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BACKGROUND: Circulating tumor DNA (ctDNA) testing has emerged as a novel tool for cancer precision medicine. This study
investigated the genomic profiling and clinical utility of ctDNA in metastatic prostate cancer.
METHODS: This is a nation-wide prospective observational study. Patients treated with systemic treatment for metastatic
castration-sensitive prostate cancer (mCSPC) and metastatic castration-resistant prostate cancer (mCRPC) were included. ctDNA was
analyzed using FoundationOne Liquid®CDx at enrollment. In a subset of patients, ctDNA after disease progression and tissue prior
to the initiation of treatment were examined using FoundationOne Liquid®CDx and FoundationOne®CDx, respectively.
RESULTS: The frequency of AR alterations and homologous recombination repair (HRR) defect was higher in mCRPC compared with
mCSPC. Tumor mutational burden was correlated between tissue and ctDNA at pre-treatment, as well as ctDNA between at pre-
treatment and at post-treatment. Patients with HRR defect were associated with shorter time to castration resistance in androgen
deprivation therapy/combined androgen blockade, but not in androgen receptor pathway inhibitor, compared with patients
without HRR defect in mCSPC. Time to treatment failure in patients with AR amplification or AR mutation was shorter compared
with patients without AR alterations in mCRPC.
CONCLUSIONS: This study revealed valuable findings for the clinical care of metastatic prostate cancer. Especially, predictive
factors such as HRR defect in mCSPC should be validated in the future.

BJC Reports; https://doi.org/10.1038/s44276-024-00049-7

INTRODUCTION
Prostate cancer is one of the most diagnosed cancers among men
in Western countries [1]. Metastatic castration-sensitive prostate
cancer (mCSPC) can occur as de novo disease or due to recurrence
after radical local treatment for localized prostate cancer,
representing approximately 10% of newly diagnosed cases in
Japan [2]. Although 1st line treatment including androgen
deprivation therapy (ADT) is initially highly effective in the relief
of cancer-related symptoms, prostate-specific antigen (PSA)
decline, and tumor shrinking, therapeutic resistance is almost
universal, and most mCSPC progresses to castration-resistant
prostate cancer (CRPC). In recent years, many drugs for treating
patients with mCSPC and CRPC have been developed in landmark
trials and have become available [3, 4]. Recently, several novel
treatments including poly-ADP ribose polymerase inhibitors and
immune checkpoint inhibitors based on genomic findings have
been developed for the treatment of metastatic CRPC (mCRPC),

realizing cancer precision medicine [5–7]. However, most treat-
ment decisions are currently not performed on the basis of
individual genomic profiling in any state of progressive disease,
except PARP inhibitors for mCRPC.
Circulating tumor DNA (ctDNA) testing has emerged as a novel

tool to drive cancer precision medicine. Although next-generation
sequencing (NGS) of tumor tissue is the optimal method for
comprehensive genomic profiling, accessing metastatic sites for
tissue biopsy is challenging. In addition, the tumor tissue from
only one region may not be sufficient to capture intra-patient
tumor heterogeneity. In contrast, ctDNA can be obtained less
invasively and repeatedly, and capture the current genomic profile
of the tumor, encompassing its heterogeneity [8–10]. So far,
evidence of ctDNA analysis has been accumulating in clinical
settings, which revealed the genomic landscape and showed
concordance with genomic profiles detected in tissues as well as
prognostic value in advanced prostate cancer [11–13]. In addition,
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clonal evolution by treatment pressure was reported among
patients mainly with mCRPC [14–19]. In contrast, their roles in
mCSPC are relatively limited, and no study has reported clonal
evolution in paired ctDNA of mCSPC [17, 20–22]. Furthermore, the
predictive value of genomic alterations on treatment outcomes
has rarely been reported, which is useful in making decisions on
treatment choice in the clinical setting.
Therefore, we conducted a prospective observational study that

investigated genomic profiling and the clinical utility of ctDNA in
metastatic prostate cancer.

