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Urban scaling of firearm violence, ownership 
and accessibility in the United States
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The United States is ranked first in gun possession globally and is among the 
countries suffering the most from firearm violence. Several aspects of the 
US firearm ecosystem have been detailed over the years, mostly focusing on 
nation- or state-level phenomena. Systematic, high-resolution studies that 
compare US cities are largely lacking, leaving several questions open. For 
example, how does firearm violence vary with the population size of a US city? 
Are guns more prevalent and accessible in larger cities? In search of answers to 
these questions, we apply urban scaling theory, which has been instrumental 
in understanding the present and future of urbanization for the past 15 years. 
We collate a dataset about firearm violence, accessibility and ownership 
in 929 cities, ranging from 10,000 to 20,000,000 people. We discover 
superlinear scaling of firearm violence (measured through the incidence of 
firearm homicides and armed robberies) and sublinear scaling of both firearm 
ownership (inferred from the percentage of suicides that are committed with 
firearm) and firearm accessibility (measured as the prevalence of federal 
firearm-selling licenses). To investigate the mechanism underlying the US 
firearm ecosystem, we establish a novel information-theoretic methodology 
that infers associations from the variance of urban features about scaling laws. 
We unveil influence of violence and firearm accessibility on firearm ownership, 
which we model through a Cobb–Douglas function. Such an influence 
suggests that self-protection could be a critical driver of firearm ownership in 
US cities, whose extent is moderated by access to firearms.

The origin of cities can be traced back thousands of years to the rise of 
human civilization. As human populations grew and settled in fertile 
regions, the need for organized communities and shared resources 
became crucial. These early settlements gradually evolved into cities, 
serving as centers of political, economic and cultural activities1. Cities 
provided a hub for trade, governance, innovation and socialization, 
attracting individuals from diverse backgrounds. Over time, cities have 
grown in size and complexity, shaping the trajectory of human history 
and becoming integral to our modern world2. Cities are an embodiment 
of self-organization that exemplifies how humans have evolved through 
intricate interactions among each other and with their surroundings3.

Cities exhibit emergent behaviors characterized by urban scaling 
laws3,4, akin to other complex systems, such as turbulent fluid flows5 
or ant colonies6. Urban scaling laws describe the relationship between 
population size and certain features of cities, such as the gross domes-
tic product (GDP). A large body of literature has been dedicated to the 
study of urban scaling laws, leading to many insightful conclusions 
about the present and future of urbanization. For example, quantities 
related to the volume occupied by infrastructure, such as road surface 
area, built area and power cable lengths, exhibit sublinear scaling3. 
Quantities related to household needs, such as water and electric-
ity consumption, tend to have linear scaling with population size3.  
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Within the framework of urban scaling, we study a long-standing 
question in firearm research: why do people buy guns? A popular 
theory29–31 advocates for self-protection, whereby people will purchase 
weapons as they fear for themselves and their loved ones to be victims 
of violence. Quantitative evidence in favor of this explanation is lim-
ited, due to difficulties in teasing out cause-and-effect relationships 
from complex datasets. We propose to use the variance of cities with 
respect to the scaling laws to help address this technical limitation. 
Specifically, we investigate the triad consisting of the incidence of 
homicides (as a measure of violence that would trigger a desire for 
better self-protection), firearm ownership and prevalence of federal 
firearm-selling licenses.

Deviations from scaling laws are typically referred to as scale-
adjusted metropolitan indicators (SAMIs)32. SAMIs are used to disen-
tangle local features from population size, providing a true measure of 
local urban performance at different scales. They have been previously 
employed in various attempts of understanding urban structures and 
relationships between cities32. For example, whereas per capita homi-
cide rates have been increasing from 1990 to 2010 in Brazilian cities, 
the average of the SAMIs for cities above and below the scaling law have 
been approaching zero, suggesting that more violent cities (above 
the scaling law) have been experiencing a reduction in homicides and 
less violent ones (below the scaling law) an increase in homicides33. 
Analyses with the SAMIs should yield more reliable conclusions, as no 
spurious relationships among urban features would appear due to the 
scaling laws. By applying tools of casual discovery on the SAMIs, we 
demonstrate an influence of firearm accessibility and homicides on 
firearm ownership, which we use to formulate a Cobb–Douglas model34 
to predict firearm ownership in the country. The use of such models 
in the study of urban scaling phenomena has been recently explored 
by Sarkar et al.35 and Ribeiro et al.36 in the context of urban economies 
and CO2 emissions, respectively.

The study has two main contributions. First, we apply urban scaling 
theory to detail the role of population size on firearm violence, owner-
ship and accessibility in US cities. We demonstrate that firearm violence 
scales superlinearly, like a social output, in contrast with firearm owner-
ship and accessibility. Both these quantities exhibit sublinear scaling, 
similar to the scaling observed with respect to infrastructure: there are 
fewer firearms and selling licenses per capita as cities grow in size, yet 
firearm violence per capita increases. Second, we propose a broadly 
applicable methodology that combines causal discovery tools and 
SAMIs to infer associations in urban science. Using our methodology, 
we offer support in favor of the theory of self-protection as a driver of 
firearm ownership.

