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Socio-spatial inequality and the effects of 
density on COVID-19 transmission in US cities

Constantine E. Kontokosta    1,2,3  , Boyeong Hong1 & Bartosz J. Bonczak    1,2,3

Cities are often associated with the rapid spread of infectious diseases, 
driven by the perceived risks of urban density and overcrowding. However, 
transmission risk can vary considerably within urbanized areas as a function 
of socio-spatial disparities and the adoption of mitigating behaviors 
across communities. Here we examine the effect of density on coronavirus 
disease 2019 (COVID-19) infection rates at the neighborhood scale, within 
and across US cities. We integrate high-spatial resolution measures of land 
use and residential population density, mobility, infection rates and social 
determinants of health to evaluate the impact of neighborhood context 
on infection risk, while controlling for the potential mitigating effects of 
social distancing behavior. We are particularly focused on disparities among 
marginalized and vulnerable neighborhoods, and the generalizability of 
the results across political, socioeconomic, regional and built environment 
contexts. Our findings demonstrate a nonlinear relationship between urban 
density and infection rates, with higher-density neighborhoods more likely 
to adopt mitigating behaviors to reduce transmission. However, low-income 
and minority communities, facing cascading health challenges, are found 
to be least able to modify mobility behavior and therefore experienced a 
disproportionate burden of COVID-19 infection risk during the first wave of 
the pandemic.

Urban density is often considered a contributing factor in the trans-
mission of infectious diseases. Although urban agglomerations have 
been connected to the risk of disease throughout history, the rapid 
population growth in cities during the industrialization period of the 
nineteenth century, and the rise of epidemiological methods, more 
directly linked cities to disease spread1. As increasing demand outpaced 
infrastructure capacity, the resultant overcrowded housing, congestion 
and insufficient sanitary and public health services led to widespread 
disease outbreaks, particularly among disadvantaged populations. 
Since higher urban densities are associated with a greater probability of 
close contacts, it follows that the rate of infectious disease transmission 
should increase with population density, represented mathematically 
by a scaling function2,3. In response, residents living in higher-density 
communities may acknowledge this risk, and modify their behav-
ior to reduce the potential for exposure to infected individuals4.  

Emerging technologies, such as food home-delivery apps, and changing 
labor market structures, which enable new opportunities for remote 
work for some occupations, contribute to the viability of social dis-
tancing behaviors for certain groups5,6. Studies on density and disease 
spread have been constrained by the confounding effects of the positive 
correlation between population density and contact probability, and 
the potential mitigating influence of behavior change among urban resi-
dents7,8. The ability of a particular community to shift mobility behavior 
through social distancing, however, is mediated by racial and ethnic 
disparities, social and cultural norms, political ideologies, education, 
occupation and income, among other household and neighborhood 
attributes9–11. Beyond this polarity, the influence of density on local 
health risk is further shaped by a range of social determinants, including 
access to health care and housing conditions12. Thus, transmission rates 
can vary considerably across different communities in the same city13.
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pandemic?; (2) what are the effects of land use and density on social dis-
tancing behaviors and COVID-19 infection rates? and (3) how do racial 
and income disparities influence mitigating behaviors in higher-density 
neighborhoods? To examine heterogeneity in neighborhood effects 
and capture regional variations, we focus our study on a diversity of 
cities in the United States for the time periods before, during and after 
stay-at-home orders were issued in each respective city.

Our approach is as follows: we first employ an indicator of expo-
sure density as a measure of social distancing behavior to quantify 
changes in neighborhood activity associated with stay-at-home orders, 
using mobility data provided by VenPath, Inc. This indicator captures 
changes in human mobility behavior by both the volume of activity in a 
given place and the nature of that activity across land-use types. Expo-
sure density provides a measure of local adoption of social distancing 
behaviors accounting for both migration patterns and changes in 
typical routines. We then analyze the effects of density and land use on 
COVID-19 infection rates by neighborhood, controlling for measured 
changes in exposure density. We define density here as the residen-
tial population per unit area of residential land use in a given census 
tract. Finally, we identify neighborhood racial and income disparities 
in observed COVID-19 outcomes by analyzing socioeconomic and 
demographic correlates of infection rates across neighborhoods with 
similar densities and land-use typologies. Throughout our analysis, we 
account for appropriate covariates that influence health outcomes. 
Our findings provide insight into the role of urban density on disease 
transmission and the effect of mitigating behaviors on neighborhood 
health risk, supporting targeted and equity-driven policy decisions.

Results
Neighborhood disparities in social distancing behavior
We calculate the average exposure density (as defined in Methods) for 
each census tract in the 15 cities (Supplementary Table 1) included in the 
study before the COVID-19 pandemic period (prepandemic or ‘typical’ 
period, covering the 2 weeks from 16 February to 29 February 2020), 
in the 2-week period after the stay-at-home order was issued for each 
respective city, and the 2-week period following the lifting of the stay-
at-home order, also known as the ‘phase 1’ reopening (Supplementary 
Table 1). The neighborhood exposure density for each city is presented 
in Supplementary Fig. 2.