MATERIALS AND METHODS
Patient enrollment
SCRUM-Japan MONSTAR SCREEN is a nationwide study involving core
cancer institutions in Japan investigating ctDNA genomic profiling and gut
microbiome; Six institutions were involved in the MONSTAR-Urology
subgroup (National Cancer Center Hospital East, Osaka University Hospital,
Kyushu University Hospital, Hokkaido University Hospital, Keio University
Hospital, and Saitama Medical University International Medical Center).
The key inclusion criteria were as follows: (1) histopathologically confirmed

unresectable or metastatic solid cancer, (2) receipt of or planned following
systemic therapy; (cohort A) 1st line treatment, (cohort B) treatment after
pre-defined genomic alterations were identified, (cohort C) immune
checkpoint inhibitors, and (cohort D) pre-defined androgen receptor
pathway inhibitors (ARPI) including abiraterone and enzalutamide, (3)
patient aged ≥ 16 years, (4) Eastern Cooperative Oncology Group
performance status of 0–1; (5) adequate organ function; and (6) receipt of
or planned cancer genomic profiling test using tumor tissue. Among them,
patients who were diagnosed with metastatic prostate cancer and enrolled
from the institutions of the MONSTAR-Urology subgroup were the subjects
in this study. Patients whose ctDNA at pre-treatment undetectable were
excluded.
This study was conducted in accordance with the Declaration of Helsinki

and the Japanese Ethical Guidelines for Medical and Health Research
Involving Human Subjects. Eligible patients provided written informed
consent. The study protocol was approved by the Institutional Review
Board of each participating institution and registered at the University
Hospital Medical Information Network (UMIN) Clinical Trials Registry
(protocol nos. UMIN000036749). This study was initiated in August 2019
and enrollment was completed in February 2022.

ctDNA genotyping
Blood sampling were performed before corresponding treatment includ-
ing ADT in mCSPC (pre-treatment) and after progression (post-treatment).
NGS analysis of ctDNA was performed using FoundationOne Liquid®CDx
(F1LCDx®) at a Clinical Laboratory Improvement Amendments (CLIA)-
certified, College of American Pathologists (CAP)-accredited laboratory
designated by Foundation Medicine Inc., as described [23, 24]. The assay
uses hybrid-capture technology and deep sequencing coverage to report
single nucleotide variants, indels, genomic rearrangements, copy number
variations (CNVs) (amplifications and losses) in 324 cancer-related genes,
and genomic signatures including blood tumor mutational burden (bTMB),
microsatellite instability (MSI), and tumor fraction (TF) [25]. bTMB-High was
defined by ≥14 mut/Mb, and TF was considered elevated when it could be
estimated using aneuploidy, a threshold of ≥ 10% [25, 26].
Homologous recombination repair (HRR) defect was defined by

alterations in 15 HRR genes (BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12,
CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, and/or
RAD54L). Mismatch repair (MMR) deficient was defined by alterations in 4
MMR genes (MLH1, MSH2, MSH6, and/or PMS2). Oncogenic alterations were
grouped by major signaling pathways from pan-cancer analyses, excluding
the HIPPO, NRF2 and TGFβ pathways that were altered in < 1% of samples
within clinical subgroups [21, 27]. TP53 was not grouped with DNA repair
genes and considered separately, as were two individual genes relevant in
prostate cancer (AR, SPOP) (Supplementary Table 1).

Tumor tissue genotyping
NGS analysis of tumor tissue was performed using FoundationOne®CDx
(F1CDx®) at a CLIA-certified, CAP-accredited laboratory designated by
Foundation Medicine Inc., as described [23, 28]. The pathologic diagnosis
of tissue biopsy was confirmed on routine hematoxylin and eosin–stained

slides, and all samples forwarded for DNA extraction contained a minimum
of 20% tumor nuclei. 50− 1000 ng of DNA are used for whole genome
shotgun library construction and hybrid-capture. F1CDx® covers 324
cancer-related genes and detects relevant single nucleotide variants, CNVs,
gene fusions and indels, and genomic signatures including tumor
mutational burden (TMB) and MSI. Assessment of TMB and MSI was
performed as described previously [25].

