Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural fragmentation increases urban density but impedes transportation and city growth worldwide

Abstract

Physical geography has long been identified as critical for urban development, land use and environmental outcomes in cities worldwide. However, the literature has yet to provide comprehensive, quantitative analyses of the global extent and impact of urban geographic barriers. Here we introduce three novel indexes: the share of natural barriers, nonconvexity (a measure of natural fragmentation) and the average road detour, to measure and study the practical reach and effects of natural constraints around global cities. We calculate these indexes for areas in and around four separate global city-boundary definitions, augmenting the original data with additional variables. We find that natural barriers lead to more complex transportation environments and are associated with higher urban densities, smaller urbanized footprints, taller buildings and less pollution but also with lower incomes and smaller populations. To draw meaningful policy conclusions, comparative research about environmental, economic and social outcomes across global cities should always account for their surrounding geographies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical barriers in four global cities.
Fig. 2: Distribution of share of barriers and nonconvexity across the world.
Fig. 3: Statistical analysis of detour index.

Similar content being viewed by others

Data availability

The original datasets analyzed in this study are publicly available, as referenced in the article. The indicators derived from the datasets and the three urban indexes measuring geographic barriers can be found via GitHub at https://github.com/WilliamLiPro/Fragmented_by_Nature.

Code availability

The Python code for calculating the three geographic barriers and the Stata code for regressions we use in this study can be found via GitHub at https://github.com/WilliamLiPro/Fragmented_by_Nature.

References

  1. Batty, M. The size, scale and shape of cities. Science 319, 769–771 (2008).

    Article  Google Scholar 

  2. Cox, K. R. Spaces of globalisation: reasserting the power of the local. Cap. Class 24, 150–151 (2000).

    Article  Google Scholar 

  3. Glaeser, E. L. & Gottlieb, J. D. The wealth of cities: agglomeration economies and spatial equilibrium in the United States. J. Econ. Lit. 47, 983–1028 (2009).

    Article  Google Scholar 

  4. Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).

    Article  Google Scholar 

  5. Bettencourt, L. M., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).

    Article  Google Scholar 

  6. Barredo, J. I., Caudullo, G. & Dosio, A. Mediterranean habitat loss under future climate conditions: assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 75, 83–92 (2016).

    Article  Google Scholar 

  7. Seto, K. C., Fragkias, M., Güneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE 6, e23777 (2011).

    Article  Google Scholar 

  8. Güneralp, B., Güneralp, İ. & Liu, Y. Changing global patterns of urban exposure to flood and drought hazards. Glob. Environ. Change 31, 217–225 (2015).

    Article  Google Scholar 

  9. Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).

    Article  Google Scholar 

  10. Schneider, A. & Woodcock, C. E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 45, 659–692 (2008).

    Article  Google Scholar 

  11. Liu, L. & Meng, L. Patterns of urban sprawl from a global perspective. J. Urban Plan. Dev. 146, 04020004 (2020).

    Article  Google Scholar 

  12. Glaeser, E. L. & Kahn, M. E. in Handbook of Regional and Urban Economics (ed. Jacques-François, T.) Vol. 4, 2481–2527 (Elsevier, 2004).

  13. Cervero, R. Linking urban transport and land use in developing countries. J. Transp. Land Use 6, 7–24 (2013).

    Article  Google Scholar 

  14. McIntosh, J., Trubka, R., Kenworthy, J. & Newman, P. The role of urban form and transit in city car dependence: analysis of 26 global cities from 1960 to 2000. Transp. Res. D 33, 95–110 (2014).

    Article  Google Scholar 

  15. Jedwab, R., Barr, J. & Brueckner, J. K. Cities without skylines: worldwide building-height gaps and their possible determinants and implications. J. Urban Econ. 132, 103507 (2022).

    Article  Google Scholar 

  16. Wells, M. Skyscrapers: Structure and Design (Laurence King Publishing, 2005).

  17. Moehle, J. P. Seismic Design of Reinforced Concrete Buildings Vol. 814 (McGraw-Hill Education, 2015).

  18. Rosenthal, S. S. & Strange, W. C. The attenuation of human capital spillovers. J. Urban Econ. 64, 373–389 (2008).

    Article  Google Scholar 

  19. Barr, J., Tassier, T. & Trendafilov, R. Depth to bedrock and the formation of the manhattan skyline, 1890–1915. J. Econ. Hist. 71, 1060–1077 (2011).

    Article  Google Scholar 

  20. Burchfield, M., Overman, H. G., Puga, D. & Turner, M. A. Causes of sprawl: a portrait from space. Q. J. Econ. 121, 587–633 (2006).