Results
Urban scaling
Urban scaling laws are expressed as simple power law models

yi = cnβ
i e

ξi , (1)

where i ∈ {1, ⋯ , N} such that N is the number of cities, yi is the urban 
feature of city i (such as GDP) and ni is the population size of city i 
(metropolitan and micropolitan statistical areas, MSAs and MicroSAs, 
respectively; Methods). c is a constant, and β is the scaling exponent. 
We say that the scaling is superlinear when β > 1, sublinear when β < 1 
and linear when β = 1. c and β are usually found by fitting a linear model 
using the ordinary least squares regression on the logarithmically trans-
formed data3. The ξis are the SAMIs, which capture the deviation of each 
city from the nominal scaling in equation (1)32. SAMIs are dimension-
less measures, independent of the city size, which offer a metric of 
performance of any city with respect to others.

We investigate urban scaling of five urban quantities in the United 
States: incidence of homicides, incidence of firearm homicides, preva-
lence of federal firearm-selling licenses, incidence of armed robberies 

Lastly, variables related to social outputs, such as GDP, number of new 
patents and research and development jobs, tend to have a superlinear 
scaling3. The larger a city is, the less (more) its infrastructure (social 
output) per capita will be; household needs per capita, instead, will 
not vary with the population size.

The emergence of urban scaling laws can be attributed to social 
interactions3,4, associated with reciprocating thoughts and experi-
ences that allow for information exchange7. Superlinear scaling of the 
economy and sublinear scaling of infrastructural needs indicate clear 
benefits of living in cities, yet, not every social interaction is conducive 
to a scaling law that favors urbanization. As we have seen during the 
COVID-19 pandemic, social interactions in cities are also a vector to 
support the propagation of infectious diseases8, leading to superlinear 
scaling of incidence with population9. To a less understood extent, there 
is also evidence of superlinear scaling of crime in cities10.

Regardless of the kind of crime, superlinear scaling has almost 
always been observed3,11–13. For example, thefts show superlinear 
scaling in the United States and in countries in Central and South 
America (Mexico and Colombia) and Europe (Belgium, Denmark, 
France, Italy, Spain and the United Kingdom)13. Likewise, murder and 
aggravated assault scale superlinearly with population size for cities 
in the United States12. Interestingly, an equivalent scaling has been 
found for homicides, which encompass lawful and unlawful killing 
of a person14. A few hypotheses have been posited to explain super-
linear scaling of crime. Some scholars12,15,16 have proposed crimes to 
be an output of social interactions, thereby scaling equivalently to 
any other socio-economic output (GDP, contagious disease rates, 
number of patents and so on). Others have suggested that superlinear 
scaling is due to the fact that the prevalence of police officers scales 
sublinearly with population size, so that criminals are winning in 
number17. Others have described superlinear scaling of crimes within 
a theory that combines economic complexity and cultural evolution, 
so that the larger the city, the more it will offer ‘factors’ that allow 
its residents to commit a crime11. Another potential mechanism may 
relate to ‘societal differences in material inequality’18, whereby higher 
levels of inequality in larger cities19 will lead to higher incidence of 
violent crime.

In the United States, many of these crimes are committed with 
guns; for example, about 80% of murders in the United States in 2021 
involved guns20. Firearm injuries have been a leading cause of death 
in the country for years, surpassing the number of deaths due to car 
accidents in 35 US states in 202021. Whereas some authors have demon-
strated that firearm homicides scale superlinearly with population size 
in Brazil22, to date, an analogous relationship has not been examined 
in the United States. To fill this literature gap and test the hypothesis 
of superlinear scaling of firearm violence in the United States, we 
examine urban scaling of both the incidences of firearm homicides 
and armed robberies.