Clinical data
The clinicopathological information and efficacy data relating to the
systemic therapy of patients were collected prospectively using an
electronic data capture system. These clinical data and genotyping results
were stored in a clinical-grade database and used for an integrated clinico-
genomic analysis.
All patients were treated under physician’s discretion according to

current guideline. ADT was performed by surgical and medical castration
with gonadotropin releasing hormone agonist (leuprorelin and goserelin)
or antagonist (degarelix). Combined androgen blockade (CAB) was defined
as combination therapy with ADT plus first-generation antiandrogen
including bicalutamide and flutamide. In August 2019 when this study
started, abiraterone for high-risk mCSPC defined by Latitude criteria and
mCRPC, as well as enzalutamide and docetaxel for mCRPC had been
approved in Japan. However, enzalutamide and apalutamide were
approved in May 2020 for mCSPC in Japan. Progression to CRPC was
defined according to Prostate Cancer Working Group 2 (PCWG2) criteria
[29]. For the analysis of time to CRPC, time to treatment failure (TTF) and
overall survival (OS), progression to castration resistance, treatment
discontinuation, and death from any cause were defined as end events,
respectively. Patients who did not experience any of these events were
censored at the last follow-up visit. For the analysis of survival, the number
of months from enrollment date to the earliest event or censoring date
was calculated.

Statistical analyses
All statistical analyses were performed using JMP16 software (SAS Institute,
Cary, NC, USA). Continuous and categorical data were presented as median
with interquartile range (IQR) and number with percentage, respectively.
Comparison between groups of continuous data of matched samples and
categorical data were analyzed using paired t-test and Fisher’s exact test,
respectively. Correlations between parameters were determined using the
Pearson’s correlation coefficients. Survival analysis was performed using
the Kaplan–Meier method and log-rank test. Univariate and multivariate
analyses were performed using the Cox hazard proportional model to
estimate hazard ratios (HRs) with 95% confidence intervals (CIs),
respectively. Differences on the prognostic impact between treatments
were investigated through interaction tests. All P-values were two-sided. P-
values < 0.05 were considered significant.

RESULTS
Genomic landscape in ctDNA at pre-treatment
In total, 192 patients were enrolled from six institutions to
participate in MONSTAR-Urology subgroup, and 163 patients were
analyzed after excluding either unavailable clinical data (n= 3),
non-metastatic disease (n= 13), or ctDNA undetectable (n= 12),
and both non-metastatic and ctDNA undetectable (n= 1)
(Supplementary Fig. 1). Among them, 68 patients were mCSPC
and 95 patients were mCRPC. Genomic alterations and landscape
of ctDNA by F1LCDx® obtained at enrollment to MONSTAR
SCREEN were demonstrated according to TF by mCSPC and
mCRPC (Fig. 1, Supplementary Table 2). MSI-High were reported in
2 cases (2.1%) with mCRPC, who accompanied MSH2 or MSH3
mutation and both were bTMB-High. bTMB-High were not
observed in cases with mCSPC, but detected in 5 (5.3%) cases
with mCRPC, who carried HHR defect and/or MMR deficient.
Among various pathogenic and likely pathogenic alterations,
genomic alterations observed in multiple cases with variant allele
frequency (VAF) of over 2% were listed. TP53 alteration that was
most frequently observed was detected in 29.4% and 29.5% with
mCSPC and mCRPC, respectively. Also, PTEN alteration was
common abnormality, which was observed in 10.3% and 11.6%
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of mCSPC and mCRPC, respectively. The alteration frequency in AR
gene including single nucleotide variant, amplification, and
genomic rearrangement was higher in mCRPC (28.4%) compared
with mCSPC (0%, P < 0.0001). BRCA1, BRCA2, and ATM alterations
were detected in 3 [1 case (1.5%) with mCSPC, 2 cases (2.1%) with
mCRPC], 18 [3 case (4.4%) with mCSPC, 15 cases (15.8%)
with mCRPC], and 16 [1 case (1.5%) with mCSPC, 15 cases
(15.8%) with mCRPC] cases, respectively. BRCA2 and ATM
alterations were more frequent in mCRPC compared with mCSPC
(BRCA2, P= 0.024; ATM, P= 0.0023). Similarly, HRR defect were
observed in 20.6 and 42.1% of mCSPC and mCRPC (P= 0.0043).

