can 
prove impactful for the future of chemical 
engineering.

Statistical mechanics and molecular simulation have a long and fruit-
ful relationship with chemical engineering. Beginning with their first 
applications to condensed matter in the 1950s, molecular simulations 
have deepened our understanding of the microscopic basis underlying 
processes and key topics of interest to chemical engineers, including 
phase equilibria, fluid-phase properties and mixture thermodynam-
ics. The modern discipline of chemical engineering1 has broadened 
to include biomolecular engineering, cellular and tissue engineering, 
advanced materials synthesis and processing, and sustainability, among 
other topics, resulting in a rejuvenated and essential profession, well 
suited to contribute to the solution of some of the most pressing global 
challenges facing humanity today. Computational approaches, like 
the chemical engineering discipline itself, have similarly expanded 

in power and scope. One driver of continued advances in computa-
tional chemical engineering has been the introduction of data-driven 
approaches to model and methods development, data analysis, and to 
connecting simulation to experiment. While interest in this area has 
grown dramatically, the application of machine learning (ML) and data 
science in modern chemical engineering is still in its relative infancy. 
In this Comment, we will discuss opportunities and challenges in data-
driven chemical engineering thermodynamics, statistical mechanics 
and molecular simulation. We aim to provide an assessment of new 
opportunities offered by ML in the abovementioned areas, identify-
ing especially promising opportunities and examples. We will frame 
our discussion with examples drawn from our own research areas in 
which ML has played an enabling and indispensable role, namely, the 
properties and metastable phase behavior of water, and data-driven 
protein design. We conclude with a forward-looking perspective on 
how the integration of data science and molecular simulation could 
prove impactful for the future of chemical engineering.

Data-driven protein design
Proteins are molecular machines that underpin the functions of biology. 
Ever since Max Perutz’s and John Kendrew’s Nobel Prize-winning work 
to solve the structure of hemoglobin and myoglobin, the design of pro-
teins has been of central interest to chemical and biological engineers 
with applications ranging from reactor engineering to clean energy to 
public health. Directed evolution (DE) is a powerful protein engineer-
ing strategy pioneered by the 2018 Chemistry Nobel Prize laureate, 
Frances Arnold2, that introduces random mutations, identifies the 
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Fig. 1 | Protein language models with text-guided conditioning for data-
driven protein design. Schematic illustration of the generic structure of 
conditional deep generative protein language models. A trained protein 

language model can be conditioned on control tags, partial sequences and/
or natural language text prompts to guide the generation of synthetic protein 
sequences with desired structure and/or function.
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modalities or domains) to align the sequence representation of a pro-
tein with an attendant natural language annotation. User-inputted text 
descriptions can then be mapped to corresponding protein sequences 
possessing desired characteristics. In a campaign to elevate the sta-
bility of the villin HP35 subdomain, the trained model was supplied 
with the prompts “This protein has higher stability” and “This protein 
has fewer intrinsically disordered regions”. These three examples are 
emblematic of the tantalizing potential of natural-language-directed 
protein design within MLDE campaigns and represent an exciting new 
frontier in chemical and biological engineering.

Machine-learning-enabled force fields
A central methodological choice in any molecular simulation study is 
the model used to describe the interatomic interactions. Progress in 
intermolecular potential development has been closely intertwined 
with the emergence of molecular simulations in chemical engineering 
research. Typically, the level of chemical realism included in a particular 
model is strongly coupled with its computational expense. The com-
putational investigation of the molecular basis underlying problems 
of relevance in chemical engineering, including phase separation and 
transport phenomena (for example, separations processes), materials 
structure–property relationships (for example, ion transport in poly-
mer electrolytes) and biomolecular processes (for example, protein 
aggregation), requires simulations sampling time and length scales 
that are only attainable with semiempirical classical atomistic mod-
els or with larger-scale coarse-grained models. By contrast, ab initio 
approaches, which provide additional chemical realism necessary to 
model reactivity, polarizability and many-body effects, were previously 
out of reach for studies such as those alluded to above, owing to their 
considerable computational expense.

A new class of intermolecular potential models built on data-
driven methods may mitigate the need for such a sharp trade off. 
In this recent approach, the interatomic potential energy and force 
calculation is performed by a surrogate ML model trained to repro-
duce the results of an expensive reference technique (for example, 
density functional theory) for a subset of configurations, enabling 
ab initio-level predictions over length and time scales orders of mag-
nitude larger than the previous state-of-the-art7. This advance is thus 
endowing ab initio simulations with direct relevance to chemical 
engineering problems. While exciting, these approaches are still in 

top performing sequences using a functional assay, and recycles the 
best candidates for subsequent rounds of mutation and selection. A 
drawback of the approach lies in the random nature of the mutational 
search that produces a large fraction of non-functional mutants and 
tends to restrict the mutational search to the local vicinity of the parent. 
In recent years, there has been an explosion of interest in machine-
learning-guided directed evolution (MLDE)3 in an effort to ameliorate 
these deficiencies. These approaches typically employ deep neural 
network models to learn ‘nature’s blueprint’ for protein design from 
natural sequence databases, and then sample from this distribution to 
design synthetic proteins with desired functional characteristics. The 
success of such techniques seems to lie in their capacity to efficiently 
learn complex, many-body and non-intuitive design rules, and to gen-
eratively design novel sequences adhering to these learned rules. The 
most promising approaches tend to be founded on integrated synthesis 
of biophysics, statistical mechanics and artificial intelligence, and 
chemical and biological engineers have played a leading role in the 
development of this new field.