Upon developing a scaling law for firearm violence, we focus on 
firearm ownership and accessibility—two other key elements of the 
US firearm ecosystem23–25. Recent statistics suggest that the number 
of firearms in the United States has reached 393.3 million26, more than 
one firearm per person, placing the United States at the very top rank of 
gun possession globally27. Consistent with these figures, the number of 
licensed firearm dealers has reached about 78,000 shops, passing “all 
McDonald’s, Burger King, Subway and Wendy’s locations combined, 
and twice the number of US post offices”28. We examine urban scaling 
of the percentage of suicide deaths committed with firearm, scaled by 
the city population. In the absence of a national registry, this quantity 
has been shown to be one of the best proxies of the prevalence of 
firearm ownership (Methods). The rationale behind this proxy is that 
the more guns are used as a means to take one’s own life, the more 
likely they are prevalent in that community. The prevalence of federal 
firearm-selling licenses, instead, offers a direct measure of the ease of 
access to (legal) firearms25.
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and prevalence of firearm ownership. The incidence of homicides 
or firearm homicides and the prevalence of federal firearm-selling 
licenses can be found from the Center for Disease Control (CDC) and 
from the Listing of Federal Firearms Licensees from the Bureau of Alco-
hol, Tobacco, Firearms and Explosives (ATF), respectively (Methods). 
For armed robberies, we employ the Gun Violence Archive dataset 
published on Kaggle (Methods). Because there is no accessible data 
about firearm ownership in the United States, we use the percentage 
of suicide deaths committed with firearms as a proxy, following estab-
lished practices (Methods). Specifically, for each city, the estimate of 
the prevalence of firearms ownership as the fraction of the number 
of suicide deaths committed with firearm over the total number of 
suicides, scaled by the population size of the city (Methods). Suicide 
data can also be directly accessed from the CDC (Methods).

Urban scaling for the incidence of firearm homicides (Fig. 1a), 
incidence of armed robberies (Fig. 1b), prevalence of federal firearm-
selling licenses (Fig. 1c) and prevalence of firearm ownership (Fig. 1d) 
reveal nonlinear scaling. Specifically, in agreement with observations 
on firearm violence in Brazil22, the incidences of firearm homicides 
and armed robberies in the United States scale superlinearly with  
β = 1.15 (β ∈ (1.10, 1.19); c = 10−5.46; σ = 0.15) and β = 1.10 (β ∈ (1.05, 1.14);  
c = 10−5.69; σ = 0.14), respectively. In line with survey results from Pew  
Research Center on gun ownership in urban versus rural America37,  
prevalence of firearm ownership scales sublinearly with β = 0.95  

(β ∈ (0.94, 0.97); c = 100.01; σ = 0.01). Likewise, we find that prevalence  
of federal firearm-selling licenses scales sublinearly with β = 0.66  
(β ∈ (0.63, 0.69); c = 10−1.47; σ = 0.04). Superlinear scaling is observed 
for homicide incidence with β = 1.12 (β ∈ (1.08, 1.15); c = 10−5.08; σ = 0.11)  
(Supplementary Fig. 1), in strong agreement with the scaling reported 
by Bilal et al.14, based on a smaller dataset (376 US cities) and an earlier 
time period (up to 2016). Scaling results for the incidence of suicides and 
firearm suicides are presented in Supplementary Discussion 1. Results 
about the SAMIs of the three main variables are in Supplementary  
Discussion 2. Scaling results obtained by varying the number of cities 
are examined in Supplementary Discussion 3.

Analysis of associations based on SAMIs
To study relationships among the SAMIs of homicide incidence, 
prevalence of firearm ownership and prevalence of federal firearm-
selling licenses, we adopt the framework pioneered by Pearl, which 
relies on conditional independence among variables38. Through 
conditional independence, one can delve into the nature of the 
associations that are seen from scatter plots between the SAMIs  
(Fig. 2a–c), hinting at the independence between homicide incidence 
and prevalence of federal firearm-selling licenses and at their associa-
tions with prevalence of firearm ownership. We rely on conditional 
mutual information, a model-free measure of dependence among 
variables39 (Methods).
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Fig. 1 | Results on urban scaling of firearm violence, accessibility and 
ownership in the United States. a–d, The dots identify incidence of firearm 
homicide as a function of the combined population in 810 cities from 2014 to 
2019 (a), incidence of armed robbery as a function of the combined population 
in 649 cities from 2013 to 2018 (b), prevalence of federal firearm-selling licenses 

as a function of the combined population in 833 cities from 2014 to 2019 (c) and 
prevalence of firearm ownership as a function of the combined population in 
each of the 833 cities from 2014 to 2019 (d). Data about firearm homicides were 
intentionally hidden for areas with less than ten homicides per the privacy policy 
of the CDC.
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Mutual information results on pairwise dependencies and con-
ditional mutual information results on triple-wise dependencies are 
summarized in Table 1. For a 5% significance level, the SAMIs of the prev-
alence of firearm ownership are dependent on the SAMIs of homicide 
incidence and on the SAMIs of the prevalence of federal firearm-selling 
licenses. These pairwise dependencies still hold when conditioning 
on the third variable; that is, the prevalence of firearm ownership 
depends on the incidence of homicides also when conditioning on 
the prevalence of federal firearm-selling licenses, and it depends on 
the prevalence of federal firearm-selling licenses also when condi-
tioning on the incidence of homicides. These results alone address 
only symmetric, bidirectional relationships. However, the incidence 
of homicides and the prevalence of federal firearm-selling licenses 
are not dependent, and conditioning on the prevalence of firearm 
ownership makes them dependent. Under standard causal learning 
assumptions38, this is the classic case of a ‘collider’38, where one can 
conclude that both the incidence of homicides and the prevalence of 
federal firearm-selling licenses influence the prevalence of firearm 
ownership (Fig. 2d); Methods provide details on the deduction of the 
collider, and Supplementary Discussion 3 provides robustness tests 
of our claims with respect the use of alternative measures of violence, 
accounting for the presence of external confounders (such as income 

inequality or urbanicity) and use of synthetic data. We warn prudence 
in interpreting these findings as true cause-and-effect relationships 
due to the inherent inability to test for assumptions of causal learning 
from data, such as causal sufficiency, faithfulness and Markovian-
ity. The observed associations could, in fact, emerge due to direct or 
indirect causality40.