Concordance between tissue and ctDNA
To investigate the concordance between tissue and ctDNA at pre-
treatment, 49 archival and 2 fresh tissues were analyzed by
F1CDx®. However, F1CDx® testing failed in 13 tissues, resulting in
concordance having been examined in 38 patients (Supplemen-
tary Fig. 1). TMB in tissue and bTMB in ctDNA showed high
correlation (r= 0.927, P < 0.0001, Fig. 2a). When concordance of
gene alterations was examined, 56 (27.2%) of gene alterations
were concordantly observed between tissue and ctDNA. However,
79 (38.3%) and 71 (34.5%) of gene alterations were detected only
in tissue and ctDNA, respectively. The sensitivity of ctDNA testing
represented by the ratio of detected gene alterations in blood
among those in tissues was 41.5% (44.8% among 19 samples with
TF ≥ 1%) (Fig. 2b). The sensitivities of ctDNA testing in mCSPC and
mCRPC were 43.8% and 35.9%, respectively. The sensitivities of
ctDNA testing of mutation, CNV and rearrangement were 51.1%,
15.4% and 62.5%, respectively. Figure 2c demonstrated the
concordance status of alterations in the genes with a frequency
of over 5% in tissue or ctDNA at pre-treatment among matched
patients. Among them, 32 (33.7%) alterations were concordant
between tissue and ctDNA, whereas 63 (66.3%) alterations were
discordant. AR alterations were detected only in ctDNA from

patients with mCRPC, whereas there was no AR alteration in tissue,
which was mostly obtained before hormonal therapy. Meanwhile,
copy number loss of RB1 and PTEN were detected in tissue, but
not detected in blood samples with ctDNA fraction of less than
15%. Similarly, APC, ATM, and SPOP alterations in tissue were not
detected in ctDNA in some patients. Meanwhile, TP53, DNMT3A,
ASXL1, and TET2 alterations in ctDNA were not detected in tissue
in some patients, presumably because of clonal hematopoiesis of
indeterminate potential. Alterations in BRCA2 and CDK12 were
detected in both tissue and ctDNA in 2 and 3 patients,
respectively.

Clonal evolution during treatment
Next, genomic alterations in ctDNA between pre-treatment and
post-treatment were compared in 46 patients in whom paired
F1LCDx® were available (Supplementary Fig. 1). TF at pre-
treatment and post-treatment was shown in Fig. 3a, indicating
decreased and increased TF after treatment, and the correlation
between pre-treatment and post-treatment is weak (r= 0.257,
P= 0.085, Fig. 3a). When the correlation of TF between pre-
treatment and post-treatment was analyzed by diagnosis status
and time to progression, TF between pre-treatment and post-
treatment was correlated in mCSPC (r= 0.590, P= 0.013), but
not mCRPC (r= 0.125, P= 0.52), shorter time to progression
(<6 months, r= 0.340, P= 0.14), and longer time to progression
(≥ 6 months, r= 0.151, P= 0.46). However, bTMBs between pre-
treatment and post-treatment were highly correlated (r= 0.984,
P < 0.0001, Fig. 3b). When concordance of gene alterations was
examined, 206 (59.9%) gene alterations were concordantly
observed in ctDNA between pre-treatment and post-treatment.
In comparison, 63 (18.0%) and 75 (21.8%) gene alterations were
detected only in ctDNA at pre-treatment and post-treatment,
respectively (Fig. 3c). When samples with TF ≥ 1% at both pre-
treatment and post-treatment were analyzed, 172 (65.4%) gene
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alterations were concordantly observed in ctDNA between pre-
treatment and post-treatment. In comparison, 46 (17.5%) and 45
(17.1%) gene alterations were detected only in ctDNA at pre-
treatment and post-treatment, respectively. Figure 3d demon-
strated concordance status of alterations in the genes with
frequency of over 5% in ctDNA at pre-treatment or post-treatment
among matched patients. Among frequently-altered genes, de
novo alterations that was emerged after treatment were detected
in 18 (39.1%) patients. De novo alterations of AR, TP53, RB1, BRAF,

PTEN, and MLL2 were recurrently observed in 2 (4.3%), 2 (4.3%), 2
(4.3%), 2 (4.3%), 3 (6.5%), and 2 (4.3%) patients, whereas de novo
alteration of other genes was rare. However, TP53mutation (n= 1)
and PTEN loss (n= 2) were observed in tissue in cases whose
sequencing data in tissue was available, indicating those
alterations was not detected at pre-treatment. Interestingly, de
novo alterations were detected in 4 (80.0%) among 5 patients
treated with ADT plus ARPI (abiraterone, enzalutamide, or
apalutamide) for mCSPC, whereas only 2 (25.0%) among 8
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patients treated with ADT/CAB. In addition, de novo alterations
were detected in 4 (30.8%) among 13 patients and 3 (37.5%)
among 8 patients after enzalutamide and abiraterone treatment
for mCRPC, respectively.

