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The gut microbiome is emerging as an important predictor of response to immune checkpoint inhibitor (ICI) therapy for patients
with cancer. However, several nutrition-related patient characteristics, which are themselves associated with changes in gut
microbiome, are also prognostic markers for ICI treatment response and survival. Thus, increased abundance of Akkermansia
muciniphila, Phascolarctobacterium, Bifidobacterium and Rothia in stool are consistently associated with better response to ICI
treatment. A. muciniphila is also more abundant in stool in patients with higher muscle mass, and muscle mass is a strong positive
prognostic marker in cancer, including after ICI treatment. This review explores the complex inter-relations between the gut
microbiome, diet and patient nutritional status and the correlations with response to ICI treatment. Different multivariate
approaches, including archetypal analysis, are discussed to help identify the combinations of features which may select patients
most likely to respond to ICI treatment.

BJC Reports; https://doi.org/10.1038/s44276-023-00008-8

INTRODUCTION
Immune checkpoint inhibitor (ICI) treatment is a novel form of
anticancer treatment which has revolutionised the management
of many different cancers over recent years [1]. ICI treatment
acts to counteract tumour evasion of immune surveillance and
makes the tumour cells targets for killing and clearance by the
host’s immune system [2, 3]. Predictive tumour biomarkers have
been identified which indicate if a tumour is more likely to
respond to ICI treatment [1]. These include the programmed
death-ligand 1 (PD-L1) expression on cancer cells, tumour
mutational burden, mismatch-repair deficiency/microsatellite
instability [1] and absence of epidermal growth factor receptor
mutations [4]. However, even when one or more of these
biomarkers are used, the overall response rates range between
36 and 75% after >12 weeks of treatment with ICI across
different types of cancer and lines of treatment [5]. Thus, better
biomarkers are needed to improve selection of patients most
likely to benefit from ICI.
The host immune system is central to the success of ICI

treatment, and given the interactions between the gut micro-
biome and the host immune system, it is highly plausible that
features of the gut microbiome may both modulate efficacy of
immunotherapy [6, 7] and be potential predictive biomarkers of
response. Several nutrition-related features, including body weight
and composition have also been correlated with outcomes of ICI
treatment. However, gut microbiome and nutritional status are
often closely inter-related and, in the context of ICI treatment for
cancer, it is unclear whether they offer independent prognostic
information and how best to capture and combine these data to
improve patient selection for ICI.

GUT MICROBIOME AND THE IMMUNE SYSTEM
Immune surveillance protects against developing cancer, as
shown by the increased incidence of malignancy in those with
primary immune deficiency [8]. The host gut microbiome is
important for the correct functioning of the immune system [6, 7]
and germ-free mice have depletion of many immune cell lines
(e.g., regulatory T-cells (Tregs)) and circulating cytokines, which are
restored to normal levels after faecal microbiome transplant [6]. In
addition, the presence of gut bacteria primes specific immune
mechanisms required for the full effect of certain cytotoxic
chemotherapies. Thus, the full therapeutic anticancer effects of
cyclophosphamide are only achieved if the T-cell-mediated
immune response induced by gut translocation of specific
Gram-negative bacteria is also intact, and the anticancer effect
of cyclophosphamide is blunted in antibiotic-treated or germ-free
animals [9]. This evidence for a role for gut bacteria in determining
effective immune-mediated cancer cell targeting and killing, is
now further supported by several studies showing an association
between increased abundance of certain gut bacteria and better
response to ICI treatment [10–18].

THE GUT MICROBIOME AND ICI CANCER TREATMENT
RESPONSE
The most prominent taxa associated with good response to ICI
(i.e., non-progressive disease) across different cancer types are
Phascolarctobacterium [11, 14–16, 18, 19], Bifidobacterium [19–21],
A. muciniphila [12, 13, 15, 16, 21, 22] and Rothia [11, 15, 16] (Fig. 1).
In hepatobiliary cancers and metastatic melanoma, Actinomyces
genus and members (e.g., Actinomyces odontolyticus) are
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consistently enriched in non-responders [10, 16, 17], whereas
Faecalibacterium prausnitzii is increased in responders
[10, 11, 14, 17]. In addition, across multiple advanced melanoma
datasets Roseburia spp. associated with good response to ICI [19].
Oral antibiotics can disrupt the gut microbiome, and though it is