To infer the signs of associations between homicide incidence and 
the prevalence of firearm ownership and between the prevalence of 
federal firearm-selling licenses and the prevalence of firearm owner-
ship, we perform a Spearman partial correlation (Table 1). We register 
that the associations are both positive: the worse a city is performing 
with respect to homicides, the more firearms it has. Similarly, the more 
a city has access to firearms, the higher it is its firearm ownership. To 
stress the importance of using the SAMIs instead of the per capita rates, 
we note that Spearman correlation between per capita rates for homi-
cide incidence and the prevalence of federal firearm-selling licenses 
would yield a spurious significant negative correlation (ρ = − 0.157 
and p < 0.001; Supplementary Discussion 4 provides details on how 
spurious correlations might arise).

We calibrate a Cobb–Douglas model to predict the prevalence of 
firearm ownership in terms of the incidence of homicide and the preva-
lence of federal firearm-selling licenses (Methods). The fitted powers 
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Fig. 2 | Results from the study of SAMIs of violence, firearm ownership and 
firearm accessibility. a–c, Scatter plots and histograms showing marginal 
and pairwise joint distributions of the SAMIs of the three examined variables: 
homicide incidence and prevalence of firearm ownership (a), prevalence of 
federal firearm-selling licenses and prevalence of firearm ownership (b) and 
prevalence of federal firearm-selling licenses and homicide incidence (c).  
The contour plots visually represent the joint distribution; the more tilted the 

contours, the higher the pairwise linear association between the variables.  
d, Collider structure discovered through our framework and estimation of the 
fitted Cobb–Douglas model in equation (2) versus data; F and βF = 0.95 represent 
prevalence of firearm ownership and its scaling exponent, L and βL = 0.66 the 
prevalence of federal firearm-selling licenses and its scaling exponent, H and 
βH = 1.12 homicide incidence and its scaling exponent and β1 and β2 are the 
exponents of the Cobb–Douglas model for H and L, respectively.
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for incidence of homicides and prevalence of firearm licenses are 
β1 = 0.45 (β1 ∈ (0.41, 0.48)) and β2 = 0.68 (β2 ∈ (0.62, 0.74)), respectively, 
R2 = 0.61 (Fig. 2d). Given that β1 + β2 > 1, returns to scale are increasing, 
meaning that an increase in both the incidence of homicides and the 
prevalence of federal firearm-selling licenses by a factor k produces an 
increase in the prevalence of firearm ownership by more of a factor k.

Discussion
Over the last 15 years, the theory of urban scaling has provided critical 
insight into the present and future of urbanization3. The superlinear 
scaling of GDP, number of new patents and research and development 
jobs with population size is a compelling argument for cities to grow 
and thrive. Yet not all urban features that grow superlinearly are actu-
ally beneficial to cities. Several studies have documented that crime 
also grows superlinearly with population size11–13, with crime per capita 
being higher in larger cities than smaller ones. In this Article, we apply 
urban scaling theory to the study of firearm violence, ownership and 
accessibility in the United States.

Unlike most nations, the United States has a strong tradition of 
individual gun ownership41 and the Second Amendment of its Constitu-
tion guarantees the right to bear arms42. In agreement with the recent 
survey by Pew Research Center37 that broadly identified that 46% of 
adults in rural areas own a firearm compared with only 19% of adults in 
urban areas, we document sublinear scaling of prevalence of firearm 
ownership. At β = 0.95, per capita firearm prevalence decreases with the 
population size of a city so that per capita prevalence would drop by 
a factor of two when comparing a small community of ∼1,000 people 
with a large city of millions. Sublinear scaling is also found with respect 
to the prevalence of federal firearm-selling licenses, suggesting that 
licensed dealers locate proportionally more in smaller cities, probably 
to serve the increased fraction of gun owners.

Sublinear scaling has been systematically discovered in previous 
urban scaling studies addressing different forms of infrastructure  
volume of cities (road surface area, built area and power cable lengths 
and so on)3. Could this imply that firearms are some sort of infrastruc-
ture for US cities or at least that some segments of the American society 
view them as such? Infrastructure generally refers to the physical and 
organizational structures and facilities necessary for the functioning 

of a society. Firearms are not infrastructure in this traditional sense, 
and many Americans raise issues of public safety and violence around 
firearms43. Yet, as detailed by Boine et al.41, “gun culture is not mono-
lithic”; there are many attitudes and behaviors related to firearms in 
the country. The network of gun dealers and owners in the country may 
be viewed by some segments as infrastructure needed for self-defense, 
recreational purposes and criminal activity. In this vein, the observed 
sublinear scalings are not unexpected.