Figure 1 (selected cities) and Supplementary Fig. 3 (all cities) visu-
alize the spatial patterns of neighborhood exposure density change 
over the study period (for additional details, see Supplementary Infor-
mation). In a majority of cities, the overall activity volume in down-
town areas decreased after the stay-at-home order compared with 
pre-COVID-19 levels, while activities in the peripheral areas remained 
relatively constant or increased, a result of a shift to more localized 
activity around residential areas. The nature of activity changed over 
this time period, with a substantial increase in the proportion of activity 
in residential land uses and commensurate decreases in nonresidential 
(office, retail, school and so on) and outdoor (park, sidewalks and so 
on) areas. Varying levels of social distancing behavior adoption across 
the country are observed. In Miami, Florida, for example, activity 
proportions by land use type are found to be relatively unchanged 
before, during and after the state-wide stay-at-home order, indicating 
a relatively stable mobility pattern. On the other hand, nonresidential 
and outdoor activities in New York City decreased approximately 20% 
after the stay-at-home order when compared with prepandemic levels. 
Independent of the total volume of activity in New York City, and the 
migration of population out of the urban core, those residents that 
remained changed their mobility behavior to avoid activities outside 
of the home.

Figure 2 shows the neighborhood distribution of exposure density 
change across the studied cities. Neighborhoods in New York City, on 
average, experienced a decrease in exposure density of approximately 
49%, and almost all neighborhoods adopted social distancing behaviors 

Taken together, it is important to consider the role of urban popu-
lation density in disease transmission at the scale of the neighborhood, 
where variations in built environment and socioeconomic character-
istics can be observed and analyzed14–16. During what is considered the 
first wave of the coronavirus disease 2019 (COVID-19) pandemic in the 
United States, many cities and states issued ‘stay-at-home’ or ‘shelter-
in-place’ orders to encourage, or mandate, social distancing and the 
reduction of close contacts outside of the home17. This behavioral inter-
vention was intended to reduce exposure density and thus minimize the 
spread of the disease. The response to these orders, however, was not 
uniform9,18. Such interventions have been found to have had a range of 
negative effects on individuals and communities, from mental health 
and emotional well-being, to educational outcomes and financial 
burdens, reinforcing the need to understand the relationship between 
stay-at-home orders, neighborhood context and transmission risk19–21. 
Measuring and understanding contact heterogeneity resulting from 
social distancing practices within neighborhoods is also a necessary 
step in evaluating the effect of urban density on infection rates, as well 
as the role social and economic disparities play in increasing risk for 
vulnerable communities.

There has been growing interest in social distancing behavior dur-
ing the COVID-19 pandemic, as measured using various data sources, 
such as aggregated mobility data derived from smartphone geoloca-
tion information and geotagged social media activity22–24. However, the 
value of analyzing social distancing independent of the built environ-
ment context, and vice versa, is limited. For instance, a household in a 
rural community sheltering-in-place would reduce their potential risk 
of exposure to an infected individual less than a similar household in an 
urban environment simply as a function of the lower likelihood of close 
contacts in a less-dense neighborhood. Thus, we must consider both 
the baseline risk of transmission in a particular place, and the impact 
of social distancing behavior on an adjusted risk basis.

Several recent studies have specifically examined the effect of 
urban density on the transmission of COVID-19 in different global 
contexts25–31. The results from these papers show inconsistent results 
on the link between population density and COVID-19 transmission 
rates31,32. Most are limited by the geographic scale of the analysis, the 
granularity of COVID-19 outcome data and the extent to which social 
distancing behavior is appropriately represented27,30,33–38. First, density 
and disease transmission are mediated by the likelihood of close con-
tacts in urbanized areas. Effectively accounting for mobility behaviors 
when examining differential socio-spatial impacts of density creates 
nontrivial data and computational challenges39. Second, many stud-
ies analyze the effects of density at the county or regional level, which 
can obscure localized variations in urban density, particularly at the 
neighborhood scale36,40, or focus on a single city, which can constrain 
the generalizability of findings30. Finally, it is important to account for 
local health policy context during the study period, particularly as it 
relates to stay-at-home orders. Many cities and states adopted these 
orders in the early stages of the pandemic to limit disease transmission. 
However, the timing of these orders, and the extent of the associated 
mandates, varied considerably across the United States, given local and 
regional differences in disease prevalence and political ideology41,42.

In this Article, we analyze the effects of urban residential popula-
tion density on COVID-19 infection rates at the neighborhood (census 
tract) level, while controlling for changes in mobility behavior and 
other social determinants of health. We model both residential popula-
tion density and exposure density across neighborhoods in 15 US cities 
to identify and evaluate how racial and income disparities influence the 
effects of density and the adoption of mitigating behaviors in response 
to COVID-19 transmission risk. We address three questions related to 
local public health policy and the impact of density and land use on 
infection rates during the first wave of the COVID-19 pandemic: (1) how 
did neighborhoods in different urban and socioeconomic contexts 
respond to social distancing policies during the early stage of the 
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Fig. 1 | Census tract-level exposure density changes between the 
prepandemic period and the period after the stay-at-home order (left), and 
between the stay-at-home period and the period after phase 1 reopening 
(right). Austin, TX (top), Chicago, IL (middle) and New York City, NY (bottom) are 

shown here as examples. Maps for all cities are found in Supplementary Fig. 3.  
The minimum and maximum values of −0.4 and 0.4 are threshold levels for the 
lowest and highest bins, respectively, for visual representation.