not clear if the use of antibiotics alters abundance of all taxa
identified as predictive of ICI response [18, 23], there is certainly
evidence that antibiotic use close to the start of ICI treatment may
impair treatment response [22, 24]. However, antibiotic-related
changes in the gut microbiome do not affect outcomes of every
type of ICI in the same way. In one study of melanoma patients
treated with ICI targeting the cytotoxic T-lymphocyte antigen 4
(anti-CTLA-4), prior antibiotic use made no difference to outcomes,
despite leading to a lower abundance of the Bifidobacteriaceae
family [23]. In contrast, in another study decrease in the
abundance of Bifidobacterium members with antibiotics use was
associated with impaired response to ICI targeting the pro-
grammed cell death protein 1 (anti-PD-1) [25]. Overall, an effect of
antibiotic use on ICI treatment outcomes is best described for
patients with melanoma and lung and renal cancer treated with
ICI combinations (i.e., anti-PD-1 plus anti-CTLA-4) or anti-PD-1
monotherapy. In these groups, contemporary antibiotic use is
associated with lower response, i.e., shorter progression-free
survival (PFS) [26]. It remains to be seen whether the association
between the abundance of certain taxa in stool and ICI response is
causative in humans and intervention trials using targeted faecal
transplantation are ongoing (e.g., www.clinicaltrials.gov:
NCT05251389) [27, 28].

CANCER-BEARING STATE AND THE GUT MICROBIOME
Taxonomic profiling of the gut microbiome has revealed that,
compared to healthy subjects, Veillonella genus is usually more

abundant in treatment-naïve patients with lung [29], pancreatic
(Veillonella atypica) [30] and colorectal cancer [31, 32]. Further-
more, when comparing patients with advanced-stage cancer with
and without weight loss, Veillonella is more abundant in those
who lost weight [33]. Systemic inflammation is a common feature
of advanced cancer and may contribute to metabolic changes
promoting weight loss [34]. Consistent with this, Veillonella has
also been found to be enriched in other inflammatory states such
as autoimmune hepatitis and cystic fibrosis [35, 36].
Animal model studies have demonstrated that mice with acute

leukaemia or colon cancer experiencing weight loss, have an
increase in relative abundance of the Enterobacteriaceae family
compared to controls [37]. Similar findings were found in patients
with various cancer types and nutritional depletion [33]. By
contrast, weight-losing animals with acute leukaemia or colon
cancer had lower abundance of Lactobacillus spp. versus controls
[37, 38]. However, there are discordant results for this taxon in
depleted lung cancer patients versus healthy controls, with one
study showing reduced Lactobacillus abundance [39] and another,
reporting the opposite trend [33].
Studies of the microbiome in colorectal cancer have reported a

more specific taxonomic pattern. In those patients the relative
abundances of Fusobacterium [31, 32, 40, 41], Porphyromonas
[31, 32, 40] and A. muciniphila [32, 42] are increased, and F.
prausnitzii is decreased compared to healthy controls [32, 41].
Indeed, the enrichment of Porphyromonadaceae family [40],
including Porphyromonas somerae, is reported in the presence of
pre-malignant colonic lesions, suggesting a possible interaction
between gut microbiome and the development of colorectal
malignancy [31].
In general, the cancer-bearing state is associated with altered

gut microbiome in animal models and in humans. The mechan-
isms underlying this observation are not fully understood, but as

Fig. 1 Gut microbiome bacteria consistently associated with markers of diet, nutritional status and ICI response. Bacterial taxa in stool
that are associated with specific dietary components, markers of nutrition and body composition, and response to ICI cancer treatment.
Selected bacterial taxa are shown that have been reported in at least two studies. Specific taxonomic levels are denoted by prefix: c_ class; f_
family; g_ genus; s_ species.
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described below, there are many potential contributory factors
which will vary in importance between individuals.