Prognostic and predictive impacts of genomic alterations
in mCSPC
Next, we investigated prognostic and predictive impacts of
genomic alterations in mCSPC. The clinicopathological character-
istics of patients with mCSPC were shown in Table 1. Among 68
patients, 32 (47.1%), 28 (41.2%), and 8 (11.8%) patients were
treated with ADT/CAB, ADT plus ARPI, and ADT plus docetaxel,
respectively. The association of alteration signatures, altered genes
and altered pathway with a frequency of > 5% were analyzed with
time to CRPC, TF ≥ 10% as well as TP53 and PTEN alterations and
NOTCH pathway alteration were associated with shorter time to

CRPC regardless of treatment (Supplementary Fig. 2, Supplemen-
tary Table 3).
Subsequently, the predictive impact of genomic alterations in

mCSPC between ADT/CAB and ADT plus ARPI was analyzed.
Interestingly, the presence of HRR defect was differentially
associated with time to CRPC between ADT/CAB and ADT plus
ARPI (Supplementary Table 4). Patients with HRR defect were
associated with shorter time to CRPC compared with patients
without HRR defect when treated with ADT/CAB, whereas
significant difference was not observed between patients with
and without HRR defect when treated with ADT plus ARPI (Fig. 4).
When adjusted by TF ( < 10% vs. ≥ 10%), metastatic burden; high
burden defined by ≥ 4 bone metastasis or visceral metastasis
(high vs low), and Gleason grade group (group ≤ 4 vs. 5), HRR
defect was associated with shorter time to CRPC in ADT/CAB (HR,
6.12: 95% CI, 1.80–20.8; P= 0.0037), but not in ARPI (HR, 0.37: 95%
CI, 0.043–3.20; P= 0.37). However, no pathway was predictive
between ADT/CAB and ADT plus ARPI (data not shown).

AR alterations in mCRPC
Finally, we investigated the alteration status of AR gene among 95
patients with mCRPC (Table 2). At pre-treatment, AR W742C and
W742L mutations were most frequently observed in 11 (11.6%)
patients and 7 (7.4%) patients, followed by L702H (4.2%), H875Y
(4.2%), and T878A (4.2%), who were treated without prior ARPI
(n= 12) or with prior ARPI (n= 13) (Fig. 5a). In addition, AR gene
amplification and rearrangement were detected in 8 (8.4%) and 3
(3.2%) patients. When AR alterations were compared in ctDNA
between pre-treatment and post-treatment, VAF of AR mutation
was increased after treatment (P= 0.021) although copy number
of AR amplification was not increased statistically significantly
(P= 0.29) (Fig. 5b). Interestingly, AR F877L mutation regarded as
enzalutamide and/or apalutamide resistance emerged after
enzalutamide treatment in one case (Fig. 5b). In addition, VAF of
AR W742C mutation was increased after enzalutamide treatment
in 2 cases (Fig. 5b). Next, the prognostic and predictive impacts of
AR alterations were investigated among patients treated with ARPI
for mCRPC within 3rd line treatment. Although TTF was
comparable between abiraterone and enzalutamide, TTF in
patients with AR amplification (P < 0.0001) or AR mutation
(P= 0.012) was shorter compared with patients without AR
alterations (Fig. 5c).

DISCUSSION
This study showed the genomic landscape of ctDNA, concordance
between tissue and ctDNA, and clonal evolution during treatment
in mCSPC and mCRPC. Consistently with previous studies, TP53
was commonly detected, followed by alterations in AR, PTEN and
HRR genes. Consistently with previous reports, the frequency of
alterations in AR and HRR genes including BRCA2 and ATM was
enriched in mCRPC compared with mCSPC, suggesting that
alterations in AR and HRR genes promote treatment resistance to
initial ADT-based therapy in prostate cancer. Previously, Fan et al.
have shown similar result that genomic alterations in AR and
CDK12 genes were enriched in ctDNA with mCRPC compared with
those with de novo mCSPC among Asians [22].
This study showed modest concordance of 27.2% in all genes

and 33.7% in frequently-altered genes between tissue and ctDNA.
Previously, the concordance between tissue and ctDNA in
matched patients was reported to be 75% in solid tumors
including mainly lung cancer [30]. As well, Wyatt et al. reported
high concordance between metastatic mCRPC tissue and blood
synchronously sampled with tissue sampling in patients with TF of
greater than 2% in ctDNA [12]. In this study, tissue sampling was
performed from the primary region at treatment naïve in most
cases. Therefore, several genomic alterations could be detected
only in ctDNA, which may represent de novo alterations during

Table 1. Characteristics in patients with metastatic castration-
sensitive prostate cancer.