http://www.nature.com/natcities


Nature Cities | Volume 1 | January 2024 | 83–93 86

Article https://doi.org/10.1038/s44284-023-00008-2

after the stay-at-home order (represented as the gray-colored area 
under the curve). In the case of neighborhoods in Las Vegas, Nevada, 
on the other hand, average exposure density decreased by only 6%, and 
approximately half of all neighborhoods did not adjust their typical 
mobility behaviors. Overall, neighborhoods in east coast cities, includ-
ing Boston, New York City, Philadelphia and Washington DC, exhibit 
larger decreases in exposure density when compared with the other 
cities in the study group, as represented by positively skewed exposure 
density distributions. The distributions of the neighborhood response 
to the lifting of the stay-at-home order are shown as dotted curves. For 
example, the exposure density curve for New York City after its phase 
1 reopening demonstrates a clear positive shift from the stay-at-home 
period. The mean value for the exposure density change curve indicates 
a return to near-normal levels, on average, of neighborhood activity. 
As the figures represent, exposure density change varied considerably 
across cities and within different neighborhoods in each city. Despite 
similar social distancing policies, there are clear disparities in com-
munity social distancing behaviors.

Effects of density on social distancing and infection rates
After observing community differences in mobility behaviors during 
the first wave of the COVID-19 pandemic, we focus on the effect of neigh-
borhood residential population density on mitigating behaviors and 
COVID-19 infection rates. Specifically, we hypothesize that neighbor-
hoods with similar density and land-use characteristics will have similar 
social distancing behavioral responses and comparable infection rates, 
after controlling for other social determinants of health. Residents in 
higher-density neighborhoods may perceive a higher risk of infection 
due to the greater probability of close contacts with potentially infected 
individuals in their everyday lives. As a risk-mitigation measure, this 
awareness could lead to mobility behavior changes to reduce the like-
lihood of interaction with others outside of the household or family 
unit. Conversely, residents in lower-density neighborhoods may not 
perceive an increased risk of transmission in their communities, where 
the number of random social interactions may be relatively limited. 
This could result, then, in more modest mobility behavior changes 
in response to social distancing restrictions. Other factors, such as 

political ideology, demographic and socioeconomic characteristics, 
and risk tolerance are also considered.

To test this hypothesis, we first group neighborhoods in all 15 cities 
based on density and land-use characteristics using k-means clustering, 
an unsupervised machine learning method. The algorithm is applied 
to a total of 6,216 census tract neighborhoods after removing outliers 
based on population size (for descriptions of the methodology and land 
use data, see Methods). The clustering output identifies five distinct 
neighborhood groups with similar built environment characteristics 
across the cities in the study group. Neighborhoods assigned to the 
same cluster group, although they may not be in the same city, share 
similar land use profiles and population densities. Figure 3 visualizes 
the spatial pattern of the clusters for selected cities (for all cities, see 
Supplementary Information) and Supplementary Table 2 presents 
descriptive statistics for the built environment features for each  
cluster group.

The five neighborhood groups have distinct patterns of exposure 
density change, as shown in Supplementary Table 2. Group 1 (defined 
as ‘ex-urban residential’ given the relatively high proportions of resi-
dential and open space land uses in these neighborhoods) and group 
2 (‘institutional and industrial’) neighborhoods decreased overall 
activity 26% and 27%, respectively, which represents the lowest rate 
of exposure density change across the five groups. Residents in these 
neighborhood groups may be more likely to maintain their behaviors 
and activity outside of the home because of a lower perceived risk of 
close contacts. ‘Low-density residential’ (group 3, characterized by 
one- and two-family housing) and ‘mixed-use’ (group 4) neighbor-
hoods show similar exposure density change rates, decreasing overall 
by 34% and 36%, respectively, with a noted shift away from activities 
in nonresidential and outdoor areas. Activity levels in ‘high-density’ 
neighborhoods (group 5), which includes urban core neighborhoods, 
dropped dramatically, approximately 61% when compared with base-
line (prepandemic) levels. Residents in this cluster group appear to 
adjust their normal mobility behaviors substantially in response to 
social distancing mandates. Additionally, neighborhoods in group 5 see 
many visitors for various purposes (for example, commuting, tourism, 
education, work and so on), which may influence risk perception and 
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Fig. 2 | Neighborhood distribution of exposure density change across the studied cities. The solid lines represent exposure density change after the stay-at-home 
order and dotted curves show the change after the lifting of the order.
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thus behavior change. Furthermore, there were considerable decreases 
in activity volume in group 5 neighborhoods resulting from population 
out-migration, thus accounting for the large decrease in exposure 
density. The relationship between neighborhood density and social 
distancing behavior is more clearly demonstrated in the scatter plots 
of population density and exposure density change for each neighbor-
hood group. As Fig. 4 shows, there is a statistically significant negative 
relationship between residential population density and exposure 
density change within each neighborhood group. This suggests that 
neighborhoods with higher residential population density reduced 
their exposure density more than lower-density neighborhoods.

The magnitude of the density effect on infection rates can be 
estimated using a spatial contact model2,43,44. Airborne transmission 
of respiratory viruses generally follows a density-dependent curve 
within a relatively lower-density setting that saturates in a higher-
density setting based on a frequency-dependent constraint (Fig. 5a and 
ref. 2). From empirical data as shown in Fig. 5b, however, we observe 
a quadratic function as the best-fit relationship between residential 
population density and neighborhood infection rates (here, we use 
cumulative COVID-19 case rates through the second week of August 
2020). This suggests that within higher-density communities, there 
are mitigating behaviors that reduce transmission rates from what 
would be expected based on density alone.