DIETARY INTAKE AND MICROBIOME COMPOSITION
Dietary intake is a major determinant of the human gut
microbiome since bacteria obtain nutrients from the residue of
the diet in the intestine [43]. The quantity and quality of the
dietary residue present in the intestine has a differential influence
on the growth and abundance of gut microbes and thus the
composition of the gut microbiome [43, 44]. For example, a diet
enriched in certain macronutrients (e.g., fat, protein) would favour
the proliferation of species that are high metabolizers of those
macronutrients [44, 45].
Both total fibre and specific fruit and vegetable fibre intake, are

associated with the relative abundance of bacteria of the
Clostridia class in the gut microbiome [46, 47], especially Roseburia
genus [45, 48–51]. Many members of the Clostridium genus are
also associated to higher dietary fibre intake [49, 52]. Differing
dietary protein sources also favour prevalence of different
bacteria. Thus, increased animal protein intake is associated with
increased relative abundance of Alistipes [45, 50] and Bacteroides
genera [45, 48, 50, 53], whereas plant protein intake correlates
more closely with enrichment of some members of the
Bifidobacterium genus (e.g., B. longum) [53, 54].
Food products are highly complex matrices [55], and their

components as well as food preparation methods affect nutrient
availability in the gut [56]. Moreover, nutrient–nutrient interac-
tions may modulate nutrient uptake and net availability for gut
bacteria [57]. There is evidence that a major change in diet can
drive corresponding changes in that individual’s microbiome
composition [50], but these changes do not persist when the new
dietary intervention ceases [45]. Johnson et al. evaluated
consumption of food products through food diaries in 34 subjects
during 17 days with parallel analysis of each individual’s
microbiome [58]. In that study, microbiome composition reflected
dietary intake over a few days prior to sampling [58]. However,
microbiome adaptations in response to a given combination of
food products in one person did not predict changes seen in
others in the same cohort [58]. Thus, individual host factors appear
important in determining gut microbiome adaptations to diet.
From a therapeutic standpoint, the extent to which dietary
interventions alone can drive predictable changes in the gut
microbiome remains uncertain.

CANCER-RELATED CLINICAL FACTORS THAT CAN MODULATE
THE GUT MICROBIOME
Patients with advanced cancer are often found to have severely
altered and decreased dietary intake [34, 59]. There are many
different causes for this but anorexia [59, 60] and taste and smell
abnormalities related to cancer [61] and cancer treatment [62, 63]
are common. Many cancer treatments, including ICI, can also
cause other symptoms such as nausea or diarrhoea [63–66].
Severe disruption of nutrient intake is especially problematic for
patients with upper gastrointestinal malignancies. Radiation-
induced mucositis and dysphagia are common problems for head
and neck cancer patients [67, 68] and can limit swallowing due to
obstruction or pain [68]. Oesophageal and gastric cancers can also
cause partial or complete obstruction [69]. The net result of the
different barrier symptoms or physical changes, is that macro-
nutrient intake and nutritional status declines [59, 62, 70] and
affected patients are unable to maintain adequate dietary intake
[59] and frequently lose weight [65, 67].
Not only is the amount and content of intestinal residue altered

by the changes in dietary intake described, but the physiochem-
ical environment in the bowel can also be affected. Bowel surgery,

treatment-induced enteritis, atrophy or malabsorption [71]
including bile-acid malabsorption [72] are common causes for
persistent diarrhoea in patients with cancer. Such changes can
alter luminal pH [73] and growth conditions [74] for gut bacteria.
Taken together, the changes in food intake and the alterations in
bowel function and luminal conditions can have a profound
impact on the gut microbiome.

PATIENT NUTRITIONAL STATUS AND RESPONSE TO ICI
TREATMENT
Weight loss and low body weight are two of the most powerful
negative prognostic indicators of outcome in cancer [75–78]. In
general, patients at more advanced stages of disease suffer
greater weight losses [79] and reduced dietary intake appears to
be the strongest predictor of weight loss [34]. For the subgroup of
patients treated with ICI, there have been mixed reports about the
prognostic importance of weight loss. Some studies showed that
in non-small cell lung cancer (NSCLC) patients, those with recent
pre-treatment weight loss had shorter PFS [80–82] whilst other
studies did not [83, 84]. Similarly, in patients with squamous cell
head and neck carcinoma (HNSCC), weight (expressed as
weight(kg)/height(m)2 or body mass index (BMI)) change over
4–7 months prior to ICI treatment was not a predictor of PFS [85],
whereas another study in mixed cancer types, greater reduction in
BMI over a shorter interval (15–45 days) prior to ICI treatment was
a predictor of poor PFS [86]. Weight loss is also a predictor of
worse overall response rates with ICI treatment [84, 86].
A number of studies have reported that overweight (BMI