Characteristics n= 68

Median age, years (IQR) 73 (69–79)

Median PSA level, ng/ml (IQR) 254 (72.4–992)

NA 1

ISUP grade group, n (%)

≤ III 5 (7.4%)

IV 23 (33.8%)

V 40 (58.8%)

Metastasis, n (%)

Synchronous 66 (97.1%)

Metachronous 2 (2.9%)

Prior local treatment, n (%)

Absence 61 (89.7%)

Curative radiation 7 (10.3%)

Lymph node metastasis, n (%)

Absence 23 (33.8%)

Presence 45 (66.2%)

Bone metastasis, n (%)

Absence 13 (19.1%)

1 5 (7.4%)

2 or 3 10 (14.7%)

≥ 4 40 (58.8%)

Lung metastasis, n (%)

Absence 57 (83.8%)

Presence 11 (16.2%)

Liver metastasis, n (%)

Absence 66 (97.1%)

Presence 2 (2.9%)

Treatment, n (%)

ADT monotherapy 22 (32.4%)

CAB 10 (14.7%)

ADT plus docetaxel 8 (11.8%)

ADT plus abiraterone 15 (22.1%)

ADT plus enzalutamide 2 (2.9%)

ADT plus apalutamide 11 (16.2%)

ADT androgen deprivation therapy, CAB combined androgen blockade, IQR
interquartile range, ISUP International Sciety of Urological Pathology, NA
not available, PSA prostate-specific antigen
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spaciotemporal evolution. However, there is a possibility that
clonal hematopoiesis of indeterminate potential was included in
ctDNA samples because F1LCDx® does not include analysis of
genomic DNA from normal cells. Inversely, genomic alterations
detected only in tissues may represent current technical limita-
tions in ctDNA analysis, as Chi et al. reported high concordance of
BRCA1, BRCA2, and ATM alterations including nonsense, splice, and
frameshift between tissue and ctDNA, but lower concordance for
large rearrangement, and homozygous deletions [31]. In addition,
AR gene alterations were detected only in ctDNA among the
patients with mCRPC, which were not detectable in tissues from
the primary site at treatment-naïve, representing one of the
treatment resistant mechanisms to CRPC. These factors may have
resulted in low concordance between tissue and ctDNA in
this study.
This study evaluated clonal evolution during treatment using

serial sampling in patients to determine therapy selection
pressure. To the best of our knowledge, this is the first report
on clonal evolution by paired ctDNA in mCSPC. Previously, Annala
et al. reported clonal evolution in paired ctDNA before and after
ARPI for mCRPC in a prospective study, indicating that most driver
alterations were consistently detected, but about half of patients
shifted in somatic populations after treatment [18]. Consistently,
this study showed high concordance of genomic alterations
between pre-treatment and post-treatment. However, the emer-
gence of de novo alterations was observed in less than half of the
patients with mCSPC and mCRPC after treatment. Recently,
Herberts et al. performed deep whole-genome sequencing of
serial plasma and synchronous metastases in patients with
mCRPC, and found copy number gain of AR in addition to copy
number loss of TP53, RB1, and PTEN after resistance to treatment
targeting AR signaling, suggesting an important role of altered
function of these genes in treatment resistance [32]. Consistently,
this study observed de novo genomic alterations in AR, TP53, RB1,
and PTEN in some patients after treatment. Schweizer et al.
reported high concordance of DNA repair gene alterations in
paired ctDNA and/or metastatic tissue when clonal hematopoiesis
of indeterminate potential was excluded [13]. Consistently, de
novo alterations in HRR genes were rare in this study, indicating
that DNA repair gene alterations represent truncal events. In
addition, this study showed that TF between pre-treatment and
post-treatment was correlated in mCSPC, but not mCRPC,
suggesting dynamic change of TF by treatment in mCRPC.
This study reported several interesting findings that add

practical value beyond currently used clinical factors. This study
showed the significance of genomic alterations as
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Table 2. Characteristics in patients with metastatic castration-resistant
prostate cancer.