We assume that mitigation effects begin at the inflection point of 
the curve, and identify communities with densities greater than the x 
value of the inflection point and case rates lower than its associated 
y value (the lower-right shaded quadrant). Neighborhoods in this 
quadrant are assumed to exhibit mitigating behaviors (for example, 
mobility changes to reduce exposure density) to lower case rates below 
what would be expected on the basis of residential density alone. The 
magnitude of the mitigation effect can be measured by the relative 
vertical distance between the inflection point in the curve and a given 
neighborhood’s case rate (for a detailed description, see Methods). 
Supplementary Table 3 represents the summary of mitigation effects 
for each clustered group (city-specific mitigation effects are summa-
rized in Supplementary Table 4 and Supplementary Fig. 5).

To understand differences between higher-density neighbor-
hoods with and without mitigating behaviors, we examine exposure 
density change, total residential population change, activity propor-
tion change and socioeconomic characteristics of neighborhoods 
above and below the estimated inflection point of case rates for each 

cluster. We specifically examine the role of racial composition and 
income on disparities in infection rates and exposure density change, 
controlling for neighborhood density and land-use characteristics. 
We analyze statistically significant differences within and across clus-
ter groups using t-tests and a logistic regression model (for detailed 
descriptions of the data and methodology, see Methods).

The t-test results are presented in Table 1, and the results of the 
logistic regression model are presented in Supplementary Table 5. Race 
and ethnicity are found to be significant factors in mitigating behavior 
for higher-density neighborhoods. For example, the percentage of 
non-Hispanic White population is positively associated with mitigating 
behavior (making up 41.65% of the population of neighborhoods with 
mitigating behavior versus 15.94% of those without, odds ratio 1.789), 
indicating that neighborhoods with larger proportions of non-Hispanic 
White population reduced exposure density after controlling for urban 
density. On the other hand, the proportion of Black population is found 
to have mixed outcomes depending on neighborhood group. The effect 
for Asian and Hispanic populations is found to be consistent across the 
different neighborhood clusters. Neighborhoods with a greater reduc-
tion in exposure density are more likely to have a higher proportion 
of Asian households and fewer Hispanic households. Overall, more 
racially diverse neighborhoods are less likely to change their mobility 
behavior, particularly in higher-density communities.

Educational attainment and job occupation are also found to be 
important determinants of social distancing and exposure density 
change. Neighborhoods where social distancing behavior adoption is 
greatest tend to have populations with higher educational attainment 
(based on the percentage of the population with a bachelor’s degree or 
higher) and a larger percentage of employees working in finance, real 
estate, professional, scientific and management occupations. On the 
other hand, neighborhoods without mitigating behaviors tend to have a 
higher proportion of employees working in manufacturing, wholesale, 
retail, transportation and health care, occupations more likely to be 
considered essential or less conducive to work-from-home arrange-
ments45. This finding is observed in the results of both the t-tests and 
the logistic model, where the odds ratio for essential workers is 0.519.

Income, health insurance coverage and neighborhood health 
characteristics are found to be among the influencing factors in the 
behavioral responses to social distancing guidelines, after controlling 
for land use and density. Neighborhoods with higher median house-
hold incomes (measured as the normalized difference from the city 
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Fig. 3 | The results of the neighborhood clustering algorithm based on density and land use, with Austin, TX (left), Chicago, IL (middle) and New York City, NY 
(right) as examples. The number of census tract neighborhoods assigned to each clustered group are shown in the legend. The results for all cities can be found 
in Supplementary Fig. 4. CT, census tract.
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Fig. 5 | Relationship between residential population density and COVID-19 
infection rate. a, Illustration of the conceptual relationship between population 
density and infection rate. b, A scatter plot of neighborhood residential 
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pandemic. The generalized best fit curve (y = −120.2x2 + 2,282x − 8,062) results 
in a higher R2 (0.027) than a linear relationship (R2 = 0.00026). c, A conceptual 
diagram for identifying neighborhoods with and without mitigating behaviors.

http://www.nature.com/natcities


Nature Cities | Volume 1 | January 2024 | 83–93 89

Article https://doi.org/10.1038/s44284-023-00008-2

mean) reduced exposure density more than relatively lower-income 
neighborhoods, resulting in a larger mitigation effect in high-density 
areas. The results for households without health insurance and resi-
dents with underlying health conditions suggest that socioeconomi-
cally disadvantaged and vulnerable neighborhoods are less likely to 
adopt social distancing behaviors, despite higher health risk factors, 
when compared with other neighborhoods with similar built environ-
ments. This is a result, in part, of the higher likelihood of households 
to be employed in essential occupations and/or those that cannot 
be done remotely. Finally, political ideology is shown to be a signifi-
cant determinant of social distancing compliance across all clustered 
neighborhood groups. In areas with similar density and land use types, 
neighborhoods in Republican governed states are less likely to engage 
in social distancing behaviors. Additionally, neighborhoods with higher 
proportions of residents who voted for Democrat Joe Biden in the 2020 
Presidential election are more likely to engage in social distancing 
behavior compared with communities with more citizens who voted 
for Republican Donald J. Trump.