≥25 kg/m2) or obesity (BMI ≥30 kg/m2) predicts improved overall
survival (OS) rates after treatment with ICI in NSCLC [87, 88] and
melanoma [89–91]. In NSCLC the relationship may be non-linear
with less benefit for obese than in those who are only categorised
as overweight [92]. However, the relationship between BMI and
PFS after ICI treatment is less clear. Kichenadasse et al. found
overweight and obese patients with NSCLC had improved PFS
after treatment with atezolizumab but only in those with PDL-1-
positive tumours (tumour proportion score >5%) [87]. In contrast,
three recent studies including NSCLC patients treated with ICI
showed that BMI is not a predictor of PFS [82, 83, 93].
The changes in body composition and decline in muscle and fat

tissue mass in patients with advanced cancer are well described
[94, 95] and the prognostic importance of these differences in
body composition is now clear. Depletion of muscle mass has
been shown to be an especially poor prognostic factor for cancer
treatment outcomes [94] including ICI. In patients with lung
cancer, reduced muscle mass is strongly associated with worse
PFS after ICI use [96] with a >eightfold increased risk for
progressive disease [97]. Furthermore, in refractory and metastatic
HNSCC patients treated with nivolumab, higher values of skeletal
muscle had better response rates and PFS [98]. This relationship
has been confirmed in meta-analyses, including multiple different
types of cancer [99–102].
Patients with greater subcutaneous fat stores are reported to

have longer PFS in various cancer types treated with ICI [103, 104].
However, the type of adipose tissue and the corresponding status
of other tissue stores may be important in determining any
relationship between fat mass and response to ICI. In one cohort
of NSCLC patients, visceral fat and visceral/subcutaneous fat ratio
did not relate to PFS or response [105], whereas in another study
of NSCLC, total adipose tissue (i.e., visceral plus subcutaneous fat)
levels did correlate with better ICI response and PFS, but only in
patients who were weight-stable at start of the treatment [84].
Similarly, patients with HNSCC, renal cell and urothelial carcinomas
who had both lower visceral fat and skeletal muscle mass were at
higher risk of progressive disease in most [98, 106, 107], but not all
studies [104].
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GUT MICROBIOME AND NUTRITIONAL STATUS
Gut microbiome studies in humans show F. prausnitzii abundance
is greater in subjects with lower BMI in comparison to subjects
with obesity [108, 109]. In contrast, subjects with BMI values
≥25 kg/m2 have higher relative abundances of members of the
Collinsella genus (e.g., Collinsella aerofaciens) [109, 110], and the
Veillonellaceae [48, 111] and Lachnospiraceae families (e.g., genera
Dorea, Lachnospira, Coprococcus) [52, 109, 110, 112–115] (Fig. 1).
Animal models suggest that the gut microbiome modulates

muscle mass as evidenced by reversal of muscle atrophy and
increase on protein synthesis observed in germ-free mice after
faecal transplant [116]. In humans, higher muscle mass and a
leaner body composition (i.e., relatively lower fat mass), is
associated with enrichment of Akkermansiaceae family members
in the gut microbiome [117, 118], including A. muciniphila [119].
Coprococcus genus and Lachnospiraceae, were more abundant in
subjects with BMI ≥25 kg/m2 and those with greater skeletal
muscle mass [120]. Abundance of Faecalibacterium genus
members (i.e., F. prausnitzii) is greater in both women [118, 120]
and men [51] with higher skeletal muscle mass (Fig. 1).
Furthermore, increases in both lean mass and Faecalibacterium
relative abundance are observed in normal weight subjects after
exercise training [110]. This appears consistent with lower
abundance of F. prausnitzii, as well as members of the Clostridiales
class including Eubacterium and Roseburia genera, in older
subjects with physical frailty and sarcopenia, compared to controls
[121–123].
Studies focused on adipose tissue have shown A. muciniphila

abundance is inversely correlated with total fat mass in animal
models [124] and subcutaneous fat (rather than total body fat) in
human studies [125]. On the other hand, Coprococcus abundance
correlates positively with level of subcutaneous body fat [115].
Interestingly, there are some geographic differences in results. For
example, in western populations, Blautia genus abundance is
directly correlated with both BMI and visceral fat [113], but the
inverse relationship is observed in studies in Japanese and