Characteristics n= 95

Median age, years (IQR) 73 (68–76)

Median PSA level, ng/ml (IQR) 13.6 (3.62–70.0)

ISUP grade group, n (%)

≤ III 13 (14.0%)

IV 25 (26.9%)

V 55 (59.1%)

NA 2

Lymph node metastasis, n (%)

Absence 55 (57.9%)

Presence 40 (42.1%)

Bone metastasis, n (%)

Absence 14 (14.7%)

1 18 (18.9%)

2 or 3 13 (13.7%)

≥ 4 50 (52.6%)

Lung metastasis, n (%)

Absence 81 (85.3%)

Presence 14 (14.7%)

Liver metastasis, n (%)

Absence 91 (95.8%)

Presence 4 (4.2%)

Treatment, n (%)

Abiraterone 37 (38.9%)

Enzalutamide 38 (40.0%)

Taxane 11 (11.6%)

Others 9 (9.5%)

Treatment line for CRPC, n (%)

1st line 61 (64.2%)

2nd line 13 (13.7%)

3rd line 7 (7.4%)

≥ 4th line 14 (14.7%)

IQR interquartile range, ISUP International Society of Urological Pathology,
NA not available, PSA prostate-specific antigen
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prognosticators in mCSPC and mCRPC. In mCSPC, high TF as well
as TP53 and PTEN alterations and NOTCH pathway alteration were
prognostic factors for high risk of rapid progression to CRPC.
Recently, it was reported that high ctDNA fraction was associated
with poor OS in mCSPC, supporting the finding in this study
[17, 33]. In addition, Stopsack et al. reported that genomic

alterations in signaling of AR, cell cycle, MYC, TP53, and NOTCH by
MSK-IMPACT panel using tissues were associated with shorter
time to CRPC in mCSPC although detailed information on
treatment is not available due to retrospective data-based
analyses [21]. In addition, recent research using pre-treatment
tumor tissues revealed that lower activity of NOTCH pathway was
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No alteration 52 42 25 13 7

AR amplification 5 2 0 0 0
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post-treatment (red bar) from matched patients. c Time to treatment failure according to treatment (abiraterone or enzalutamide) (left), and
AR gene alterations (right) in mCRPC patients.
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associated with primary resistance to ARPI in mCRPC, suggesting
inactivation of NOTCH pathway play important role in obtaining
treatment resistance in prostate cancer [34]. Consistently, our
prospective observational study confirmed the adverse effect of
TP53 alteration and NOTCH pathway alteration and suggested the
adverse effect of PTEN alteration by liquid biopsy on time to CRPC
in mCSPC. In mCRPC, this study showed that AR alterations were
associated with shorter treatment duration with ARPI, which is
consistent with previous reports [14, 16, 17].
Notably, this study suggested that genomic alteration could be

predictive of treatment efficacy in mCSPC. In mCSPC, HRR defect
was associated with a different risk of progression to CRPC
between ADT/CAB and ADT plus ARPI. This study showed that HRR
defect was associated with a higher progression risk with ADT/
CAB, but not with ADT plus ARPI in mCSPC, indicating that
patients with HRR defect in mCSPC receive significant benefits
from ARPI combination therapy.
This study evaluated genomic alterations in 324 genes using

F1LCDx® and F1CDx®. However, a more comprehensive genome-
wide determination needs to be conducted to capture somatic
variants and tumor fractions more accurately. In addition, F1LCDx®
and F1CDx® do not distinguish somatic and germline gene
mutations, which limited an analysis and an interpretation of the
findings. However, the result obtained from an investigation using
commercially available cancer genomic testing showed usefulness
in the clinical setting. Also, the number of prostate cancer patients
enrolled in this study was not large, and the case number of some
subgroups was small. This exploratory study did not adjust
multiple testing, resulting in increased false discovery rate.
Therapeutic intervention and clinical examination were not
defined because the design was an observational study. The
finding obtained in this study are exploratory, and need to be
validated in the future.
This study revealed the genomic landscape of ctDNA in

metastatic prostate cancer across the broad spectrum from
mCSPC to mCRPC, accompanied by genomic profiles between
tissue and ctDNA and clonal evolution during treatment. In
addition, the impact of genomic signatures and alterations on
prognosis and treatment efficacy was presented in mCSPC and
mCRPC. These findings are valuable in the clinical practice of
advanced prostate cancer. In particular, predictive factors such as
HRR defect in mCSPC should be validated in the future.
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