One particularly compelling recent development in MLDE is the 
integration of self-supervised protein language models with text-
guided conditioning. In a sense, this can be viewed as the integration 
of the learned syntax and grammar of proteins with that of human 
language, wherein the latter is used to program desired structural 
and functional characteristics into sequences designed by the former. 
Three recent examples illustrate the potential of this approach. The 
ProGen model of Madani et al.4 employs a conditional transformer 
decoder that accepts a keyword or taxonomic ‘control tag’ to produce 
sequences within particular classes along with, optionally, the first few 
amino acids of the sequence (Fig. 1). The trained model was used to gen-
erate 1 million synthetic lysozyme sequences, of which 90 were selected 
for experimental synthesis, 66 of which reported functional activity in 
digesting the cell wall of Micrococcus lysodeikticus. The Chroma model 
of Ingraham et al.5 uses a denoising diffusion model to convert random 
polymer sequences into all-atom protein structures and guides struc-
ture generation by conditioning it on previously learned functional 
relationships between protein structure and function. The model was 
used to generate novel protein structures using text prompts for fold 
class (for example, “Ig fold” and “beta barrel”) and natural language cap-
tions (for example, “Protein with CHAD domain”). The ProteinDT model 
of Liu et al.6 uses multimodal learning (that is, learning over multiple 

Fig. 2 | Linking molecular and plant scales. ML-enabled force fields have the power to translate ab initio-level information at the atomic scale (left) into large-scale 
computer simulations (center) that could be directly incorporated into chemical process design and control paradigms of the future (right).
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their infancy, and important aspects of their development and use 
remain active areas of research.

We illustrate the power of ML-derived potentials with a topic that 
has long been of interest to us: the metastable phase behavior of water. 
Water is a widely studied material, which, from our perspective, trans-
lates into dozens of available water models of varying complexity. 
Crucially, there exists abundant experimental data, thus we have a 
strong understanding of which water models succeed or fail in predict-
ing a particular property. However, one area in which experimental 
data are comparatively sparse is the metastable phase behavior of 
supercooled water. Simulations and experiments have suggested 
that water may undergo a metastable liquid–liquid transition under 
deeply supercooled conditions, separating into high- and low-density 
liquids8. Most previous simulation evidence for the liquid–liquid tran-
sition was obtained using semiempirical models parameterized to 
match available experiments, thus their use for deeply supercooled 
liquid water represents somewhat of an extrapolation. Furthermore, 
some empirical water models predict the existence of the liquid–liq-
uid transition, while others do not. Recently, two of us have applied 
ML potentials to provide purely predictive (that is, non-empirical) 
evidence for the liquid–liquid transition in water, strengthening the 
available computational evidence in support of this phenomenon9. 
Owing to the long relaxation times of the supercooled liquid and the 
high degree of statistical certainty needed, ML potentials were a vital 
enabler of this work, facilitating the use of ab initio techniques in this 
difficult-to-study regime.

We stress, however, that ML potentials must be used with care, and 
further development and dissemination of best practices are needed 
to solidify their widespread use for molecular modeling. In particular, 
assembling the model training data is non-trivial and requires both 
intuition and persistence. In our experience, the addition of new train-
ing configurations to an existing dataset can have unexpected impacts 
on the accuracy and stability of the model — more data is not always 
better. One must also consider the benefits and/or drawbacks of gen-
erating general purpose ML potential models versus targeted models 
specifically tailored to the phenomenon of interest. Active learning 
and on-the-fly learning approaches can partially automate the model 
building process, but current algorithms still require non-trivial user 
input. Further, most systems will not have the abundance of bench-
marking data that are available for water, so users must think carefully 
about how to evaluate the quality of their ML potential. Given the large 
number of competing ML algorithms, identifying the best ML method 
for a particular task is a challenge. Efforts are underway to identify the 
leading approaches and to develop best practices for model develop-
ment and benchmarking10, but further work is needed towards open 
data sharing and knowledge dissemination for molecular dynamics 
applications. While the potential power of ML-enabled force fields 
is easily appreciated, these algorithms are still relatively expensive 
(10–100 times slower than classical atomistic models, even on state-
of-the-art hardware11); further advances in computational efficiency 
and user-friendly implementation12 will help push these methods to the 
forefront of molecular simulations. If such strides are made, there is 
great potential for ab initio-level simulations to play a central role in the 
future of chemical engineering research and industrial practice (Fig. 2).

Outlook
The examples that we have chosen to highlight in this Comment reflect 
our own research interests. Looking more broadly, we have identified 
three frontier areas presenting especially promising opportunities 

for enriching the research and practical dimensions of chemical engi-
neering. They are ML-guided molecular discovery and optimization13, 
ML-aided computational catalysis and reaction engineering14, and the 
integration, via ML, of ab initio-level molecular information into plant-
level process control15 (Fig. 2).