Reciprocally to firearm ownership and accessibility, the incidence 
of firearm violence scales superlinearly with population size. By asso-
ciating firearm violence with criminality, this finding is consistent with 
the view that criminality is a socio-economic output of a city3,12, which 
follows a superlinear scaling, such as GDP, number of new patents and 
research and development jobs. Particularly relevant to our observa-
tions is the recent theory by Gomez-Lievano et al.11, which explains 
superlinear scaling of socio-economic output in terms of the economic 
complexity of the specific phenomenon and cultural evolution. Within 
this theory, the number of concurrent factors M that are required for a 
specific phenomenon controls the scaling exponent, proportionality 
factor and variance. As such, when comparing homicides with homi-
cides with firearm, one should see an increase in the complexity of the 
phenomenon by at least one, that is, the action of securing a firearm. 
In agreement with this theory, we register an increase in the scaling 
exponent, a decrease in the intercept and an increase of the variance, 
when comparing scaling laws for homicides with firearm and homicides 
(Supplementary Discussion 5).

Urban scaling laws detail the nominal behavior of cities with 
respect to their population size, but, obviously, they do not capture 
the totality of the variance about urban quantities. Deviations from 
scaling laws are called SAMIs—a relevant commodity for scoring cities’ 
performance and understanding urban systems at different scales. 
Here we put forward an approach to discover associations between 
urban features using SAMIs in urban science, focusing on answering 
a long-standing question in firearm research: why do people in the 
United States buy guns? In our previous work44, we studied nation- and 
state-level patterns of firearm ownership as functions of mass shoot-
ings, media coverage of shootings and media coverage of firearm 
regulations. Through time series analysis, we discovered an influence 
of media coverage of firearm regulations on firearm prevalence. Such 
a relationship supports the hypothesis that people buy guns as they 
fear that new regulations may be enacted to curtail their rights to own 
firearms, offering a statistical basis to the anecdotal observation of 
increased firearm sales at the time of the election of President Obama 
when stricter regulations were on the horizon45.

Our previous work44 does not offer support for another known 
driver of firearm prevalence, that is, self-protection29–31. People may 
want to purchase a firearm under the fear that they and their loved 
ones could be the victim of a crime. Working with finer data from 
99 geographic areas (nationally representative counties and county 
clusters from the General Society Survey46), Rosenfeld et al.31 created 
a structural equations model to study the relationship between social 
trust and firearm ownership, while controlling for several conditions, 
including firearm violence. Their results point at an indirect effect of 
social trust on firearm ownership through firearm violence, whereby 
they propose that “people arm themselves in response to mistrust only 
insofar as mistrust is translated into high levels of firearm violence”. 
Despite the important insights the work offered, it is based on a rela-
tively small dataset of 99 areas and, most importantly, it uses a model 
that is not designed to discover causal structures: as acknowledged 
in the paper, “the result holds only if we (the authors) have properly 
specified the causal direction of the relationship between firearm 
homicide and firearm prevalence”.

Here we revisit the hypothesis of self-protection as a driver of fire-
arm ownership by combining the conditional independence framework 
of Pearl38 with urban scaling theory. In agreement with Rosenfeld et al.31, 

Table 1 | Results of the analysis of associations based on 
scale-adjusted metropolitan indicators to explain firearm 
ownership in US cities

Null hypothesis MI ρ

F⊥L
0.048 0.265

p < 0.001 p < 0.001

F⊥H
0.106 0.400

p < 0.001 p < 0.001

L⊥H
0.005 0.003

p = 0.273 p = 0.930

F⊥L∣H
0.041 0.288

p < 0.001 p < 0.001

F⊥H∣L
0.090 0.413

p < 0.001 p < 0.001

L⊥H∣F
0.007 -0.116

p = 0.043 p = 0.001

Table of pairwise and triple-wise results from mutual information (MI) and Spearman 
correlation (ρ) of the three examined variables: the prevalence of firearm ownership (F), 
prevalence of federal firearm-selling licenses (L) and homicide incidence (H). The first column 
indicates the null hypothesis with A⊥B∣C implying that A is independent of B given C, the 
second column represents the mutual information with the corresponding p values (one-
sided) and the third column represents the Spearman correlation with the corresponding p 
values (two-sided). Bold associations are significant at a 5% level.
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we discover that people may purchase firearms due to a desire for self-
protection, as expressed by the level of violence they will experience in 
their city. The effect of such a driver is moderated by another associa-
tion, between firearm ownership and accessibility—a result previously 
hinted at by Chao et al.25. Importantly, increasing the number of vari-
ables in the analysis or modifying the way violence is measured does not 
affect the nature of these associations (Supplementary Discussion 3).  
On the basis of these findings, we calibrate a Cobb–Douglas function 
that is consistent with urban scaling to model to predict firearm own-
ership in terms of the incidence of homicides and the prevalence of 
federal firearm selling in cities.

This study is not free of limitations. In particular, we identify two 
main limitations related to the data collection. The first one is the lack 
of a direct measure of firearm ownership in the United States, which 
forces the community to utilize proxies that can be estimated from 
available data. On the basis of the literature47–49, we choose to use the 
fraction of suicide deaths committed with firearm as a valid proxy of 
firearm ownership. Such a proxy is based on the premise that people use 
a firearm for suicide only as a function of their ownership of a firearm, 
thereby discounting personal choice in the selection of the way to take 
their own life. The second limitation is in the notion of accessibility of 
firearm, which is purely based on the prevalence of federal firearm-
selling licenses, thereby discounting other means (legal or illegal) to 
purchase a firearm. As detailed by Wintemute50, “guns sold by licensed 
dealers account for only about 60% of the guns sold in the United States. 
Guns sold by private parties, collectors and unlicensed vendors at gun 
shows account for 40% of all gun sales”—none of these routes to gun 
ownership are part of our study. In addition, we should acknowledge 
that federal firearm-selling licenses do not impose limitations on where 
to trade, thereby potentially straining the association between the 
prevalence of federal firearm-selling licenses and ease of access to 
firearms in a specific city. In principle, an authorized dealer can also 
sell online51—presently, we have no ability to track these activities.

Despite these limitations, our effort provides critical, city-level 
insight into the firearm ecosystem, which helps detail scaling laws 
and underpinning associations about firearm violence, ownership 
and accessibility. Alongside these insights, our work contributes a 
methodology to study associations between urban features based on 
SAMIs, which is broadly applicable to urban science.

Methods
Data
Homicide data were collected from the CDC Wonder causes of death 
database at a county level52. Specifically, the ‘ICD-10 Codes’ cause 
of death was filtered according to the code ‘X85-Y09 (Assault)’. The 
codes for homicides with firearm were ‘X93 (Assault by handgun dis-
charge), X94 (Assault by rifle, shotgun and larger firearm discharge)’ 
and ‘X95 (Assault by other and unspecified firearm discharge)’. In 
Supplementary Discussion 3, we expand the definition of homicides to 
include deaths assigned to injuries of ill-defined intent, Code ‘Y10-Y34 
(Event of undetermined intent)’. Interestingly, the superlinear scaling 
is not affected by potential undercounting of deaths due to injuries 
of ill-defined intent as reported by the CDC52. These deaths are more 
frequent in smaller urban areas so that it is prudent to ensure that they 
would not affect the superlinear nature of the scaling of homicide 
incidence. Our analysis points to a modest reduction in the scaling 
exponent, from β = 1.12 ∈ (1.08, 1.15) to β = 1.07 ∈ (1.04, 1.11), a decrease 
in the variance from σ = 0.11 to σ = 0.08 and an increase in the intercept 
from c = 10−5.08 to c = 10−4.70.

From the same source, we retrieved suicide at the county level 
data using the codes ‘X60–X84 (Intentional self-harm)’. The codes for 
suicide with firearm were ‘X72 (Intentional self-harm by handgun dis-
charge)’, ‘X73 (Intentional self-harm by rifle, shotgun and larger firearm 
discharge)’ and ‘X74 (Intentional self-harm by other and unspecified 
firearm discharge)’. From the CDC Wonder database, we also collected 

population data. For city i, we estimated prevalence of firearm owner-
ship (Fi) from the incidence of suicides (Si), the incidence of suicides 
with firearm (SFi) and the population (ni), as Fi = niSFi/Si. This proxy 
has been validated against data about the percentage of households 
reporting ownership of a firearm across 170 cities49, 21 states47 and the 
nine Census regions48 with correlation coefficients of 0.86, 0.90 and 
0.93, respectively.

Data about armed robberies were obtained from the Gun Vio-
lence Archive dataset on Kaggle that ends in 201853, as incidents that 
include the word ‘armed robbery’ in the incident’s characteristic. The 
geographical coordinates of the armed robberies data were aggregated 
on a county level using the ARC GIS software54 and the US census shape 
files55. To convert from county codes of homicides, firearm homicides, 
suicides, firearm suicides and armed robberies to MSAs and MicroSAs, 
we relied on data from the US Bureau of Labor Statistics56, year 2013.

Data on federal firearm-selling licenses at the zip code level were 
collected from the ATF Listing of Federal Firearms Licensees, which 
begins in 201457. Specifically, we counted the number of licenses in 
August for each studied year and aggregated them over the years. The 
dataset contained eight types of license as follows: ‘type 01 Dealer in 
Firearms Other Than Destructive Devices’, ‘type 02 Pawnbroker in 
Firearms Other Than Destructive Devices’, ‘type 06 Manufacturer of 
Ammunition for Firearms’, ‘type 07 Manufacturer of Firearms Other 
Than Destructive Devices’, ‘type 08 Importer of Firearms Other Than 
Destructive Devices’, ‘type 09 Dealer in Destructive Devices’, ‘type 10 
Manufacturer of Destructive Devices’ and ‘11 Importer of Destructive 
Devices’. Type 01 is by far the most common (Supplementary Table 1).  
All the types of license allow for selling except for type 06 (ref. 58), 
which we consistently excluded from our study. To convert from zip 
codes to MSAs and MicroSAs, we relied on data from the Missouri Cen-
sus Data Center59 (CBSA/ZIP, 2010 geographies). Firearm licenses in a 
zip code belonging to more than one MSA or MicroSA were counted 
multiple times to account for the fact that persons from different, 
neighboring cities could purchase a firearm from the same seller. For 
example, zip code 57785 belongs to both Spearfish and Rapid City, 
South Dakota, and persons from both cities may buy a firearm there.

To improve the reliability of the data, we combined all the variables 
over six-year windows. Incidence of homicides, incidence of firearm 
homicides, prevalence of federal firearm-selling licenses and fire-
arm prevalence were computed over six years, from 2014 to 2019. We 
stopped in 2019 before the COVID-19 pandemic hit the United States, 
bringing new insecurities in people’s lives that might have sparked 
more firearm purchases60,61. Incidence of armed robberies was also 
computed over six years, but one year before (from 2013 to 2018) as 
the Kaggle dataset did not contain information past 2018. As a result, 
population refers to the combined population over six years, measures 
of incidence refer to total counts over six-year intervals and measures of 
prevalence should be intended over the combined population over the 
six-year interval. For example, incidence of homicides in city i means 
the total number of homicides suffered by city i from 2014 to 2019; 
likewise, firearm prevalence in city i should be viewed as the combined 
number of firearm owners in city i from 2014 to 2019.

All the data acquired were aggregated over MSAs and MicroSAs 
because they are one of the functional definitions of cities62. Out of the 
388 MSAs and 541 MicroSAs studied, seven MSAs and five MicroSAs in 
Puerto Rico were removed as they were not part of the CDC dataset. 
Additional 26 MSAs and 58 MicroSAs were removed as they experi-
enced no homicide or had no federal firearm-selling licenses (firearm 
prevalence did not have null values for these cities), resulting in a total 
of 833 statistical areas, or cities. The three main variables (incidence 
of homicides, firearm prevalence and prevalence of federal firearm-
selling licenses) were studied for this same set of 833 cities to ensure 
consistency in the analysis of associations. For the scaling analysis of 
other variables (armed robberies and firearm homicides), we removed 
cities that had null values of those variables, separately (for example, 
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cities that did not experience armed robberies but suffered firearm 
homicides were still considered in the firearm homicides scaling). 
Hence, we studied 366 MSAs and 283 MicroSAs for armed robberies 
and 355 MSAs and 455 MicroSAs for firearm homicides.

Urban scaling
To find β and the ξis for each of the variables, the logarithmically trans-
formed data were fitted into a linear model using ordinary least square 
regression. To compute the standard errors for the R2 and the 95% 
confidence interval on β, we took into account heteroscedasticity. 
Heteroscedasticity in regression is the dependence between the vari-
ance of the residuals and the regressor, which is typically accounted 
for in urban scaling fits63. The white test of heteroscedasticity64  
indicates the presence of heteroscedasticity for all three variables: 
incidence of homicides (p value < 10−4), prevalence of firearm owner-
ship (p value = 0.033) and prevalence of federal firearm-selling licenses  
(p value < 10−4). Linear regression estimations were performed using 
the Python package Statsmodels65. In the text, we also report the vari-
ance σ computed for the SAMIs.

Cobb–Douglas model
The Cobb–Douglas model is written as

F = CHβ1Lβ2 , (2)

where F is prevalence of firearm ownership, H incidence of homicides 
and L prevalence of federal firearm-selling licenses. From the scaling 
analyses, we know that F ∼ NβF, H ∼ NβH and L ∼ NβL, with βF = 0.95, βH = 1.12 
and βL = 0.66 as the scaling exponents of prevalence of firearm owner-
ship, homicide incidence and prevalence of federal firearm-selling 
licenses, respectively. To retrieve F ∼ NβF  from the Cobb–Douglas 
model, we set the following constraint:

β1βH + β2βL = βF. (3)

The resulting model has only two free parameters, C and β1 because it 
can be written as follows:

ln F − βF
βL

ln L = lnC + β1 (lnH − βH
βL

ln L) , (4)

so that the calibration is performed the same way as the scaling laws.

Analysis of associations based on SAMIs
Traditionally, teasing out associations in complex systems has relied 
on the use of time series66, whereby causality has been typically rooted 
in a Wiener–Granger sense67 or in dynamical systems theory68. In the 
former case, a link from X to Z corresponds to the possibility of reduc-
ing the uncertainty in the prediction of the future Z from knowledge 
about the history of X67. In the latter case, a link from X to Z is related 
to the variables belonging to the same dynamical system68. The use of 
time series is problematic, if not unfeasible, when working with urban 
data, which have high spatial resolution (∼100−1,000 cities) and low 
time resolution (yearly sampling for a few years). To address this issue, 
we leveraged the conditional independence framework originally 
developed by Pearl38.

The conditional independence framework does not require tem-
poral data as it uses directed acyclic graphs (DAGs) to describe causal 
structures from conditional independence tests38. The framework is 
based on several assumptions, one of them being acyclicity, that is, two 
variables cannot be drivers of one another. This assumption may not 
hold true in many applications. The framework could be extended to 
temporal data66, where one may argue for cyclic causality; however, 
such a route is not feasible for urban data such as hours, where only a 
handful of temporal snapshots are available. Another assumption of 

the framework is that there are no unobserved variables. Should this 
assumption not hold, one might propose different DAGs with hidden 
variables that are compatible with the set of independence tests of 
Table 1. Specifically, should we relax the assumption and allow for 
unobserved variables, we would conclude that: (1) either L → F or there 
exists an unobserved common cause of L and F or both; and (2) either 
H → F or there exists an unobserved common cause of H and F or both. 
Practically, contemplating this possibility calls for exploring larger 
DAGs with more variables (Supplementary Discussion 3).

The main component of the conditional independence framework 
is a statistical test for independence between two variables conditioned 
on others. Typically, simple correlations are employed; however, cor-
relation assumes a linear relationship between the variables, which 
might not hold for all real-world systems. Rank correlations relax the 
assumption of linearity, but they assume a monotonic relationship 
between the variables, which also might not hold. To test for possible 
nonlinear relationships between random variables, we rely on an infor-
mation-theoretic measure known as conditional mutual information69.

Conditional mutual information makes no assumption about the 
underlying causal mechanism. The concept of conditional mutual 
information is based on the fundamental notion of (differential) 
entropy of a random variable X

H(X ) = −∫
∞

−∞
p(x) logp(x)dx. (5)

The entropy of random variable measures the unpredictability of its 
outcomes or the average surprise its outcomes can carry; hence it can 
be written also as H(x) = ⟨− logp(x)⟩, measured in nats39. Mutual informa-
tion is defined as the amount of information shared between two ran-
dom variables, X and Z, I(X, Z) = H(X) − H(X∣Z) = H(Z) − H(Z∣X). Mutual 
information serves as a measure of statistical association, in the sense 
that if X and Z are independent, then I(X, Z) = 0. Conditional mutual 
information is defined as the shared information between two random 
variables X and Z given a set of variables W

I(X,Z|W ) = H(X|W ) + H(Z|W ) − H(X,Z|W ). (6)

Because the true probability distributions are unknown, we rely on 
the estimator proposed by refs. 70,71 and the corresponding statistical 
testing scheme proposed by ref. 72 to assess the significance of the con-
ditional mutual information. This estimator does not require fitting a 
kernel for the probability distribution and is based on the nearest neigh-
bor statistic, which provides good estimates for small datasets. Usually, 
to test the significance, the estimated mutual information is compared 
to a surrogate distribution generated by randomly shuffling data of the 
X variable to destroy the relationship between X and Z. However, such 
an approach will also destroy the relationship between X and W, which 
does not produce a correct null distribution. The algorithm in ref. 72 
proposes a local permutation scheme of the nearest neighbors that 
conserves the information between X and W while destroying the one 
between X and Z, thereby offering an adequate statistical test.

The conditional independence tests were performed on the SAMIs 
to control for the role of the population size in cities and grounding the 
associations in the variations of cities from the nominal behavior that 
scaling laws would predict. Interestingly, using per capita rates rather 
than SAMIs would beget spurious results in the presence of underpinning 
sublinear or superlinear scalings (Supplementary Discussion 4 provides 
details on how spurious correlations might appear). The estimation 
and the statistical tests have only two free parameters, the numbers 
of nearest neighbors for the estimate kCMI and the number of nearest 
neighbors that shall be permuted for the significance test kperm. Follow-
ing the suggested parameters in ref. 72, we set kCMI ≈ 0.15N and kperm = 10. 
The surrogate distributions were each made from 10,000 null estimates 
from the randomly permuted data.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Datasets that are allowed to be shared are available on The Dynamical 
Systems Laboratory’s Github.

Code availability
Scripts used for this study are available on The Dynamical Systems 
Laboratory’s Github.
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