Discussion
Our study provides evidence for the effect of urban density on COVID-19 
infection rates at the scale of the neighborhood, while accounting for 
changes in mobility behavior and social distancing within communities. 
We note that our study has several limitations, including the effects 
of city and neighborhood testing differentials on reported COVID-19 
case data, the absence of local COVID-19 case data for three cities in the 
study group, and the unobserved impacts of physical distancing and 
the use of masks. These constraints are described in detail in Methods.

We observe two critical findings. First, the risk of COVID-19 infec-
tion is, in general, positively correlated with density; however, as 

density increases, the likelihood of the adoption of mitigating behav-
iors increases, which counteracts the potential transmission risk 
associated with higher-density neighborhoods. The effect of neigh-
borhood density on COVID-19 infection rates, therefore, is found to 
be nonlinear, influenced by socio-spatial disparities in income, racial 
and ethnic composition, and political ideology. Case rates increase 
with density to a point, measured here to be approximately 13,260 
residents per square mile of residential land area, at which case rates 
begin to decrease. After controlling for neighborhood density and 
land-use characteristics, we observe that this decrease is driven, in 
part, by the adoption of mitigating behaviors in the form of social 
distancing and changes in mobility. Residents in relatively higher-
density communities change their mobility behavior most, perhaps 
in response to the perception of higher transmission risk, and this 
results in a mitigating effect on infection rates below what might 
be expected from density factors alone. While infection rates tend 
to decrease after a specific population density, there is significant 
variation after accounting for neighborhood socioeconomic and 
demographic characteristics.

If social distancing behavioral responses stem solely from dis-
parities in risk perception based on residential population density, 
we would expect that most—if not all—higher-density neighborhoods 
should exhibit a mitigation effect, either from behavior change (shift-
ing activities from nonresidential to residential areas) or a decrease in 
population (out migration from higher risk areas). To the contrary, we 
observe that there are higher-density communities without mitigating 
behaviors, such as in the South Bronx and Flatbush in New York City, 
Dorchester in Boston and East Garfield Park in Chicago (as illustrated by 
communities above the horizontal line from the inflection point of the 
density-infection rate curve and spatially visualized in Supplementary 
Fig. 5). This suggests that while density influences social distancing 
behavior, additional factors contribute to exposure density change 
and infection rates more than density alone.

Second, we find that only certain groups are able to change their 
mobility behavior sufficiently to offset the increased risk due to density. 
The observed differences in mitigating behavior are directly corre-
lated with the racial and economic composition of the neighborhood. 
We find that, after controlling for neighborhood population density 
and land-use mix, communities without mitigating mobility behav-
iors tend to have a greater proportion of racial and ethnic minorities, 
lower median incomes and more critical vulnerabilities, including 
overcrowded housing, lack of health insurance and higher likelihood 
of underlying health conditions. Furthermore, the proportion of 
essential workers in nonmitigating neighborhoods is almost double 
that of neighborhoods with mitigating behaviors. This indicates that 
neighborhoods facing the greatest risk from COVID-19 infection are 
least able to change their mobility behavior in response to social dis-
tancing mandates, putting these neighborhoods at continued risk for  
COVID-19 transmission despite stay-at-home orders. These findings 
suggest a paradox for social distancing mandates—while they are 
intended to protect the most vulnerable, these policies may have a 
disparate impact on at-risk communities that are unable, for a wide 
range of reasons, to meaningfully change mobility behaviors. As such, 
while stay-at-home guidelines and the resultant changes in behavior 
reduce the risk of infection for some, the ancillary negative effects on 
health and well-being from sheltering in place may have created addi-
tional burdens for vulnerable communities, without a considerable 
reduction in transmission risk.

Taken together, while infection rates increase with density, behav-
ior change in higher-density neighborhoods appears to outweigh the 
intrinsic risk associated with densely populated communities. How-
ever, low-income and minority communities, facing cascading health 
challenges, are found to be least able to modify their mobility behavior 
and therefore experienced a disproportionate burden of COVID-19 
infection risk during the first wave of the pandemic. The implications 

Table 1 | Demographic and socioeconomic characteristics of 
higher-density neighborhoods with and without mitigating 
behavior. Statistically significant features shown

Feature Neighborhoods 
without 
mitigation

Neighborhoods 
with mitigation

t-Statistics (P 
value)

Non-Hispanic white 
population (%)

15.94% 41.65% −26.06 (0.000)

Black population (%) 32.25% 24.96% 6.06 (0.000)

Asian population (%) 10.09% 12.73% 4.52 (0.000)

Hispanic population (%) 41.57% 19.00% 25.16 (0.000)

Racial diversity 0.55 0.47 9.00 (0.000)

Median income (z-score 
normalized within city)

−0.43 0.14 −15.24 (0.000)

Gini coefficient 0.45 0.48 −11.25 (0.000)

Population with 
Bachelor’s degree (%)

15.52% 25.73% −24.43 (0.000)

Employees working 
from home (%)

3.32% 5.15% −13.81 (0.000)

Unemployment rate (%) 4.76% 4.19% 4.97 (0.000)

Essential workers (%) 25.36% 14.62% 29.00 (0.000)

Professional workers (%) 28.44% 48.27% −29.21 (0.000)

Households without 
health insurance (%)

10.53% 7.06% 14.92 (0.000)

Voters who voted for 
Joe Biden in 2020 (%)

52.80% 61.28% −6.72 (0.000)

Housing units with 
overcrowding (%)

12.26% 6.99% 17.19 (0.000)

Population with 
underlying health 
conditions (%)

14.04% 11.56% 17.16 (0.000)
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of this for equitable health policy interventions are substantial. If the 
response to stay-at-home orders is not uniform and vulnerable com-
munities are least able to adopt social distancing behaviors, then not 
only do these communities face greater risk of infection due to a higher 
probability of exposure, they also bear the burden of the negative 
impacts associated with stay-at-home mandates.