    Article  Google Scholar 

  21. Saiz, A. The geographic determinants of housing supply. Q. J. Econ. 125, 1253–1296 (2010).

    Article  Google Scholar 

  22. Harari, M. Cities in bad shape: urban geometry in india. Am. Econ. Rev. 110, 2377–2421 (2020).

    Article  Google Scholar 

  23. Duque, J. C., Lozano-Gracia, N., Patino, J. E. & Restrepo, P. Urban form and productivity: what shapes are Latin-American cities? Environ. Plan. B 49, 131–150 (2022).

    Google Scholar 

  24. Angel, S., Parent, J. & Civco, D. L. Ten compactness properties of circles: measuring shape in geography. Can. Geogr. 54, 441–461 (2010).

    Article  Google Scholar 

  25. Sevtuk, A. & Amindarbari, R. Does metropolitan form affect transportation sustainability? Evidence from US metropolitan areas. Environ. Plan. B 48, 2385–2401 (2021).

    Google Scholar 

  26. Saiz, A. & Wang, L. Physical geography and traffic delays: evidence from a major coastal city. Environ. Plan. B 50, 218–243 (2023).

    Google Scholar 

  27. Akbar, P., Couture, V., Duranton, G. & Storeygard, A. Mobility and congestion in urban India. Am. Econ. Rev. 113, 1083–1111 (2023).

    Article  Google Scholar 

  28. Akbar, P. A., Couture, V., Duranton, G. & Storeygard, A. The fast, the slow and the congested: urban transportation in rich and poor countries. Working Paper No. w31642 (National Bureau of Economic Research, 2023).

  29. Cutter, S. L. The landscape of disaster resilience indicators in the USA. Nat. Hazards 80, 741–758 (2016).

    Article  Google Scholar 

  30. Hinkel, J. & Klein, R. J. Integrating knowledge to assess coastal vulnerability to sea-level rise: the development of the diva tool. Glob. Environ. Change 19, 384–395 (2009).

    Article  Google Scholar 

  31. Bertaud, A. Clearing the air in Atlanta: transit and smart growth or conventional economics? J. Urban Econ. 54, 379–400 (2003).

    Article  Google Scholar 

  32. Suzuki, H., Cervero, R. & Iuchi, K. Transforming Cities with Transit: Transit and Land-Use Integration for Sustainable Urban Development (World Bank Publications, 2013).

  33. Florczyk, A. et al. Description of the GHS Urban Centre Database 2015 https://doi.org/10.2760/037310 (Publications Office of the European Union, 2019).

  34. Dijkstra, L. et al. Applying the degree of urbanisation to the globe: a new harmonised definition reveals a different picture of global urbanisation. J. Urban Econ. 125, 103312 (2021).

    Article  Google Scholar 

  35. Xu, Z. et al. Mapping hierarchical urban boundaries for global urban settlements. Int. J. Appl. Earth Obs. Geoinf. 103, 102480 (2021).

    Google Scholar 

  36. Li, X. et al. Mapping global urban boundaries from the Global Artificial Impervious Area (GAIA) data. Environ. Res. Lett. 15, 094044 (2020).

    Article  Google Scholar 

  37. Angel, S., Blei, A. M., Civco, D. L. & Parent, J. Atlas of Urban Expansion (Lincoln Institute of Land Policy, 2016).

  38. Pesaresi, M. & Politis, P. GHS-BUILT-S R2023A—GHS built-up surface grid, derived from sentinel2 composite and landsat, multitemporal (1975–2030). European Commission http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea (2023).

  39. Irwin, E. G. & Bockstael, N. E. The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl Acad. Sci. USA 104, 20672–20677 (2007).

    Article  Google Scholar 

  40. Reis, J. P., Silva, E. A. & Pinho, P. Spatial metrics to study urban patterns in growing and shrinking cities. Urban Geogr. 37, 246–271 (2016).

    Article  Google Scholar 

  41. Lutz, C. & Sand, B. Highly disaggregated land unavailability https://doi.org/10.2139/ssrn.3478900 (SSRN, 2023).

  42. Müller, I., Taubenböck, H., Kuffer, M. & Wurm, M. Misperceptions of predominant slum locations? Spatial analysis of slum locations in terms of topography based on Earth observation data. Remote Sens. 12, 2474 (2020).

    Article  Google Scholar 

  43. Brueckner, J. K. The structure of urban equilibria: a unified treatment of the Muth–Mills model. in Handbook of Regional and Urban Economics, Vol. 2, 821–845 (North Holland, 1987).

  44. van Ham, M., Uesugi, M., Tammaru, T., Manley, D. & Janssen, H. Changing occupational structures and residential segregation in New York, London and Tokyo. Nat. Hum. Behav. 4, 1124–1134 (2020).