Chinese populations where decreasing in relative abundance of
Blautia in the gut microbiome, is associated with increased visceral
fat [115, 126]. The reasons for these differences are not clear, but
similar observations have been reported for Bifidobacterium and
Oscillospira genera, with higher relative abundances in overweight
and obese subjects or subjects with higher visceral fat values in
Western countries [109, 113], but not in East and South-Asian
populations [126–128].
In summary, certain taxa are enriched in subjects with higher

relative fat or muscle mass. The mechanisms leading to these
differences in gut bacterial abundance in subjects with different
body weight and composition are unknown. However, given the
association between higher muscle mass and favourable prog-
nosis in cancer, body composition is another potentially important
prognostic marker linking microbiome profile and response to ICI
treatment.

MULTIVARIATE ANALYSIS TO PREDICT RESPONSE TO ICI
THERAPY IN CANCER
ICI treatment is now established as a highly effective form of
cancer treatment. However, despite the use of validated tumour
biomarkers, it remains challenging to select the patients who will
achieve sustained response to ICI. Features of the gut microbiome
and other patient-related nutritional factors have now been
shown to predict response to ICI in lung cancer. It seems highly
plausible that using a combination of microbiome and nutrition-
related biomarkers, in addition to current tumour-based biomar-
kers, will provide more accurate predictions of ICI response.
As outlined above, there is good evidence that the gut

microbiome composition is influenced by diet which may also
determine some features of nutritional status and body composi-
tion (Fig. 2). Thus, there may be confounding effects when trying
to combine such features for determining prognosis with ICI
treatment. Even the association between gut bacterial abundance
and immune-mediated anticancer activity may be modified by

ICI
response

anti-PD-1
anti-PD1 + anti-CTLA-4

BMI
Immune
system

Cancer

Diet

Gut
microbiome

Nutritional
status

Muscle and
fat mass

Fig. 2 Inter-relationships between diet, nutritional status, gut microbiome and response to ICI in cancer. Diet is a major determinant of
nutritional status. Dietary intake and nutritional status are associated with changes in the gut microbiome composition in healthy and
diseased subjects. Changes in diet, nutritional status and the gut microbiome are often found in patients diagnosed with cancer. Immune
function is modulated by the gut microbiome composition and nutritional status, and features of nutritional status and gut microbiome are
associated with different tumour responses to ICI.
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nutritional status, as the association between severe protein-
energy depletion and impaired immune function is well known
[129, 130]. Hence, identifying those with depleted nutritional
status may also highlight patients less likely to be able to mount
the host anti-tumour immune response needed to get the
benefits of ICI treatment. To date the inter-relationships between
the gut microbiome and nutritional factors in determining
outcomes of ICI treatments have not been fully explored.
Given the potential bi-directional relations between gut

microbiome and patient nutritional characteristics, sophisticated
multivariate analyses are needed to develop robust predictive
biomarkers. Some recent studies have performed multivariate
analysis combining clinical factors such as age, performance
status, weight (BMI), weight loss and body composition, tumour
biomarker expression (e.g., PD-L1 expression) and immune-related
factors (e.g., cytokines and counts of circulating immune cells) to
determine which features independently predict response to ICI in
cancer [82, 83, 88, 92, 131]. However, to date, multivariate analyses
to predict ICI treatment response have not incorporated gut
microbiome data. Large datasets including microbiome data have
only recently become more widely available and there are still
challenges in standardising data processing and incorporating
data of this type and structure into standard statistical modelling
approaches.
To address this, one solution to modelling is to combine

statistical analysis (e.g., regression) and machine-learning algo-
rithms to find the best predictive biomarkers [132–134]. For
instance, a statistical-based selection of variables to include in a
learning model can be done as a pre-modelling step (Fig. 3)
[133, 134]. However, rather than relying on classical statistical
models alone, other data, such as high-throughput sequence data
including relative abundance of selected bacteria taxa in each