Methods
Data
This study relies on several data sources. A descriptive summary 
is presented in Supplementary Tables 6–8. The primary data used 
for calculating the exposure density index are anonymized smart-
phone geolocation pings obtained from VenPath, a data-marketplace 
company providing mobile-application data based on more than 
200 smartphone applications across the United States. The dataset 
contains approximately 250 billion geotagged data points associ-
ated with 4.5 million unique devices hourly, and covers the period 
from 1 February to 13 July 2020. Due to the sensitivity of the data, 
raw data were collected from the dedicated Amazon Web Services 
S3 cloud storage service using the Amazon Web Services command 
line interface and processed within the secured and access-controlled 
environment of the New York University (NYU) High Performance 
Computing facility. To further ensure anonymity and data privacy, 
after classifying mobile activity data into one of the representative 
types using land-use information (as described further in Methods), 
geolocation data were aggregated to a 250-meter grid and further 
averaged at the neighborhood level (operationalized here as the 
census tract, but other areal units could be used with the method, 
as shown in Supplementary Fig. 1). The data processing and data 
management plan were approved by NYU’s institutional review board 
(approval no. IRB-FY2018-1645).

For the purpose of assigning an activity type to the mobility 
geolocation data, we used a range of city-specific land-use data com-
bined with building footprint data, administrative boundaries and 
road networks. These data were sourced from official administrative 
records obtained through publicly available open data platforms. 
Local road network data were obtained for each city from the Open-
StreetMap platform using QGIS software with dedicated plugins. 
Each data layer was converted into the Geographic Coordinate Sys-
tem corresponding with the mobility data and clipped to the local 
municipality (city) boundary extent. A full list of ancillary data used 
for this rasterization process and analysis is provided in Supplemen-
tary Table 7.

To examine neighborhood-level COVID-19 infection rates, we col-
lected available data on confirmed COVID-19 cases for 12 cities from 
multiple data sources at the zip code level (localized COVID-19 data 
were not available for three of the initial sample of 15 cities). On the 
basis of the number of reported COVID-19 cases for each city, we used 
spatial interpolation to adjust to the census tract level. Specifically, the 
infection rate is defined as the number of confirmed cases per 10,000 
residential population. COVID-19 case data sources are presented 
in Supplementary Table 8. Additionally, we retrieved multiple ancil-
lary datasets for neighborhood demographic, socioeconomic and 
political characteristics. We used the US Census Bureau 2019 5-year 
estimate American Community Survey database for census tract data 
on race, ethnicity, household type, housing, income and job occupation 
attributes46. Voting patterns and political affiliation were extracted 
from the standardized precinct 2020 presidential data, developed 
and shared by the New York Times47. We also obtained census tract 
data on neighborhood health conditions, specifically chronic disease 
and health indicators provided by the Centers for Disease Control 
and Prevention48. We used these data to estimate the percentage of 
neighborhood residents with underlying medical conditions. These 
datasets are publicly available and acquired from open data platforms 
and government databases.

Land-use rasterization and mobility behavior classification
We considered activity outside of residential land uses to be associated 
with a greater risk of infection. While within-household transmission 
rates have been found to be a important component of COVID-19 dis-
ease spread49, our study focuses on the role of urban density in infection 
risk and, therefore, emphasizes the likelihood of close contacts with 
those outside the family or household unit.

The rasterization and mobility activity classification methodol-
ogy is illustrated in Supplementary Fig. 6. To differentiate between 
residential and nonresidential activities, we first created a 1-meter 
resolution rasterized basemap with specific land-use type labels for 
each city. The rasterized basemap integrates city and administrative 
boundaries, street and sidewalk networks, land-use classifications and 
building footprints derived from various data sources (as presented in 
Supplementary Table 7). For each city, the extent of the study area was 
defined using the administrative boundaries of the municipality, con-
verted into the projected coordinate system (EPSG:3857) and rasterized 
at a 1-square-meter resolution. Similarly, street network, land use and 
building footprint data were also reprojected, rasterized, encoded and 
aligned with the city boundaries raster. After processing, these rasters 
were then stacked such that each pixel represents a specific land-use/
land-cover class. Land cover information is categorized into multiple 
integer values to represent different standardized land-use types (such 
as 10 for residential properties, 30 for commercial buildings, and so on; 
for the full list of classes used, see Supplementary Table 9). In addition 
to the associated land-use classification label, each pixel is identified by 
its positional index referenced to the bottom-left corner of the raster, 
as well as its geographical coordinates.

This information is used for assigning mobility geolocation data to 
a specific land-use grid cell. To do so, each mobility ping was spatially 
joined to a corresponding land-use raster pixel based on its location. 
Calculation of the changes in mobility behavior and exposure density 
are based on the activity levels aggregated to a 250-meter × 250-meter 
grid and normalized by the land-use distribution within each grid cell. 
To estimate those changes, we count the hourly number of unique 
devices within each land-use category based on the matched raster 
pixel in a grid cell. This process helps to further ensure data privacy and 
account for uncertainty in the device geolocation accuracy. Land-use 
assignment is used as a proxy for the nature of the activity occurring 
in the respective cell. It allows us to differentiate between activities 
occurring within four distinct groups, namely residential areas, non-
residential areas (for example, commercial and retail), outdoor areas 
(for example, park and playground) and on major roads associated 
predominantly with vehicular traffic (as presented in Supplementary 
Table 9). Activities occurring on major road networks are excluded 
from the analysis. To align with the spatial resolution of the ancillary 
datasets, the resultant activity and exposure density metrics are aggre-
gated and reported at the census tract level.

Initial data processing of each land-use layer was performed using 
QGIS software followed by the rasterization process using the Python 
environment within NYU’s Center for Urban Science and Progress 
Research Computing Facility (CUSP RCF). Mobile activity mapping was 
executed inside NYU High Performance Computing’s Hadoop cluster 
using the PySpark environment.

Measuring social distancing behavior using exposure density
To measure neighborhood behavioral responses to social distanc-
ing across multiple cities, we updated and expanded our exposure 
density metric developed previously9. This accounts for the land-use 
rasterization process for each city. Exposure density is based on the 
probability of contact (contact rate) with others outside of residen-
tial land uses. It measures the likelihood of random contact with a 
potentially infected individual given a unit area, land-use category 
and defined time interval. This can be expressed as the neighborhood 
population, including both infectious and susceptible subgroups and 
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accounting for population changes over the study period, multiplied 
by the proportion of activity in nonresidential and outdoor land-use 
settings, normalized by the total area of nonresidential and outdoor 
land uses within a specified geographic boundary. Our exposure den-
sity metric accounts for not only the volume of people active in a given 
area, but also the extent of activity occurring outside of predominantly 
residential areas.

Here, we define exposure density (Er(t)) as the population within 
a unit area during a given time period. (Er(t)) is the number of unique 
devices in a selected geographic area multiplied by the proportion of 
activity occurring in nonresidential and outdoor land uses. This meas-
ure approximates a contact probability for mobility activities occurring 
outside of residential areas. Therefore, exposure density is specified as:

Er(t) =
N(t) × PNRO(t)

ANRO
, (1)

where (Er(t)) is the exposure density for a given temporal unit, Nt is 
the total population in a given geographic area, PNRO is proportion of 
activity occurring in nonresidential or outdoor land uses (as a proxy 
for contact probability) and ANRO is the total area of nonresidential 
and outdoor land uses in the selected geographic unit. PNRO takes into 
account not only how many people stay in a given area, but also how 
many people are active outside of their presumed place of residence. 
PNRO is given by:

PNRO(t) =
NNR(t) + NO(t)

N(t)
, (2)

where NNR(t) is the hourly number of unique devices in nonresidential 
land uses and NO(t) is the hourly number of unique devices in outdoor 
land uses at the time t. If the population of a given neighborhood all 
remain in their presumed home locations, as measured by the mobility 
data, then the exposure density would be equal to zero.

We measure the change in exposure density and activity propor-
tions in different land-use categories for each census tract before, 
during and after the respective stay-at-home order was implemented 
for each city. This is represented by:

Erchange(t1) =
(Er(t1) − Er(t0))

Er(t0)
, (3)

PLchange(t1) =
(PL(t1) − PL(t0))

PL(t0)
, (4)

where Er(t1) is the 14-day average exposure density after the stay-at-home 
order, Er(t0) is the 14-day average exposure density before the stay-at-
home order (prepandemic period) and PL(t1) is the 14-day average pro-
portion of activities occurring in different land use types L (residential, 
nonresidential and outdoor) in a given temporal period. Erchange(t1)   
and PLchange(t1) provide a measure of social distancing behavior, account-
ing for the both the volume of activity and its nature.

Estimating the effects of neighborhood density
One hypothesis we consider is that if social distancing behavior is 
independent of neighborhood density, there should be no statistically 
significant differences in exposure density change between neighbor-
hoods with varying built environment characteristics. Specifically, 
we test this hypothesis by clustering neighborhoods based on their 
density and land-use composition, and then examining whether expo-
sure density changes vary across the resultant neighborhood groups.

To identify neighborhood clusters based on density and built 
environment characteristics, we apply a k-means clustering algo-
rithm based on five input variables: residential population density, 

percentage of residential land cover, percentage of nonresidential 
land cover, percentage of industrial or institutional land cover and 
percentage of open space land cover. Residential population density is 
defined as the residential population divided by the area of residential 
land cover. The k-means algorithm is specified as:

J =
k
∑
j=1

n
∑
i=1

||x( j)i − cj||2, (5)

where J is the sum of squares of the distance of each data point to its 
assigned vector, xi is each data point, cj is a centroid for cluster j, k is the 
number of clusters and n is the number of data points. To find cluster 
centers representing certain regions of the data, k-means clustering 
conducts an iterative process. After optimization, it was determined 
that five (k = 5) clusters minimized the total sum of squares of distance 
between data points and the respective centroid of the cluster to which 
the data point belongs.