The promising future of ML in chemical engineering notwith-
standing, considerable challenges remain to be addressed. The fruitful 
application of ML requires that researchers and practitioners be well 
educated in the relevant fundamentals and praxis of these techniques 
and the integration of these tools with domain expertise. Incorporating 
statistics, data science and artificial intelligence into the chemical engi-
neering undergraduate curriculum is essential. The challenge is that 
chemical engineering is already at the high end of required credit hours, 
compared with other engineering disciplines. Thus, the academic 
chemical engineering community will eventually have to confront 
difficult choices to provide the tools necessary to fully unlock ML’s 
potential in our discipline. At the very least, this will require retrofitting 
existing courses through appropriate examples and assignments, but 
it is not clear to us that this is sufficient.

The availability of adequate computational resources is often a 
limiting factor in ML research. Generally, this means having access to 
local, small clusters of graphics processing units (GPUs) for develop-
ment and testing, and to large, shared GPU clusters, either on premises 
or in the cloud, for training and deployment of large models. Cost, 
space and cooling requirements are limiting factors that are already 
testing institutional capabilities, and may well require multi-institu-
tional consortia, creative new partnerships with industry, or massive 
new government investments at the federal and state levels.

We believe that ML has a bright future in molecular simulation 
and design, and more broadly in chemical engineering, both as an 
increasingly indispensable component of fundamental research and 
as an enabling tool in industrial practice. A sampling of ongoing work 
referenced in this Comment illustrates the extent to which ML is already 
enabling the generation and application of new knowledge, in ways that 
would have been unthinkable a few years ago.

Thomas E. Gartner III 1, Andrew L. Ferguson    2 & 
Pablo G. Debenedetti    3 
1Department of Chemical and Biomolecular Engineering,  
Lehigh University, Bethlehem, PA, USA. 2Prtizker School of Molecular 
Engineering, University of Chicago, Chicago, IL, USA. 3Department of 
Chemical and Biological Engineering, Princeton University, Princeton, 
NJ, USA.  

 e-mail: pdebene@princeton.edu

Published online: 11 January 2024

References
1. New Directions for Chemical Engineering: The National Academies Consensus Study Report 

(The National Academies Press, 2022).
2. Arnold, F. H. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).
3. Ferguson, A. L. & Ranganathan, R. ACS Macro Lett. 10, 327–340 (2021).
4. Madani, A. et al. Nat. Biotechnol. 41, 1099–1106 (2023).
5. Ingraham, J. et al. Nature 623, 1070–1078 (2023).
6. Liu, S. et al. Preprint at https://doi.org/10.48550/arxiv.2302.04611 (2023).
7. Behler, J. J. Chem. Phys. 145, 170901 (2016).
8. Palmer, J. C., Poole, P. H., Sciortino, F. & Debenedetti, P. G. Chem. Rev. 118, 9129–9151 

(2018).
9. Gartner, T. E. III, Piaggi, P. M., Car, R., Panagiotopoulos, A. Z. & Debenedetti, P. G. Phys. Rev. 

Lett. 129, 255702 (2022).
10. Fu, X. et al. Preprint at https://doi.org/10.48550/arXiv.2210.07237 (2023).
11. Lu, D. et al. Comput. Phys. Commun. 259, 107624 (2021).
12. Zeng, J. et al. J. Chem. Phys. 159, 054801 (2023).

http://www.nature.com/natchemeng
http://orcid.org/0000-0003-0815-1930
http://orcid.org/0000-0002-8829-9726
http://orcid.org/0000-0003-1881-1728
mailto:pdebene@princeton.edu
https://doi.org/10.48550/arxiv.2302.04611
https://doi.org/10.48550/arXiv.2210.07237


nature chemical engineering Volume 1 | January 2024 | 6–9 | 9

Comment

13. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Nature 559, 547–555 
(2018).

14. Tran, R. et al. ACS Catal. 13, 3066–3084 (2023).
15. Adjiman, C. S., Galindo, A. & Jackson, G. Comput. Aided Chem. Eng. 34, 55–64 (2014).

Competing interests
A.L.F. is a co-founder and consultant of Evozyne, Inc. and a co-author of US Patent 
Applications 16/887,710 and 17/642,582, US Provisional Patent Applications 62/853,919, 

62/900,420, 63/314,898, 63/479,378, and 63/521,617, and International Patent Applications 
PCT/US2020/035206 and PCT/US2020/050466. T.E.G. and P.G.D. declare no competing 
interests.

Additional information
Peer review information Nature Chemical Engineering thanks the anonymous reviewers for 
their contribution to the peer review of this work.

http://www.nature.com/natchemeng

	Data-driven molecular design and simulation in modern chemical engineering
	Data-driven protein design
	Machine-learning-enabled force fields
	Outlook
	Fig. 1 Protein language models with text-guided conditioning for data-driven protein design.
	Fig. 2 Linking molecular and plant scales.