individual, can then be combined with variables selected in the
pre-modelling step and analysed using machine-learning
approaches. A pattern-recognition approach has been proposed
by other authors to harness the potential of high-throughput data
to predict prognosis in cancer [135] and achieve optimal
personalised cancer treatment.
One promising method is archetypal analysis, in which the

values of biomarkers in all individuals is used to generate a
number of ‘archetypes’ (i.e., pure/extreme patterns that explain all
patterns across multiple variables observed in a sample) [136].
Individual subjects can then be matched to one or more
archetype and the confidence of assignment to a given archetype
can be calculated. The results of the archetypal analysis are easily
interpreted [137] and suitable for use with data such as gut
microbiome data that cannot be analysed using regression
modelling and classic multivariate analysis [138]. Archetypal
analysis has been successfully applied to find combinations of
laboratory and clinical features predicting trajectories of chronic
infection in cystic fibrosis patients [139] and for prediction of
allograft survival in renal transplant recipients [140]. More recently,
we have used this approach in conjunction with statistical
modelling in a cohort of patients with NSCLC, to determine the
combinations of nutritional, clinical and microbiome data
associated with response to ICI treatment (unpublished). The
results revealed a limited number of archetypes, two of which
were associated with better PFS. The two favourable archetype
patterns had distinct body composition profiles (e.g., high vs low
body fat) and patterns of dietary intake (e.g., high vs low fibre
intake) and differing gut relative abundance of the selected taxa
included in the analysis.
Importantly, when studying biomarkers which are potentially

highly inter-related such as for the gut microbiome and markers of

AIMS

Machine learning

Pre-modeling Model

Limited input variables
Assess independent +
combined effect of
predictors on outcome

Univariate and
multivariate analysis.

Only possible with
variables of appropriate
distribution types

Integration with other data types not
suitable for classical modeling.

Pattern recognition

Classical statistical
modeling

AIMS

AIMS

Model

More permissive for input
variables

Single or multiple patterns
or combinations of
features to associate with
outcomes

Variable selection for
further modeling
Parameter optimisation

Fig. 3 Modelling predictive biomarkers for ICI response: integrating multidimensional datasets. A schema is outlined to combine classical
statistical modelling and machine-learning pattern-recognition approaches to predict outcomes of ICI treatment. Statistical modelling can
determine the best single set of explanatory markers which predict outcomes. However, there are restrictions on the types of data which can
be modelled using this approach alone and, when including nutritional and microbiome data, the assumption that there is only a single best
set of explanatory variables may be flawed. Combining results of statistical modelling with machine-learning approaches allows the inclusion
of data not easily analysed using classical modelling and identification of key patterns within highly inter-related multidimensional data types.
This approach can be used to analyse clinical and molecular data to identify different combinations of features which predict response and
outcomes from ICI treatment in cancer.
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diet and nutrition in response to ICI treatment, it is plausible that
the impact of alterations in one factor (e.g., body fat), may be
mitigated by changes in other related factors such as gut
microbiome. Thus, as demonstrated by our own findings
mentioned above, multiple different combinations of these factors
may exist which are associated with better or worse outcomes.
Archetypal analysis and similar approaches are useful tools to try
and identify these different combinations of factors . This in turn
raises questions about whether the archetypes identified can help
understand the nutritional and microbiome-related mechanisms
promoting better response to ICI and eventually inform interven-
tion studies to improve outcomes.

CONCLUSIONS
Despite the use of current tumour-based biomarkers it remains
challenging to predict whether a given individual will have
sustained response to ICI treatment. The patient’s gut microbiome
profile and many nutrition-related features provide additional
prognostic information, but it is not clear how best to incorporate
these data to improve ICI treatment planning. A combination of
statistical modelling and machine-learning techniques, such as
archetypal analysis, is proposed to identify patterns or combina-
tions of features associated with better outcomes after ICI
treatment. This pattern-recognition approach may also identify
mechanistically important co-dependencies between nutritional
and gut microbiome data and lay the groundwork for future
intervention studies to improve outcomes.
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