We applied this clustering analysis to all census tract neighbor-
hoods (6,216 census tracts, excluding census tracts with residential 
land cover accounting for less than 5% of the total area), independent 
of city identification. The resultant clustered neighborhood groups 
were then integrated with exposure density measures to examine sta-
tistically significant differences in social distancing behavior adoption 
between groups by using a one-way analysis of variance (ANOVA) and 
a Tukey’s test for post hoc analysis.

Mitigating behaviors in higher-density neighborhoods
We first plotted the relationship between residential population den-
sity and COVID-19 infection rates for each neighborhood, segmented 
by clustered group, as a descriptive analysis of neighborhood distribu-
tions (Fig. 5). To measure mitigation effects in higher-density neighbor-
hoods, we identified a best-fit curve using a quadratic equation. The 
inflection point of each curve marks the point where infection rates 
break from the frequency-dependent constraint, as shown in Fig. 5. 
Neighborhoods with case rates below this threshold are considered to 
have lower than expected case rates, and thus demonstrate a mitigation 
effect. This is specified as:

Ni = {
1 ifDi ≥ xv andCi ≤ yv
0 ifDi ≥ xv andCi > yv

, (6)

where Ni is a binary variable equal to 1 if a neighborhood exhibits miti-
gating behavior, and 0 otherwise, Di is the residential population den-
sity of neighborhood i, Ci is the COVID-19 case rate for neighborhood 
i and (xv, yv) is a vertex (inflection point) of the fitted curve (Fig. 5c). 
The mitigation effect for each neighborhood is calculated based on 
the vertical distance between the y value of the inflection point and 
the case rate for each neighborhood specified as:

Mi = {
(yv−Ci)
yv

ifDi ≥ xv andCi ≤ yv

0 ifDi ≥ xv andCi > yv
, (7)

where Mi is the estimated mitigation effect of neighborhood i, Ci is the 
COVID-19 case rate of neighborhood i and yv is the y value of the inflec-
tion point of the fitted curve. Mi indicates the modeled COVID-19 case 
rate reduction resulting from mitigating behaviors.

We compared higher-density neighborhoods with mitigation 
(Di ≥ xv and Ci ≤ yv) and those without mitigation (Di ≥ xv and Ci > yv) 
within and across clustered neighborhood groups (Fig. 5c). We analyzed 
neighborhood socioeconomic, demographic and political attributes, 
including race and ethnicity, age group, household characteristics, 
education and occupation, neighborhood health burdens and political 
affiliation. T-tests were used to identify statistically significant differ-
ences between neighborhoods.
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In addition, a logistic regression model was used to identify sta-
tistically significant correlates of neighborhood characteristics and 
mitigating behaviors, controlling for the built environment context. 
Specifically, the dependent variable is a binary for mitigating behav-
ior adoption (1: neighborhoods with mitigation, 0: neighborhoods 
without mitigation) and independent variables include demographic, 
socioeconomic and political features.

Limitations
There are several limitations to our analysis. First, we rely on case rate 
data at the neighborhood level for our study. It is acknowledged that 
testing rates varied across cities and communities during the first wave 
of the pandemic; however, testing data are not consistently available 
at the local level in the studied cities. In addition, as with all COVID-19 
infection data, reported infections are based on residential location, 
not necessarily on the place where infection occurred. Second, our 
exposure density measure captures the relative density of mobile 
devices aggregated to the neighborhood scale. We cannot infer from 
these data the spatial proximity of devices to draw any conclusions 
regarding person-to-person physical distancing (for example, remain-
ing 6 feet apart, as suggested by the Centers for Disease Control and 
Prevention guidelines). Finally, land-use and exposure density meas-
ures are collected and estimated for all 15 cities in the study group, 
whereas local COVID-19 infection data was only available for 12 of these 
cities. Thus, our study of the relationship between urban density and 
exposure density is based on the full sample, while the link between 
density and infection rates is estimated from the 12 cities with complete 
data are available. The study group is described in more detail in Sup-
plementary Information.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used to conduct the analyses described here are summarized 
in Supplementary Tables 6–8. Processed, aggregate data derived from 
publicly available, open data sources that support the findings of this 
study are available via the dedicated data repositories. The rasterized 
land use classification data for selected US cities is available in New 
York University’s UltraViolet repository with the identifier of https://
doi.org/10.58153/t7m6v-37090 (ref. 50). The dataset of zip code-level 
COVID-19 case rates used in this study is also available in the NYU’s 
UltraViolet platform with the identifier of https://doi.org/10.58153/
avp10-a8h86 (ref. 51). The primary mobility data that support the find-
ings of this study are available from VenPath, Inc., but restrictions apply 
based on a data sharing agreement. The aggregated neighborhood-
level exposure density metrics along with the corresponding code are 
available in the dedicated GitHub repository.

Code availability
Code and associated materials are available in a dedicated GitHub 
repository available at https://github.com/UrbanIntelligenceLab/
socio-spatial-inequality-and-the-effects-of-density-on-covid19-trans-
mission-in-us-cities under MIT License.
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