    Article  Google Scholar 

  45. Casey, E. S. & Watkins, M. Up Against the Wall: Re-imagining the US–Mexico Border (University of Texas Press, 2014).

  46. World Bank Country and Lending Groups (The World Bank, 2017).

  47. Freedom in the world 2022. Freedom House https://freedomhouse.org/report/freedom-world (2022).

  48. Saiz, A. Dictatorships and highways. Reg. Sci. Urban Econ. 36, 187–206 (2006).

    Article  Google Scholar 

  49. York, A. M. et al. Land fragmentation under rapid urbanization: a cross-site analysis of southwestern cities. Urban Ecosyst. 14, 429–455 (2011).

    Article  Google Scholar 

  50. Mahtab-uz-Zaman, Q. M., Lau, S. S. Y. & Mei, S. H. The compact city of Hong Kong: a sustainable model for Asia? in Compact Cities: Sustainable Urban Forms for Developing Countries (eds Burgess, R. & Jenks, M.) 267–280 (Taylor & Francis, 2000).

  51. Duranton, G. & Puga, D. in Handbook of Regional and Urban Economics (eds Henderson, V. & Thisse, J. F.) Vol. 4, 2063–2117 (Elsevier, 2004).

  52. Rosenthal, S. S. & Strange, W. C. in Handbook of Regional and Urban Economics (eds Henderson, V. & Thisse, J. F.) Vol. 4, 2119–2171 (Elsevier, 2004).

  53. Jedwab, R., Loungani, P. & Yezer, A. Comparing cities in developed and developing countries: population, land area, building height and crowding. Reg. Sci. Urban Econ. 86, 103609 (2021).

    Article  Google Scholar 

  54. Ahlfeldt, G. M. & McMillen, D. P. Tall buildings and land values: height and construction cost elasticities in Chicago, 1870–2010. Rev. Econ. Stat. 100, 861–875 (2018).

    Article  Google Scholar 

  55. Gibson, J., Olivia, S. & Boe-Gibson, G. Night lights in economics: sources and uses 1. J. Econ. Surv. 34, 955–980 (2020).

    Article  Google Scholar 

  56. Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).

    Article  Google Scholar 

  57. Kaza, N. Urban form and transportation energy consumption. Energy Policy 136, 111049 (2020).

    Article  Google Scholar 

  58. Glaeser, E. L. & Kahn, M. E. The greenness of cities: carbon dioxide emissions and urban development. J. Urban Econ. 67, 404–418 (2010).

    Article  Google Scholar 

  59. Lee, S. & Lee, B. The influence of urban form on GHG emissions in the US household sector. Energy Policy 68, 534–549 (2014).

    Article  Google Scholar 

  60. Crippa, M. et al. Gridded emissions of air pollutants for the period 1970–2012 within Edgar v4. 3.2. Earth Syst. Sci. Data 10, 1987–2013 (2018).

    Article  Google Scholar 

  61. Schmitz, R. Modelling of air pollution dispersion in Santiago de Chile. Atmos. Environ. 39, 2035–2047 (2005).

    Article  Google Scholar 

  62. Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15, 044015 (2020).

    Article  Google Scholar 

  63. Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).

    Article  Google Scholar 

  64. Yamazaki, D., Trigg, M. A. & Ikeshima, D. Development of a global 90 m water body map using multi-temporal landsat images. Remote Sens. Environ. 171, 337–351 (2015).

    Article  Google Scholar 

  65. Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe: version 4. CGIAR-CSI https://srtm.csi.cgiar.org/ (2008).

  66. Hijmans, R., Garcia, N. & Wieczorek, J. GADM: database of global administrative areas, version 3.6. GADM https://gadm.org/ (2018).

  67. World Development Indicators 2016 (The World Bank, 2016).

  68. Hamilton, B. W. Wasteful commuting again. J. Polit. Econ. 97, 1497–1504 (1989).

    Article  Google Scholar 

  69. Wheaton, W. C. Commuting, congestion and employment dispersal in cities with mixed land use. J. Urban Econ. 55, 417–438 (2004).

    Article  Google Scholar 

  70. Boeing, G. Osmnx: new methods for acquiring, constructing, analyzing and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the research assistance from D. Niu and X. Wang and for their helpful comments during the experiment and earlier draft of this paper. The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

L.W. and A.S. designed the project, performed the analysis and wrote and edited the paper. W.L. designed the algorithm and reviewed the paper.

Corresponding authors

Correspondence to Albert Saiz or Weipeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks Shlomo Angel, Mehebub Sahana and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Figs. 1–22 and Tables 1–14.

Reporting Summary

Supplementary Data 1

All the indicators and Stata code.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Saiz, A. & Li, W. Natural fragmentation increases urban density but impedes transportation and city growth worldwide. Nat Cities 1, 642–653 (2024). https://doi.org/10.1038/s44284-024-00118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44284-024-00118-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene